首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments with Arabidopsis have been developed for spaceflight studies in the European Space Agency's Biorack module. The Biorack is a multiuser facility that is flown on the United States Space Shuttle and serves as a small laboratory for studying cell and developmental biology in unicells, plants, and small invertebrates. The purpose of our spaceflight research was to investigate the starch-statolith model for gravity perception by studying wild-type (WT) and three starch-deficient mutants of Arabidopsis. Since spaceflight opportunities for biological experimentation are scarce, the extensive ground-based testing described in this paper is needed to ensure the success of a flight project. Therefore, the specific aims of our ground-based research were: (1) to modify the internal configuration of the flight hardware, which originally was designed for large lentil seeds, to accommodate small Arabidopsis seeds; (2) to maximize seed germination in the hardware; and (3) to develop favorable conditions in flight hardware for the growth and gravitropism of seedlings. The hardware has been modified, and growth conditions for Arabidopsis have been optimized. These experiments were successfully flown on two Space Shuttle missions in 1997.  相似文献   

2.
Experiments withArabidopsis have been developed for spaceflight studies in the European Space Agency's Blorack module. The Biorack is a multiuser facility that is flown on the United States Space Shuttle and serves as a small laboratory for studying cell and developmental biology in unicells, plants, and small invertebrates. The purpose of our spaceflight research was to investigate the starch-statolith model for gravity perception by studying wild-type (WT) and three starch-deficient mutants ofArabidopsis. Since spaceflight opportunities for biological experimentation are scarce, the extensive ground-based testing described in this paper is needed to ensure the success of a flight project. Therefore, the specific aims of our ground-based research were: (1) to modify the internal configuration of the flight hardware, which originally was designed for large lentil seeds, to accommodate smallArabidopsis seeds; (2) to maximize seed germination in the hardware; and (3) to develop favorable conditions in flight hardware for the growth and gravitropism of seedlings. The hardware has been modified, and growth conditions forArabidopsis have been optimized. These experiments were successfully flown on two Space Shuttle missions in 1997.  相似文献   

3.
Myoblast cell cultures have been widely employed in conventional (1g) studies of biological processes because characteristics of intact muscle can be readily observed in these cultured cells. We decided to investigate the effects of spaceflight on muscle by utilizing a well characterized myoblast cell line (L8 rat myoblasts) as cultured in the recently designed Space Tissue Loss Flight Module “A” (STL-A). The STL-A is a “state of the art,” compact, fully contained, automated cell culture apparatus which replaces a single mid-deck locker on the Space Shuttle. The L8 cells were successfully flown in the STL-A on the Space Shuttle STS-45 mission. Upon return to earth, reculturing of these spaceflown L8 cells (L8SF) resulted in their unexpected failure to fuse and differentiate into myotubes. This inability of the L8SF cells to fuse was found to be a permanent phenotypic alteration. Scanning electron microscopic examination of L8SF cells growing at 1g on fibronectin-coated polypropylene fibers exhibited a strikingly different morphology as compared to control cells. In addition to their failure to fuse into myotubes, L8SF cells also piled up on top of each other. When assayed in fusion-promoting soft agar, L8SF cells gave rise to substantially more and larger colonies than did either preflight (L8AT) or ground control (L8GC) cells. All data to this point indicate that flying L8 rat myoblasts on the Space Shuttle for a duration of 7–10 d at subconfluent densities results in several permanent phenotypic alterations in these cells. © 1994 Wiley-Liss, Inc.  相似文献   

4.
There are limited data regarding changes in oxidative and antioxidant enzymes induced by simulated or actual weightlessness, and any additional information would provide insight into potential mechanisms involving other changes observed in muscles from animals previously flown in space. Thus, the NASA Biospecimen Sharing Program was an opportunity to collect valuable information. Oxidative and antioxidant enzyme levels, as well as lipid perioxidation, were measured in respiratory muscles from rats flown on board Space Shuttle mission STS-54. The results indicated that there was an increasing trend in citrate synthase activity in the flight diaphragm when compared to ground based controls, and there were no significant changes observed in the intercostal muscles for any of the parameters. However, lipid peroxidation was significantly (p<0.05) decreased in the flight diaphragm. These results indicate that 6 day exposure to microgravity may have a different effect on oxidative and antioxidant activity in rat respiratory muscles when compared to data from previous 14 day hindlimb suspension studies.  相似文献   

