首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
草鱼野生与选育群体线粒体DNA控制区D-loop遗传变异分析   总被引:4,自引:0,他引:4  
为探究经过2个选育世代后选育群体遗传多样性和遗传结构的变化, 研究对4个野生群体(邗江、九江、石首和吴江)和2个选育世代(F1和F2)进行了线粒体DNA控制区(D-loop)序列的遗传变异分析。实验结果表明, 4个野生群体在单倍型数目(H)、单倍型多样性(Hd)、核苷酸多样性(π)、平均核苷酸差异数(K)水平上均高于2个选育世代, 在2个选育世代内表现为F1代群体的核苷酸多样性(π)和平均核苷酸差异数(K)大于F2代群体, 但单倍型多样性(Hd)小于F2代群体; 单倍型分析结果表明, 6个群体间无共享单倍型, 4个野生群体间共发现2种共享单倍型(Hap1和Hap3), 石首群体和2个选育世代共享1种单倍型(Hap15); 遗传分化指数(Fst)分析结果表明, 邗江、九江、吴江3个野生群体和2个选育世代间存在较大的遗传分化(Fst范围为0.41475—0.55128), 石首群体与F1代群体之间存在较小的遗传分化, 与F2代群体之间存在中等水平的遗传分化, 同时F1代群体与F2代群体之间存在较小的遗传分化; 基于6个群体276个个体构建的邻接(Neighbor-Joining, NJ)进化树和基于27种单倍型构建的单倍型网络图也得到了相似的结论, 即邗江、九江、吴江3个野生群体和2个选育世代间的亲缘关系较远, 石首群体和2个选育世代两两之间的亲缘关系较近。以上结果表明, 经过2个世代的选择育种, 选育群体的遗传结构已发生了变化, 并且随着选育的进行, 选育世代的遗传多样性下降的较为明显, 这警示着我们在今后的育种工作中应适当改变现有的选育方案, 并实时监测选育群体的遗传多样性, 以便为今后进一步的选育工作打下坚实的基础。  相似文献   

2.
Conservation programs in urban ecosystems need to determine the genetic background in populations of urban dwellers. We examined the genetic diversity and structure of Pieris rapae and P. melete using AFLP markers, and compared them between species and between urban and rural environments. As a result: (i). in both species, there was no reduction in genetic diversity within urban populations by direct comparison of diversity measurements, although the analysis of molecular variance suggested significant reductions in the variance within seasonal subpopulations in urban populations; (ii). P. rapae retained greater genetic diversity within species and populations; (iii). populations of both species showed significant genetic differentiation, and P. melete was more strongly subdivided; (iv). in both species, geographically close populations did not cluster with one another in the upgma analysis; (v). there was no genetic isolation due to geographical distance in either species; (vi). the genetic composition of seasonal subpopulations differed in urban populations of both species, and the genetic distances among subpopulations were correlated with seasonal differences in P. rapae and with temporal differences in P. melete. These results indicate that the genetic diversity in urban populations of both species was reduced at times, but was maintained by dispersal from genetically differentiated populations. Differences in the ability and mode of dispersal in the two species may be reflected in the degree of population subdivision and patterns of seasonal change in the genetic composition.  相似文献   

3.
Dokulil  Martin T.  Teubner  Katrin 《Hydrobiologia》2003,503(1-3):29-35
We studied the genetic structure of populations of the Atlanto-Mediterranean ascidian Clavelina lepadiformis (Müller, 1776). A 369 bp segment of the COI mitochondrial gene was sequenced in Mediterranean and Atlantic populations from inside harbours, marinas and fjords (interior populations), and from the open rocky littoral (exterior populations). Previous work identified genetic differences between C. lepadiformis inhabiting Mediterranean harbours and the Mediterranean rocky littoral, however, the origin of these two clades remained speculative. Here we compared the Mediterranean populations with four Atlantic populations (two interior and two exterior). Gene differentiation and maximum likelihood analyses showed that the Atlantic forms were not divided into interior and exterior clades, and were closely related to the interior clade in the Mediterranean. The results support the hypothesis that both clades evolved allopatrically in the two seas, and that a recent colonisation of Mediterranean marinas from the Atlantic was caused by ship-hull transport. Colonisation of habitats by new genetic variants, morphologically indistinguishable from local populations, may be common among benthic invertebrates, and only genetic tools can uncover these cryptic invasions.  相似文献   

