首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bone marrow (BM)-derived stem and progenitor cell functions including self-renewal, differentiation, survival, migration, proliferation, and mobilization are regulated by unique cell-intrinsic and -extrinsic signals provided by their microenvironment, also termed the “niche.” Reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), play important roles in regulating stem and progenitor cell functions in various physiologic and pathologic responses. The low level of H2O2 in quiescent hematopoietic stem cells (HSCs) contributes to maintaining their “stemness,” whereas a higher level of H2O2 within HSCs or their niche promotes differentiation, proliferation, migration, and survival of HSCs or stem/progenitor cells. Major sources of ROS are NADPH oxidase and mitochondria. In response to ischemic injury, ROS derived from NADPH oxidase are increased in the BM microenvironment, which is required for hypoxia and hypoxia-inducible factor-1α expression and expansion throughout the BM. This, in turn, promotes progenitor cell expansion and mobilization from BM, leading to reparative neovascularization and tissue repair. In pathophysiological states such as aging, atherosclerosis, heart failure, hypertension, and diabetes, excess amounts of ROS create an inflammatory and oxidative microenvironment, which induces cell damage and apoptosis of stem and progenitor cells. Understanding the molecular mechanisms of how ROS regulate the functions of stem and progenitor cells and their niche in physiological and pathological conditions will lead to the development of novel therapeutic strategies.  相似文献   

3.
4.
The family of hexokinases (HKs) catalyzes the first step of glycolysis, the ATP-dependent phosphorylation of glucose to glucose-6-phosphate. While HK1 and HK2 are ubiquitously expressed, the less well-studied HK3 is primarily expressed in hematopoietic cells and tissues and is highly upregulated during terminal differentiation of some acute myeloid leukemia (AML) cell line models. Here we show that expression of HK3 is predominantly originating from myeloid cells and that the upregulation of this glycolytic enzyme is not restricted to differentiation of leukemic cells but also occurs during ex vivo myeloid differentiation of healthy CD34+ hematopoietic stem and progenitor cells. Within the hematopoietic system, we show that HK3 is predominantly expressed in cells of myeloid origin. CRISPR/Cas9 mediated gene disruption revealed that loss of HK3 has no effect on glycolytic activity in AML cell lines while knocking out HK2 significantly reduced basal glycolysis and glycolytic capacity. Instead, loss of HK3 but not HK2 led to increased sensitivity to ATRA-induced cell death in AML cell lines. We found that HK3 knockout (HK3-null) AML cells showed an accumulation of reactive oxygen species (ROS) as well as DNA damage during ATRA-induced differentiation. RNA sequencing analysis confirmed pathway enrichment for programmed cell death, oxidative stress, and DNA damage response in HK3-null AML cells. These signatures were confirmed in ATAC sequencing, showing that loss of HK3 leads to changes in chromatin configuration and increases the accessibility of genes involved in apoptosis and stress response. Through isoform-specific pulldowns, we furthermore identified a direct interaction between HK3 and the proapoptotic BCL-2 family member BIM, which has previously been shown to shorten myeloid life span. Our findings provide evidence that HK3 is dispensable for glycolytic activity in AML cells while promoting cell survival, possibly through direct interaction with the BH3-only protein BIM during ATRA-induced neutrophil differentiation.Subject terms: Cell biology, Cancer  相似文献   

5.
6.
Mortensen M  Watson AS  Simon AK 《Autophagy》2011,7(9):1069-1070
The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).  相似文献   

7.
8.
9.
《Autophagy》2013,9(9):1069-1070
The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).  相似文献   

10.
11.
Cytokine signaling pathways are important in promoting hematopoietic stem cell (HSC) self-renewal, proliferation and differentiation. Mpl receptor and its ligand, TPO, have been shown to play an essential role in the early steps of adult hematopoiesis. We previously demonstrated that the cytoplasmic domain of Mpl promotes hematopoietic commitment of embryonic stem cells in vitro, and postulated that Mpl could be important in the establishment of definitive hematopoiesis. To answer this question, we investigated the temporal expression of Mpl during mouse development by in situ hybridization. We found Mpl expression in the HSCs clusters emerging in the AGM region, and in the fetal liver (FL) as early as E10.5. Using Mpl(-/-) mice, the functional relevance of Mpl expression was tested by comparing the hematopoietic progenitor (HP) content, long-term hematopoietic reconstitution (LTR) abilities and HSC content of control and Mpl(-/-) embryos at different times of development. In the AGM, we observed delayed production of HSCs endowed with normal LTR but presenting a self-renewal defect. During FL development, we detected a decrease in HP and HSC potential associated with a defect in amplification and self-renewal/survival of the lin(-) AA4.1(+) Sca1(+) population of HSCs. These results underline the dual role of Mpl in the generation and expansion of HSCs during establishment of definitive hematopoiesis.  相似文献   

12.
13.
14.
HIV infection is characterized by gradual immune system collapse and hematopoietic dysfunction. We recently showed that HIV enters multipotent hematopoietic progenitor cells and establishes both active cytotoxic and latent infections that can be reactivated by myeloid differentiation. However, whether these multipotent progenitors include long-lived hematopoietic stem cells (HSCs) that could establish viral reservoirs for the life of the infected person remains unknown. Here we provide direct evidence that HIV targets long-lived HSCs and show that infected HSCs yield stable, multilineage engraftment in a xenograft model. Furthermore, we establish that the capacity to use the chemokine receptor CXCR4 for entry determines whether a virus will enter multipotent versus differentiated progenitor cells. Because HSCs live for the life span of the infected person and are crucial for hematopoietic health, these data may explain the poor prognosis associated with CXCR4-tropic HIV infection and suggest HSCs as long-lived cellular reservoirs of latent HIV.  相似文献   