5.
The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European ‘Biorack’ provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the ‘Biorack’ facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatent in-flight), injection port, and supernatent collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatent, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground- based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities. J. Cell. Biochem. 70:252–267, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
The Research Animal Holding Facility (RAHF) and the Animal Enclosure Module (AEM) have housed rats during Space Shuttle flights since the 1980s, but the operational constraints of the hardware have limited the scientific return from these Shuttle flights. The RAHF provides environmental control and monitoring for 24 rats with in-flight animal access, but it must be flown in the Spacelab. Due to the infrequent availability of Spacelab flights, rodent experiments rely heavily on the AEM. Unfortunately, the AEM supports only six rats, has no environmental control and provides no animal access in flight. The Advanced Animal Habitat (AAH) is being developed to support up to 12 adult rats or 30 adult mice for up to 30 days, provide active temperature control, animal telemetry and on-orbit video, record environmental parameters in the animal cage, and provide in-flight animal access in the Middeck, the Spacelab or the Space Station. To ensure the AAH can meet these requirements, animal testing is being conducted with rats and mice in every step of development. Testing began with the cage configuration.  相似文献   

7.
We analyzed various organs in the same rats to study effects of gravitational condition on organ development of the neonatal rat in this study. Eight-day old and 14-day old Sprague-Dawley rats were flown for 16 days on the Space Shuttle Columbia (April 17-May 3, 1998). The organs were weighed and the ratio of the organ weight to the body weight (organ weight ratio; OBR) was calculated. Tissues were analyzed using anatomical, immunohistochemical and molecular biological technique. Six animals of the 8-day old group were reared on the ground for 30 more days after landing. The differences between flight and control rats in 8-day group were drastic. The lung, heart, kidney and adrenal glands in flight rats were significantly larger than that of control rats in OBR comparison. However, only the lung and kidney were still larger after 30 more days on ground. The kidney in flight rats performed pelvis expansion with down-regulation of aquaporin-2 expression confirmed by immunohistochemistry. The thymus, spleen, mesentery and pancreas were smaller in OBR. But the thymus in flight rats was heavier after 30 more days. The organs in flight rats which had no differences in OBR showed normal characteristics in histological analysis. We also found that the number of unmyelinated fibers of the aortic nerve in flight rats of 8-day group was smaller than that in control rats. In flight rats of the 14-day group, only the kidney was heavier and the ovary was lighter as compared to the controls. These results implied the second week of life was important for development during spaceflight. And the sensitivity and the critical period on neonatal development under microgravity might differ in each organ.  相似文献   

8.
Spaceflight produces changes in the immune system. The mechanisms for the alterations in immune function after spaceflight remain unclear due in part to the difficulties associated with conducting spaceflight research. The purpose of the following studies, therefore, was to create a ground-based protocol that can reproduce the immunological changes found after spaceflight, i.e., changes in splenic lymphocyte populations. Rats were exposed to either flight aboard the Space Shuttle Endeavor (STS-77) or ground-based simulations of various components of the spaceflight experience. The ground-based mock spaceflight was comprised of exposure to launch and landing loads and unloading of the hindlimbs. In addition, each component of this ground-based mock spaceflight was tested separately. The results were that spaceflight reduced splenic CD4(+) T (helper/inducer) cells and CD11b(+) (neutrophils/macrophages) cells. The ground-based simulations of spaceflight did not reproduce the same pattern of splenocyte changes. In fact, exposure to landing loads alone increased splenic CD4(+) T (helper/inducer) cells. These findings support the conclusion that the ground models tested did not induce similar changes in the immune system as did spaceflight. It is possible, therefore, that stressors/factors unique to the spaceflight experience impact the immune system in ways that cannot be currently, fully modeled on the ground.  相似文献   