4.
We investigated the distribution of genetic variation and the relationship between population size and genetic variation in the rare plant Gentianella germanica using RAPD (random amplified polymorphic DNA) profiles. Plants for the analysis were grown from seeds sampled from 72 parent plants in 11 G. germanica populations of different size (40-5000 fruiting individuals). In large populations, seeds were sampled from parents in two spatially distinct subpopulations comparable in area to the total area covered by small populations. Analysis of molecular variance revealed significant genetic variation among populations (P <0.001), while genetic variation among subpopulations was marginally significant (P <0.06). Average molecular variance within subpopulations in large populations did not differ significantly from whole-population values. There was a positive correlation between genetic variation and population size (P <0.01). Genetic variation was also positively correlated with the number of seeds per plant in the field (P <0.02) and the number of flowers per planted seed in a common garden experiment (P <0.051). We conclude that gene flow among natural populations is very limited and that reduced plant fitness in small populations of G. germanica most likely has genetic causes. Management should aim to increase the size of small populations to minimize further loss of genetic variation. Because a large proportion of genetic variation is among populations, even small populations are worth preserving.  相似文献   

5.
The genetic relationships among seven cultivated populations and eight natural populations of wild common buckwheat were analyzed using amplified fragment length polymorphism (AFLP). The genetic distance was estimated for each pair of the 15 populations based on the AFLP data, and a phylogenetic tree was constructed using the neighbor-joining (NJ) method based on the genetic distance. All the cultivated populations were grouped in a cluster. The natural populations were grouped into two clusters composed of (1) the Sanjiang group (three populations from eastern Tibet and one population from Adong village of Yunnan province) and (2) two populations from Yunnan province and two populations from Sichuan province. The Sanjiang group is more closely related to cultivated populations. These results indicate that the direct ancestor of common buckwheat was natural populations of wild common buckwheat from the Sanjiang area.  相似文献   

6.
Genetic diversity is essential for populations to adapt to changing environments. Measures of genetic diversity are often based on selectively neutral markers, such as microsatellites. Genetic diversity to guide conservation management, however, is better reflected by adaptive markers, including genes of the major histocompatibility complex (MHC). Our aim was to assess MHC and neutral genetic diversity in two contrasting bottlenose dolphin (Tursiops aduncus) populations in Western Australia—one apparently viable population with high reproductive output (Shark Bay) and one with lower reproductive output that was forecast to decline (Bunbury). We assessed genetic variation in the two populations by sequencing the MHC class II DQB, which encompasses the functionally important peptide binding regions (PBR). Neutral genetic diversity was assessed by genotyping twenty‐three microsatellite loci. We confirmed that MHC is an adaptive marker in both populations. Overall, the Shark Bay population exhibited greater MHC diversity than the Bunbury population—for example, it displayed greater MHC nucleotide diversity. In contrast, the difference in microsatellite diversity between the two populations was comparatively low. Our findings are consistent with the hypothesis that viable populations typically display greater genetic diversity than less viable populations. The results also suggest that MHC variation is more closely associated with population viability than neutral genetic variation. Although the inferences from our findings are limited, because we only compared two populations, our results add to a growing number of studies that highlight the usefulness of MHC as a potentially suitable genetic marker for animal conservation. The Shark Bay population, which carries greater adaptive genetic diversity than the Bunbury population, is thus likely more robust to natural or human‐induced changes to the coastal ecosystem it inhabits.  相似文献   

7.
Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P < 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P < 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P < 0.001), as well as 72.59% variation within populations (P < 0.001). Molecular variation within populations was significantly different among 16 populations.  相似文献   

