首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mutant cells of Escherichia coli missing the particulate l-alpha-glycerophosphate (l-alpha-GP) dehydrogenase necessary for aerobic growth on glycerol or l-alphaGP, a soluble, flavine-dependent l-alpha-GP dehydrogenase supports normal anaerobic growth rates on either of the two substrates with fumarate or nitrate as exogenous hydrogen acceptor. In an experiment in which glycerol served as the carbon source and nitrate as the acceptor, the growth of such a mutant was arrested upon the admission of air, whereas the growth of wild-type cells continued smoothly. Mutant cells lacking the soluble l-alpha-GP dehydrogenase, but possessing the particulate enzyme, can grow at normal rates aerobically on glycerol and l-alpha-GP or anaerobically on these compounds with nitrate, but not fumarate, as the hydrogen acceptor. Double mutants lacking both of the dehydrogenases fail to show significant growth on either glycerol or l-alpha-GP under any condition. Mutations affecting the anaerobic dehydrogenase (glpA locus) are situated at about minute 43 of the Taylor map, just clockwise beyond glpT, and show cotransduction with purF (1.5%), glpT (91%), and nalA (50%). The anaerobic dehydrogenase is a member of the glp regulon as judged by its inducibility by l-alpha-GP and by its constitutive formation in strains of glpR(c) genotype. The level of the anaerobic dehydrogenase is about the same in cells grown either aerobically or anaerobically with nitrate serving as a terminal hydrogen acceptor. With fumarate as terminal acceptor, the level is elevated several fold.  相似文献   

2.
Kinetic parameters of the selenium-containing, formate dehydrogenase component of the Escherichia coli formate-hydrogenlyase complex have been determined with purified enzyme. A ping-pong Bi Bi kinetic mechanism was observed. The Km for formate is 26 mM, and the Km for the electron-accepting dye, benzyl viologen, is in the range 1-5 mM. The maximal turnover rate for the formate-dependent catalysis of benzyl viologen reduction was calculated to be 1.7 x 10(5) min-1. Isotope exchange analysis showed that the enzyme catalyzes carbon exchange between carbon dioxide and formate in the absence of other electron acceptors, confirming the ping-pong reaction mechanism. Dissociation constants for formate (12.2 mM) and CO2 (8.3 mM) were derived from analysis of the isotope exchange data. The enzyme catalyzes oxidation of the alternative substrate deuterioformate with little change in the Vmax, but the Km for deuterioformate is approximately three times that of protioformate. This implies formate oxidation is not rate-limiting in the overall coupled reaction of formate oxidation and benzyl viologen reduction. The deuterium isotope effect on Vmax/Km was observed to be approximately 4.2-4.5. Sodium nitrate was found to inhibit enzyme activity in a competitive manner with respect to formate, with a Ki of 7.1 mM. Sodium azide is a noncompetitive inhibitor with a Ki of about 80 microM.  相似文献   

3.
A microbiological assay to detect different chemical compounds of selenium for potential future use in the study of the distribution of these chemical forms in foods is being developed. This assay is based on the detection, by infrared analysis, of CO2 in a culture of Escherichia coli when the bacteria are grown in the presence of various selenium compounds. The CO2 production is the result of selenium-dependent formate dehydrogenase activity, which catalyzes oxidation of formic acid produced during glucose metabolism. Smooth response curves were generated over several orders of magnitude for selenocystine, selenite, and selenomethionine. The assay detects selenium concentrations (above background) as low as 1.5 nM for selenocystine and selenite and 4 nM for selenomethionine in minimal medium. Detection of selenomethionine was enhanced (to a sensitivity of 1.5 nM) by the addition of methionine to minimal medium and was enhanced even further (to a sensitivity of 0.8 nM) by the addition of a defined mixture of amino acids. Selenomethionine could be assayed in the presence of an amino acid concentration which is proportional to the amino acid/elemental selenium ratio found in a wheat gluten reference material (NIST SRM 8418). This implies that the assay can detect selenium compounds in a variety of foods at low concentrations, avoiding the background CO2 production caused by high concentrations of non-selenium-containing amino acids. The observation that methionine enhanced selenomethionine availability for formate dehydrogenase synthesis supports studies in animals demonstrating that methionine controls selenomethionine incorporation into selenoenzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
6.
A biochemical and immunological study has revealed a new formate dehydrogenase isoenzyme in Escherichia coli. The enzyme is an isoenzyme of the respiratory formate dehydrogenase (FDH-N) which forms part of the formate to nitrate respiratory pathway found in the organisms when it is grown anaerobically in the presence of nitrate. The new enzyme, termed FDH-Z, cross reacts with antibodies raised to FDH-N and possesses a similar polypeptide composition to FDH-N. FDH-Z catalyses the phenazine methosulphate-linked formate dehydrogenase activity present in the aerobically-grown bacterium. FDH-Z and FDH-N exhibit distinct regulation. Like formate dehydrogenase N, formate dehydrogenase Z is a membrane-bound molybdoenzyme. With nitrate reductase it can catalyse electron transfer between formate and nitrate. Quinones are required for the physiological electron transfer to nitrate. It seems likely that like FDH-N, FDH-Z functions physiologically as a formate: quinone oxidoreductase.  相似文献   