15.
The growth and survival of committed hematopoietic progenitors is dependent upon cytokine signaling. However, serum is also required for optimal growth of these progenitors in culture ex vivo. Here we report that serum withdrawal leads to myeloid progenitor cell apoptosis. Although serum deprivation-induced cell death has many hallmarks typical of apoptosis, these cell deaths were not inhibited by hemopoietins, survival factors such as IGF-I, or treatment with a broad-spectrum caspase inhibitor. Rather, apoptosis due to serum withdrawal was associated with damage to mitochondria. Surprisingly the serum factor required for myeloid cell survival was identified as iron, and loss of iron led to marked reductions in ATP production. Furthermore, supplementing serum-deprived myeloid cells with bound or free iron promoted cell survival and prevented mitochondrial damage. Therefore, serum suppresses hematopoietic cell apoptosis by providing an obligate source of iron and iron homeostasis is critical for proper myeloid cell metabolism and survival.  相似文献   

16.
Hematopoietic stem cells (HSCs) possess long-term self-renewal capacity and multipotent differentiative capacity, to maintain the hematopoietic system. Long-term hematopoietic homeostasis requires effective control of genotoxic damage to maintain HSC function and prevent propagation of deleterious mutations. Here we investigate the role of the BH3-only Bcl-2 family member Bid in the response of murine hematopoietic cells to long-term replicative stress induced by hydroxyurea (HU). The PI3-like serine/threonine kinase, ATR, initiates the DNA damage response (DDR) to replicative stress. The pro-apoptotic Bcl-2 family member, Bid, facilitates this response to replicative stress in hematopoietic cells, but the in vivo role of this DDR function of Bid has not been defined. Surprisingly, we demonstrate that long-term HU treatment expands wild-type myeloid progenitor cells (MPCs) and HSC-enriched Lin(-)Sca1(+)Kit(+) (LSK) cells to maintain bone marrow function as measured by long-term competitive repopulating ability. Bid-/- MPCs demonstrate increased sensitivity to HU and are depleted. Bid-/- LSK cells demonstrate increased mobilization manifest by increased Bromodeoxyuridine (BrdU) incorporation. Bid-/- MPCs and LSK cells are relatively depleted, however, and bone marrow from Bid-/- mice demonstrates decreased long-term competitive repopulating ability in both primary and secondary transplants. We thus describe a survival function of Bid in hematopoiesis in the setting of chronic replicative stress.  相似文献   

17.
Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) were originally discovered as growth factors for hematopoietic stem cells (HSCs). It has been well defined that SCF and G-CSF contribute to regulation of lineage commitment for HSCs. However, little is known about whether SCF and G-CSF play roles in the determination and differentiation of neural stem cells (NSCs). Here we demonstrate the novel function of SCF and G-CSF in controlling cell cycle and cell fate determination of NSCs. We also observe that SCF and G-CSF promote neuronal differentiation and inhibit astroglial differentiation at the early stage of differentiation. In addition, our research data reveal that SCF in combination with G-CSF has a dual function in promoting cell cycle exit and directing neuronal fate commitment at the stage of NSC dividing. This coordination effect of SCF+G-CSF on cell cycle arrest and neuronal differentiation is through enhancing neurogenin 1 (Ngn1) activity. These findings extend current knowledge regarding the role of SCF and G-CSF in the regulation of neurogenesis and provide insights into the contribution of hematopoietic growth factors to brain development and remodeling.  相似文献   

18.
Hematopoietic stem cells have the potential to develop into multipotent and different lineage-restricted progenitor cells that subsequently generate all mature blood cell types. The classical model of hematopoietic lineage commitment proposes a first restriction point at which all multipotent hematopoietic progenitor cells become committed either to the lymphoid or to the myeloid development, respectively. Recently, this model has been challenged by the identification of murine as well as human hematopoietic progenitor cells with lymphoid differentiation capabilities that give rise to a restricted subset of the myeloid lineages. As the classical model does not include cells with such capacities, these findings suggest the existence of alternative developmental pathways that demand the existence of additional branches in the classical hematopoietic tree. Together with some phenotypic criteria that characterize different subsets of multipotent and lineage-restricted progenitor cells, we summarize these recent findings here.  相似文献   

19.
The EML hematopoietic progenitor cell line is a model system for studying molecular events regulating myeloid commitment and terminal differentiation. We used representational difference analysis to identify genes that are expressed differentially during myeloid differentiation of EML cells. One gene (named mAKRa) encoded a novel member of the aldoketo reductase (AKR) superfamily of cytosolic NAD(P)(H)-dependent oxidoreductases. mAKRa mRNA was detected in murine hematopoietic tissues including bone marrow, spleen, and thymus. In myeloid cell lines, mAKRa was expressed at highest levels in cells representative of promyelocytes. mAKRa mRNA levels increased rapidly in response to interleukin-3 over the first 24 h of EML cell differentiation when the cells undergo lineage commitment and extensive proliferation. mAKRa mRNA levels decreased later in the differentiation process particularly when the EML cells were cultured with granulocyte/macrophage colony-stimulating factor and retinoic acid to induce terminal granulocytic maturation. mAKRa mRNA levels decreased during retinoic acid-induced terminal granulocytic differentiation of the MPRO promyelocyte cell line. AKRs act as molecular switches by catalyzing the interconversion or inactivation of bioactive molecules including steroids and prostaglandins. We propose that mAKRa may catalyze the production or catabolism of autocrine factors that promote the proliferation and/or lineage commitment of early myeloid progenitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号