8.
New Zealand populations of Gracilaria chilensis are uniform in anatomical reproductive characteristics but vary morphologically and have been found to separate into two distinct groups with respect to agar methylation level, namely low (24–30%) and high (43–47%). To investigate the genetic variation within New Zealand populations of this species, 14 isozyme loci detected by starch-gel electrophoresis were examined in 17 wild populations from a wide range of localities, and in cultures derived from these populations. Five of these loci were polymorphic, but the genetic variation within populations was low: of the 17 populations examined, 15 were fixed at all loci (heterozygosity 0.000) and in the remaining two populations the observed heterozygosity was still low (0.004 and 0.011). The genetic distances between the populations ranged from 0.00 to 0.43. UPGMA cluster analysis separated the populations into two groups, a northern group and a group found throughout the country. Although these two groups do not correlate with the two groups based on agar methylation level at every locality, the correlation is sufficiently striking to merit further investigation.  相似文献   

9.
Crocodylus moreletii, an extinction threatened species, represents an emblem for tropical ecosystems in Mexico. Surprisingly, there is a lack of information about their genetic constitution, which should be evaluated for a proper management ex situ and for making decisions on the release of crocodiles into natural habitats. The aim of this study was to characterize and compare the genetic variability of four populations of C. moreletii (two wild versus two born ex situ). Through PCR were amplified seven microsatellite polymorphic loci, however a heterozygote deficit, diminished by the presence of null alleles, was found in the populations (average Ho=0.02). The AMOVA indicated that the highest proportion of genetic variability is within populations, and a limited genetic differentiation among populations (average F(ST)=0.03), probably due to high inbreeding index (average F(IS)=0.97). When comparing the genetic variability between and within other crocodilian species, we found that in C. moreletii is well below those reported. We concluded that the limited genetic variability in ex situ born populations is probably due to a founder effect derived from the social structure of their progenitors, and by the bottleneck effect, inferred by the limited effective population size, that historically characterizes their natural distribution in wild populations.  相似文献   

10.
The population genetics of the Afghan Pika (Ochotona rufescens) was studied in Northern Khorasan Province, Iran. For prediction of the genetic differentiation of four populations, the DNA of mitochondrial cytochrome b of 32 individuals from four areas was sequenced and a Bayesian analysis based on the HKY model was constructed. In total, 15 polymorphic sites, 1125 conserved sites (98.7%) and 14 different haplotypes were found. The phylogenetic tree resulting from the Bayesian analysis and network analysis showed that all samples were clustered in two major groups and the haplotypes of the four populations did not separate geographically. An analysis of molecular variance (AMOVA) indicated that a large majority of the genetic variance was due to the variance within populations. The results of fixation indices showed significant genetic structure among populations in both methods. The pairwise Fst revealed that two northern populations have a significant genetic differentiation from two southern populations, but no significance pairwise Fst value was demonstrated between the closed populations. Nei's genetic distances between closed populations were not significant, while significant values occurred between distant populations. It seems that there is not a major discontinuity between populations of Afghan Pika based on cyt-b mitochondrial gene. However, phylogenetic analysis did not separate populations and a large majority of the genetic variance was found within populations. However, AMOVA analysis showed a significant level of genetic structure among populations (p?<?0.001) and between groups (p?<?0.5). It seems that these results suggest shallow genetic differentiation between populations of different geographic groups.  相似文献   

11.
Random amplified polymorphic DNA (RAPD) markers were used to analyze 119 DNA samples of three Colombian Anopheles nuneztovari populations to study genetic variation and structure. Genetic diversity, estimated from heterozygosity, averaged 0.34. Genetic flow was greater between the two populations located in Western Colombia (F ST: 0.035; Nm: 6.8) but lower between these two and the northeastern population (F ST: 0.08; Nm: 2.8). According to molecular variance analysis, the genetic distance between populations was significant (phi ST 0.1131, P < 0.001). The variation among individuals within populations (phi ST 0.8869, P < 0.001)was also significant, suggesting a greater degree of population subdivision, not considered in this study. Both the parameters evaluated and the genetic flow suggest that Colombian An. nuneztovari populations are co-specific.  相似文献   