7.
8.
Escherichia coli was grown under various culture conditions. Variations in the levels of formate dehydrogenase which reacts with methylene blue (MB) or phenazine methosulfate (PMS) (N enzyme), formate dehydrogenase which reacts with benzyl viologen (BV) (H enzyme), formate oxidase and hydrogenlyase were analyzed. It was observed that formate dehydrogenase N and formate oxidase were induced by nitrate and repressed by oxygen. Synthesis of formate dehydrogenase H and hydrogenlyase was induced by formate and repressed by nitrate and oxygen. Selenite was required for the biosynthesis of formate dehydrogenase H and hydrogenlyase. Activity of both formate oxidase and hydrogenlyase was inhibited by azide and KCN but not by N-heptyl hydroxyquinoline-N-oxide (HOQNO); on the other hand, formate oxidase was extremely sensitive to HOQNO. Data were obtained which suggest that cytochromes are not involved in hydrogen formation from formate. Part of this work was carried out when the senior author was visiting Research Biologist in the Laboratory of Dr. J. A. de Mosss at the University of California, San Diego. Thanks are given to Dr. De Moss for his hospitality and advise and to Dr. Warren Butler of the University of California, San Diego for making available his spectrophotometer to carry out cytochrome analyses. Most of this work was sustained by a grant from the Research Corporation, Brown Hazen Fund and the financial help of the C.O.F.A.A. from the Instituto Politécnico Nacional.  相似文献   

9.
The arrangement of the proton-translocating formate dehydrogenase of the anaerobic respiratory chain of Escherichia coli within the cytoplasmic membrane was examined by direct covalent modification with non-membrane-permeant reagents. Three methods were employed, lactoperoxidase-catalysed radioiodination, labelling with diazotized [125I] di-iodosulphanilic acid and labelling with diazobenzene [35S] sulphonate. All three procedures yield consistent with the view that the two larger subunits of the enzyme, Mr 110000 and 32000, both occupy transmembranous locations within the membrane. In each case the modification of the Ca2+ or Mg2+-activated F1-ATPase was monitored, and all reagents employed correctly located this enzyme at the cytoplasmic face of the membrane. A procedure involving agglutination with specific antibodies is described which appears to fractionate membrane vesicles of mixed orientation into two populations, one with the same membrane orientation as that of spheroplasts and the other opposite orientation.  相似文献   

10.
The formate-hydrogen lyase complex of Escherichia coli decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. The complex consists of two separable enzymatic activities: a formate dehydrogenase and a hydrogenase. The formate dehydrogenase component (FDHH) of the formate-hydrogen lyase complex was purified to near homogeneity in two column chromatographic steps. The purified enzyme was composed of a single polypeptide of molecular weight 80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Metal analysis showed each mole of enzyme contained 3.3 g atoms of iron. Denaturation of FDHH released a compound which, when oxidized, displayed a fluorescence spectrum similar to that of the molybdopterin cofactor found in certain other enzymes. The enzyme contained selenium in the form of selenocysteine as determined by radioactive labeling of the enzyme with 75Se and amino acid analysis. FDHH activity was maximal between pH 7.5 and 8.5; however, the enzyme was maximally stable at pH 5.3-6.4 and highly unstable above pH 7.5. Nitrate and nitrite salts caused a drastic reduction in activity. Although azide inhibited FDHH activity, it also protected the enzyme from inactivation by oxygen.  相似文献   