9.
Female rats received an ip injection of aluminum chloride, (10 mg Al/kg/d) during the first 12 d after parturition; this treatment led to a reduction in food intake associated with a reduction in body wt. Pups of the intoxicated dams showed a growth retardation after postnatal day 7. One day after treatment, the female rats intoxicated with aluminum had a considerably higher level of aluminum in milk than controls. The aluminum levels of plasma, liver, spleen, and kidneys were also significantly higher in treated female rats than controls. On the contrary, in the same tissues of pups from treated or not treated dams, no differences in aluminum levels were observed. No effect of aluminum treatment was detected on plasma silicon levels in dams and pups.  相似文献   

10.
Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.  相似文献   

11.
12.
Wild-type and starchless Arabidopsis thaliana mutant seedlings(TC7) were grown and fixed in the microgravity environment ofa U.S. Space Shuttle spaceflight. Computer image analysis oflongitudinal sections from columella cells suggest a differentplastid positioning mechanism for mutant and wild-type in theabsence of gravity. (Received September 24, 1996; Accepted January 21, 1997)  相似文献   

13.
Summary The natural-killer(NK)-cell-mediated cytotoxicity to syngeneic tumor cells can be augmented by in vivo priming and subsequent in vitro challenge with the streptococcal preparation OK432. Supernatants of cocultures of spleen cells with OK432 contained interleukin-2 (IL-2) and interferon (IFN), mainly IFN-. As the anti-(mouse IFN-) monoclonal antibody but not anti-(mouse IFN-) antibody inhibited the induction of activated NK cells with OK432, the IFN- participated in this response. The enhancement of NK cell activity and production of IL-2 were partially inhibited by the pretreatment of spleen cells with mitomycin C or irradiation, and were completely abolished by pretreatment with actinomycin D. The IL-2 activity after treatment with various metabolic inhibitors ran parallel to the NK activity in a system augmented with OK432. The activity of incubated spleen cells with IL-2 receptors was increased by OK432 treatment, and the NK cell and IFN activities of supernatants were also abrogated by the treatment with anti-(mouse IL-2 receptor) monoclonal antibody, to block the interaction between IL-2 and these receptors of effector cells. The panning method clarified that the incubated spleen cells with IL-2 receptors are responsible for the production of IFN-. These results suggest that IL-2 plays a major role in inducing the activated NK cells from murine spleen cells primed in vivo and subsequently challenged in vitro with OK432, by the production of IFN-.  相似文献   

14.
The ultrastructure of root cap columella cells was studied by morphometric analysis in wild-type, a reduced-starch mutant, and a starchless mutant of Arabidopsis grown in microgravity (F-microgravity) and compared to ground 1g (G-1g) and flight 1g (F-1g) controls. Seedlings of the wild-type and reduced-starch mutant that developed during an experiment on the Space Shuttle (both the F-microgravity samples and the F-lg control) exhibited a decreased starch content in comparison to the G-1g control. These results suggest that some factor associated with spaceflight (and not microgravity per se) affects starch metabolism. Elevated levels of ethylene were found during the experiments on the Space Shuttle, and analysis of ground controls with added ethylene demonstrated that this gas was responsible for decreased starch levels in the columella cells. This is the first study to use an on-board centrifuge as a control when quantifying starch in spaceflight-grown plants. Furthermore, our results show that ethylene levels must be carefully considered and controlled when designing experiments with plants for the International Space Station.  相似文献   

15.
Mammary metabolic activity in pregnant rats is significantly increased in response to spaceflight. To determine whether changes in mammary metabolism are related to gravity load, we exposed pregnant rats to hypergravity and measured mammary metabolic activity. From days 11-20 of gestation (G), animals were centrifuged (20 rpm; 1.5, 1.75, or 2.0 x gravity) or were maintained at 1 G. On G20, five rats from each group were removed from the centrifuge and euthanized. The remaining dams (n = 5/treatment) were housed at 1 G until parturition. After 2 h of nursing by the pups, the postpartum dams were euthanized (G22). Glucose oxidation to CO2 and incorporation into lipids was measured. Mammary glands from dams euthanized on G20 revealed a strong negative correlation between metabolic rate and increased G load. Approximately 98% of the variation in glucose oxidation and 94% of the variation in glucose incorporation into lipids can be accounted for by differences in G load. Differences in metabolic activity disappeared in the postpartum dams. When we combined previous data from the microgravity with hypergravity environments and plotted the ratio of mammary metabolic rate vs. G load, there was a significant exponential relationship (r2 = 0.99). These data demonstrate a remarkable continuum of response across the microgravity and hypergravity environments and support the concept that gravitational load influences mammary tissue metabolism.  相似文献   