12.
We examined the genetic population structure in eelgrass (Zostera marina L.), the dominant seagrass species of the northern hemisphere, over spatial scales from 12 km to 10 000 km using the polymorphism of DNA microsatellites. Twelve populations were genotyped for six loci representing a total of 67 alleles. Populations sampled included the North Sea (four), the Baltic Sea (three), the western Atlantic (two), the eastern Atlantic (one), the Mediterranean Sea (one) and the eastern Pacific (one). Microsatellites revealed substantial genetic variation in a plant group with low allozyme diversity. Average expected heterozygosities per population (monoclonal populations excluded) ranged from 0.32 to 0.61 (mean = 0. 48) and allele numbers varied between 3.3 and 6.7 (mean = 4.7). Using the expected frequency of multilocus genotypes within populations, we distinguished ramets from genetic individuals (i.e. equivalent to clones). Differences in clonal diversity among populations varied widely and ranged from maximal diversity (i.e. all ramets with different genotype) to near or total monoclonality (two populations). All multiple sampled ramets were excluded from further analysis of genetic differentiation within and between populations. All but one population were in Hardy-Weinberg equilibrium, indicating that Zostera marina is predominantly outcrossing. From a regression of the pairwise population differentiation with distance, we obtained an effective population size Ne of 2440-5000. The overall genetic differentiation among eelgrass populations, assessed as rho (a standardized estimate of Slatkin's RST) was 0.384 (95% CI 0.34-0.44, P < 0.001). Genetic differentiation was weak among three North Sea populations situated 12-42 km distant from one another, suggesting that tidal currents result in an efficient exchange of propagules. In the Baltic and in Nova Scotia, a small but statistically significant fraction of the genetic variance was distributed between populations (rho = 0.029-0. 053) at scales of 15-35 km. Pairwise genetic differentiation between European populations were correlated with distance between populations up to a distance of 4500 km (linear differentiation-by-distance model, R2 = 0.67). In contrast, both Nova Scotian populations were genetically much closer to North Sea and Baltic populations than expected from their geographical distance (pairwise rho = 0.03-0.08, P < 0.01). A biogeographical cluster of Canadian with Baltic/North Sea populations was also supported using a neighbour-joining tree based on Cavalli-Sforza's chord distance. Relatedness between populations may be very different from predictions based on geographical vicinity.  相似文献   

13.
Few studies have investigated the genetic structure of both host and parasite populations at a level of populations and at a level of individuals. We investigated the genetic structure of the urban cockroach Blattella germanica and its oxyuroid parasite Blatticola blattae. Random amplified polymorphic DNA (RAPD) markers were used to quantify genetic diversity between and within four populations (from two cities in France) of the host and its parasite. Diversity based on phenotypic frequencies was calculated for each RAPD marker using Shannon-Wiener's index. We used multivariate analyses to test the significance of genetic differentiation between host and parasite populations. Analysis of molecular variance was also used. Both methods gave similar results. Diversity between pairs of individuals was estimated by Nei & Li's index. Genetic diversity was higher within host or parasite populations (80% and 82%, respectively, of explained diversity) than between host or parasite populations (20% and 18%, respectively, explained diversity). The genetic distances between pairs of parasite populations (or individuals) were not correlated with the genetic distances between the corresponding pairs of host populations (or individuals).  相似文献   