11.
Y M Chen  Y Zhu    E C Lin 《Journal of bacteriology》1987,169(7):3289-3294
Mutant analysis revealed that complete utilization of L-fucose and L-rhamnose by Escherichia coli requires the activity of a common NAD-linked aldehyde dehydrogenase which converts L-lactaldehyde to L-lactate. Mutations affecting this activity mapped to the ald locus at min 31, well apart from the fuc genes (min 60) encoding the trunk pathway for L-fucose dissimilation (as well as L-1,2-propanediol oxidoreductase) and the rha genes (min 88) encoding the trunk pathway for L-rhamnose dissimilation. Mutants that grow on L-1,2-propanediol as a carbon and energy source also depend on the ald gene product for the conversion of L-lactaldehyde to L-lactate.  相似文献   

12.
13.
Lipoamide dehydrogenase from Escherichia coli operates qualitatively by the same mechanism as the enzyme from pig heart. It has been suggested that quantitative differences between the two, in particular the marked inhibition of the bacterial enzyme by its product NADH, are related to the fact that the E. coli enzyme lacks the phosphorylation/dephosphorylation control present in the mammalian enzyme (Wilkinson, K. D., and Williams, C. H., Jr. (1981) J. Biol. Chem. 256, 2307-2314). Because of the inhibition by NADH, the kinetics of the E. coli enzyme have not been studied previously in the physiological direction with the natural substrate, dihydrolipoamide. We have now measured the steady-state kinetics of the oxidation of dihydrolipoamide by NAD+ using the stopped-flow technique to follow only the early time course. The pH dependence of kcat revealed an apparent pKa value of 6.7, reflecting ionization(s) of the enzyme-substrate complex. The pH dependence of kcat/Km gave an apparent pKa of 7.4 reflecting ionization(s) of the free 2-electron-reduced enzyme. The inhibition pattern for NADH was mixed, consistent with the fact that NADH is both a product inhibitor and inhibits by reducing a fraction of the enzyme to the catalytically inactive 4-electron-reduced state. There is a modest pH-dependent positive cooperativity in the saturation curve for NAD+ decreasing with increasing pH. Spectral changes in the 530 and 446 nm bands of the 2-electron-reduced enzyme, associated with the titration of the nascent thiols and the base, showed tentative pKa values of 6.4 and 7.1, respectively, in a pH jump experiment. The properties of the wild type E. coli enzyme can now be compared with those of several site-directed mutants.  相似文献   

14.
Escherichia coli K12 mutants lacking phenazine-methosulphate-linked formate dehydrogenase (FDH-PMS) activity, but still capable of producing normal levels of benzyl-viologen-linked formate dehydrogenase (FDH-BV) and nitrate reductase activities, have been isolated following P1 localized mutagenesis. The relevant mutations mapped with the same cotransduction frequency close to the rhaD gene, at 88 min on the E. coli chromosome. They were further subdivided into two classes. Class I consisted of six fdhD mutants which synthesized an inactive FDH-PMS protein with the same subunit composition as the wild-type enzyme. In contrast, class II contained four fdhE mutants totally devoid of this antigen. Construction of merodiploid strains harbouring various combinations of the mutated alleles, fdhE on the episome and fdhD on the chromosome, led to the restoration of FDH-PMS activity by complementation of the products encoded by the respective wild-type alleles. Difference spectroscopy suggested that both fdhD and fdhE mutants contained normal amounts of the cytochrome b559 associated with FDH-PMS although the cytochrome had lost its capacity for formate-dependent reduction.  相似文献   

15.
Escherichia coli has DNA restriction systems which are able to recognize and attack modified cytosine residues in the DNA of incoming bacteriophages and plasmids. The locus for the McrA/RglA system of modified cytosine restriction was located near the pin gene of the defective element, e14. Hence, loss of the e14 element through abortive induction after UV irradiation caused a permanent loss of McrA restriction activity. e14 DNA encoding McrA restriction was cloned and sequenced to reveal a single open reading frame of 831 bp with a predicted gene product of 31 kDa. Clones expressing the complete open reading frame conferred both McrA and RglA phenotypes; however, a deletion derivative was found which complemented RglA restriction against nonglucosylated T6gt phage but did not complement for McrA restriction of methylated plasmid DNA. Possible explanations for this activity and a comparison with the different organization of the McrB/RglB restriction system are discussed.  相似文献   