16.
Sprague-Dawley rats were subjected to three 8-to-10 day space flights on the Space Shuttle. Housed in NASA's Animal Enclosure Modules, rats were flown to test the hypotheses that therapy with pegylated interleukin-2 or insulin-like growth factor-1 would ameliorate some of the effects of space flight on the immune system. As part of these experiments, we measured body and organ weights, blood cell differentials, plasma corticosterone, macrophage colony forming units, lymphocyte mitogenic, super-antigenic and interferon-gamma responses, bone marrow cell and peritoneal macrophage cytokine secretion and bone strength and mass. This paper compares some of the immunophysiological parameters of the control animals used in the Immune1-3 flight series and presents data from an animal infection model for use during space flight.  相似文献   

17.
《PloS one》2008,3(12)
The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth.  相似文献   

18.
The events of parturition (labor,delivery, maternal care, placentophagia, and onset of nursing) wereanalyzed in female Norway rats (Rattus norvegicus) flown oneither 11- or 9-day-long spaceflights beginning at the approximatemidpoint of their pregnancies. Each space shuttle flight landed on the20th day of the rats' pregnancies, just 48-72 h beforeparturition. After spaceflight, dams were continuously monitored andrecorded by time-lapse videography throughout the completion ofparturition and onset of nursing (days 22 and23). Analyses of parturition revealed that, compared with groundcontrols, flight dams displayed twice the number of lordosiscontractions, the predominant labor contraction type in rats.The number of vertical contractions (those that immediately precedeexpulsion of a pup from the womb), the duration of labor, fetalwastage, number of neonates born, neonatal birth weights, placentophagia, and maternal care during parturition, including theonset of nursing, were comparable in flight and ground control dams.Our findings indicate that, with the exception of labor contractions,mammalian pregnancy and parturition remain qualitatively andquantitatively intact after spaceflight during pregnancy.

  相似文献   

19.
The effects of spaceflight on mammary metabolism of 10 pregnant rats was measured on Day 20 of pregnancy and after parturition. Rats were flown on the space shuttle from Day 11 through Day 20 of pregnancy. After their return to earth, glucose oxidation to carbon dioxide increased 43% (P < 0.05), and incorporation into fatty acids increased 300% (P < 0.005) compared to controls. It is unclear whether the enhanced glucose use is due to spaceflight or a response to landing. Casein mRNA and gross histology were not altered at Day 20 of pregnancy. Six rats gave birth (on Day 22 to 23 of pregnancy) and mammary metabolic activity was measured immediately postpartum. The earlier effects of spaceflight were no longer apparent. There was also no difference in expression of beta-casein mRNA. It is clear from these studies that spaceflight does not impair the normal development of the mammary gland, its ability to use glucose, nor the ability to express mRNA for a major milk protein.  相似文献   

20.

Background

Studies have shown that epinephrine release is impaired in patients with asthma. The pregnancy of female rats (dams) with asthma promotes in their pups the differentiation of adrenal medulla chromaffin cells (AMCCs) into sympathetic neurons, mediated by nerve growth factor, which leads to a reduction in epinephrine secretion. However, the relatedness between the alteration of AMCCs and increased asthma susceptibility in such offspring has not been established.

Methods

In this study, we observed the effects of allergization via ovalbumin on rat pups born of asthmatic dams.

Results

Compared to the offspring of untreated controls, bronchial hyperreactivity and airway inflammation were more severe in the pups from sensitized (asthmatic) dams. In pups exposed to nerve growth factor (NGF) in utero these effects were aggravated further, but the effects were blocked in pups whose dams had been treated with anti-NGF. Furthermore, alterations in AMCC phenotype corresponded to the degree of bronchial hyperreactivity and lung lesions of the different treatment groups. Such AMCC alterations included degranulation of chromaffin granules, reduction of epinephrine and phenylethanolamine-n-methyl transferase, and elevation of NGF and peripherin levels.

Conclusions

Our results present evidence that asthma during the pregnancy of rat dams promotes asthma susceptibility in their offspring, and that the transformation of AMCCs to neurons induced by NGF plays an important role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号