14.
To examine if the cultivation process has reduced the genetic variation of modern cultivars of the traditional Chinese medicinal plant, Coptis chinensis, the levels and distribution of genetic variation was investigated using ISSR markers. A total of 214 C. chinensis individuals from seven wild and three cultivated populations were included in the study. Seven ISSR primers were used and a total of 91 DNA fragments were scored. The levels of genetic diversity in cultivated populations were similar as those in wild populations (mean PPL = 65.2% versus PPL = 52.4%, mean H = 0.159 versus H = 0.153 and mean I = 0.255 versus I = 0.237), suggesting that cultivation did not seriously influence genetic variation of present-day cultivated populations. Neighbour-joining cluster analysis showed that wild populations and cultivated populations were not separated into two groups. The coefficient of genetic differentiation between a cultivar and its wild progenitor was 0.066 (G(st)), which was in good accordance with the result by amova analysis (10.9% of total genetic variation resided on the two groups), indicating that cultivated populations were not genetically differentiated from wild progenitors. For the seven wild populations, a significant genetic differentiation among populations was found using amova analysis (45.9% of total genetic variation resided among populations). A number of causes, including genetic drift and inbreeding in the small and isolated wild populations, the relative limited gene flow between wild populations (N(m) = 0.590), and high gene flow between cultivars and their wild progenitors (N(m) = 7.116), might have led to the observed genetic profiles of C. chinensis.  相似文献   

15.
基于线粒体控制区序列对光裸方格星虫(Sipunculus nudus Linnaeus,1766)的2个养殖群体(营盘YP、竹林ZL)和4个野生群体(防城港FC、钦州QZ、大冠沙DG和越南海防YN)的91个个体进行遗传差异分析,研究光裸方格星虫养殖和野生群体的遗传变异情况。结果显示:获得的514 bp DNA序列中,野生与养殖群体的多态性位点数分别为82和60,均显示出对AT的偏倚性。共定义85个单倍型,共享单倍型4个,其中共享单倍型Hap5为原始单倍型,营盘群体均为独享单倍型。各群体的单倍型多样性(Hd)相同,野生群体的平均核苷酸多样性(Pi)(0.01531)略高于养殖群体(0.01514),6个群体的遗传多样性水平依次为YN > YP > QZ > FC > ZL > DG。各群体间的遗传分化并不显著(P>0.05),光裸方格星虫的遗传变异主要来自群体内个体间(99.08%),同时未发现明显的地理谱系结构。研究表明,光裸方格星虫野生群体的遗传多样性水平总体略高于养殖群体;滩涂底播养殖方式较池塘养殖更利于维持光裸方格星虫遗传多样性;各群体间不存在显著的遗传分化,养殖群体正逐渐积累遗传变异,但尚未足够以形成其独立的遗传结构。  相似文献   

16.
华北2蝗区东亚飞蝗种群遗传结构的比较研究   总被引:7,自引:4,他引:7  
利用水平淀粉凝胶电泳对采自天津北大港和河北黄骅两个相临蝗区的东亚飞蝗(Locusta migratoria manilensis)种群进行等位酶基因频率分析,比较了这两个种群的遗传结构,等位酶酶谱分析表明,19个基因座中4个基因座(Mdh-l,Pgm,Adk,G3pd)的等位基因频率变化很小,常见等位基因的频率均高于0.95,其他基因座有2-4个等位基因,但是两个种群的等位基因频率除两个基因座(Fbp,Got-2)外都很相似,多态位点的27个χ2检验表明,由于常见等位基因纯合子的高频率的和相应杂合子的缺乏,仅有北大港种群的2个基因座(Pgi,Got-1)符合Hardy-Weinberg平衡,在每个种群内的蝗虫存在明显的遗传变异,但在种群间遗传结构极为相似,多态位点的百分数P分别为73.7%和78.9%,每个基因座的平均等位基因数A为2.9和3.1,平均每个基因座的实际杂合度几乎相等(约为0.138),F-统计量(FST=0.053)也表明了两个种群间的遗传 一致性,遗传相似性系数(I)高达0.938,这些结果提示,这两个种群可能属于1 个大种群,在两个种群的一定位点上的遗传多态性和分化可能都与迁飞因素有关,因为东亚飞蝗的高度扩散能力有利于遗传结构的连续分布,高度的迁飞能力也导致个体暴露于各种不同的环境,而在种群水平上的遗传为异能增强种群在各种生态条件生存和繁殖能力,因此,迁飞有利于维持东亚飞蝗种群的遗传多态性的动态平衡。  相似文献   