16.
17.
Cyanate induces expression of the cyn operon in Escherichia coli. The cyn operon includes the gene cynS, encoding cyanase, which catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. A carbonic anhydrase activity was recently found to be encoded by the cynT gene, the first gene of the cyn operon; it was proposed that carbonic anhydrase prevents depletion of bicarbonate during cyanate decomposition due to loss of CO2 by diffusion out of the cell (M. B. Guilloton, J. J. Korte, A. F. Lamblin, J. A. Fuchs, and P. M. Anderson, J. Biol. Chem. 267:3731-3734, 1992). The function of the product of the third gene of this operon, cynX, is unknown. In the study reported here, the physiological roles of cynT and cynX were investigated by construction of chromosomal mutants in which each of the three genes was rendered inactive. The delta cynT chromosomal mutant expressed an active cyanase but no active carbonic anhydrase. In contrast to the wild-type strain, the growth of the delta cynT strain was inhibited by cyanate, and the mutant strain was unable to degrade cyanate and therefore could not use cyanate as the sole nitrogen source when grown at a partial CO2 pressures (pCO2) of 0.03% (air). At a high pCO2 (3%), however, the delta cynT strain behaved like the wild-type strain; it was significantly less sensitive to the toxic effects of cyanate and could degrade cyanate and use cyanate as the sole nitrogen source for growth. These results are consistent with the proposed function for carbonic anhydrase. The chromosomal mutant carrying cynS::kan expressed induced carbonic anhydrase activity but no active cyanase. The cynS::kan mutant was found to be much less sensitive to cyanate than the delta cynT mutant at a low pCO2, indicating that bicarbonate depletion due to the reaction of bicarbonate with cyanate catalyzed by cyanase is more deleterious to growth than direct inhibition by cyanate. Mutants carrying a nonfunctional cynX gene (cynX::kan and delta cynT cynX::kan) did not differ from the parental strains with respect to cyanate sensitivity, presence of carbonic anhydrase and cyanase, or degradation of cyanate by whole cells; the physiological role of the cynX product remains unknown.  相似文献   

18.
19.
One step in de novo pyridoxine (vitamin B6) and pyridoxal 5'-phosphate biosynthesis was predicted to be an oxidation catalyzed by an unidentified D-erythrose-4-phosphate dehydrogenase (E4PDH). To help identify this E4PDH, we purified the Escherichia coli K-12 gapA- and gapB-encoded dehydrogenases to homogeneity and tested whether either uses D-erythrose-4-phosphate (E4P) as a substrate. gapA (gap1) encodes the major D-glyceraldehyde-3-phosphate dehydrogenase (GA3PDH). The function of gapB (gap2) is unknown, although it was suggested that gapB encodes a second form of GA3PDH or is a cryptic gene. We found that the gapB-encoded enzyme is indeed an E4PDH and not a second GA3PDH, whereas gapA-encoded GA3PDH used E4P poorly, if at all, as a substrate under the in vitro reaction conditions used in this study. The amino terminus of purified E4PDH matched the sequence predicted from the gapB DNA sequence. Purified E4PDH was a heat-stable tetramer with a native molecular mass of 132 kDa. E4PDH had an apparent Km value for E4P [Kmapp(E4P)] of 0.96 mM, an apparent kcat catalytic constant for E4P [kcatapp(E4P)] of 200 s-1, Kmapp(NAD+) of 0.074 mM, and kcatapp(NAD+) of 169 s-1 in steady-state reactions in which NADH formation was determined. From specific activities in crude extracts, we estimated that there are at least 940 E4PDH tetramer molecules per bacterium growing in minimal salts medium plus glucose at 37 degrees C. Thin-layer chromatography confirmed that the product of the E4PDH reaction was likely the aldonic acid 4-phosphoerythronate. To establish a possible role of E4PDH in pyridoxal 5'-phosphate biosynthesis, we showed that 4-phosphoerythronate is a likely substrate for the 2-hydroxy-acid dehydrogenase encoded by the pdxB gene. Implications of these findings in the evolution of GA3PDHs are also discussed. On the basis of these results, we propose renaming gapB as epd (for D-erythrose-4-phosphate dehydrogenase).  相似文献   

20.
Summary In Podospora anserina a chromosome walk near the mating type locus was made possible through isolation of genomic sequences linked to a plasmid integrated in this part of the genome. Genetic analysis of 86 transformants obtained from the 5 first cosmids of this walk was performed. These data and those reported elsewhere for cosmids resulting from another chromosome walk allow us to draw two clear-cut rules for transformation with cosmids. First, the large majority of transformants arise from integration at the resident locus, contrasting with the heterologous process which predominates for plasmids. Second, all homologous integrations are highly unstable while all non-homologous integrations are stable. Analysis of the timing of the instability reveals that loss of the selective marker is probably limited to the fruiting body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号