17.
To determine the potential for productive efficiency and genetic improvement in the blood clam Tegillarca granosa, four offspring populations (ZZ, ZK, KZ and KK) were produced from a diallel mating of two different geographical stocks (Z and K). The levels of genetic diversity and population structures of four populations were analyzed using 14 polymorphic microsatellites. The results showed that the mean observed heterozygosities (Ho) of reciprocal cross populations (ZK and KZ) was higher than those of pure populations(ZZ and KK). The largest values of genetic differentiation coefficient (Fst?=?0.067) and Nei’s unbiased genetic distance (Dc?=?0.263) were between ZK and KZ, and the smallest (Fst?=?0.020, Dc?=?0.116) were between ZZ and KK, which revealed that the largest genetic divergence was between the two reciprocal cross populations and the smallest was between two pure populations. This study demonstrated that the reciprocal cross populations of T. granosa had an extensive genetic difference and improvement, which may be advantageous for future breeding studies.  相似文献   

18.
Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P 〈 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P 〈 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P 〈 0.001), as well as 72.59% variation within populations (P 〈 0.001). Molecular variation within populations was significantly different among 16 populations.  相似文献   

19.
我国草鱼野生群体D-Loop序列遗传变异分析   总被引:3,自引:0,他引:3  
利用线粒体DNA的D-Loop区序列, 对来自长江水系(邗江、吴江、九江、石首、木洞和万州)、珠江水系(肇庆)和黑龙江水系(嫩江)的8个草鱼野生群体开展了遗传变异分析。在424尾鱼中检测到34个变异位点, 34个单倍型, 单倍型多样性介于0.4740.708。群体间Kimura双参数遗传距离介于0.00200.0049。长江下游3个群体间遗传距离最近, 遗传分化不显著(P0.05); 肇庆群体与长江上游3个群体遗传距离较近, 与九江群体遗传分化不显著(P0.05); 嫩江群体与长江上游2个群体遗传距离较近, 与万州群体遗传分化不显著(P0.05)。遗传距离与地理距离存在极显著正相关(R=0.61, P0.01)。分子方差分析显示, 不同流域间遗传变异占总变异26.24%, 差异极显著(P0.01)。34个单倍型分为2个分支, 分化极显著(FST=0.644, P0.01), 推测分化时间为第四纪更新世纪晚期。    相似文献   

20.
Abstract: Six metal-tolerant populations and sub-populations of Armeria maritima ssp. halleri, ssp. hornburgensis, and ssp. bottendorfensis and two non-tolerant populations of ssp. elongata in Central and Northeast Germany have been analysed using RAPD markers. The populations show very strong genetic differentiation (ΦST = 0.46), corresponding gene flow between them is low (Nem = 0.29). A moderate positive correlation between the matrices of genetic and geographical distances was found between the seven populations and sub-populations of central Germany (r = 0.68, p < 0.001). Calculated parameters of genetic variability are molecular variance, percentage of heterozygosity and percentage of polymorphic loci. A significant correlation between population size and parameters of genetic variability was not recognisable. Genetic structure was investigated by an analysis of molecular variance (AMOVA). The studied populations show strong genetic differentiation. Genetic variation within populations ("normal" as well as metalliferous) is higher (53.9 %) than among them (46.1 %). Six hypotheses of possible genetic relatedness between the studied populations have been tested by AMOVA. A data set structure above the populational level is hardly recognisable. It was impossible to combine the populations to edaphic (tolerant and "non-tolerant") or taxonomic groups. A. maritima ssp. halleri of the north Harz mountains and ssp. hornburgensis are clearly separated from a geographical group containing all other populations (across taxonomic and edaphic boundaries). These results are a further indication for a polyphyletic origin of metal-tolerant populations of A. maritima s.l. by multiple colonizations of metalliferous sites from neighbouring populations on non-metalliferous soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号