首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twin Cays (Belize) is a highly oligotrophic mangrove archipelago dominated by Rhizophora mangle L. Ocean‐fringing trees are 3–7 m tall with a leaf area index (LAI) of 2.3, whereas in the interior, dwarf zone, trees are 1.5 m or less, and the LAI is 0.7. P‐fertilization of dwarf trees dramatically increases growth. As a partial explanation of these characteristics, it was hypothesized that differences in stature and growth rates would reflect differences in leaf photosynthetic capacity, as determined by the photochemical and biochemical characteristics at the chloroplast level. Gas exchange and chlorophyll fluorescence were used to compare photosynthesis of dwarf, fringe and fertilized trees. Regardless of zonation or treatment, net CO2 exchange (A) and photosynthetic electron transport were light saturated at less than 500 µmol photons m?2 s?1, and low‐light quantum efficiencies were typical for healthy C3 plants. On the other hand, light‐saturated A was linearly related to stomatal conductance (gs), with seasonal, zonal and treatment differences in photosynthesis corresponding linearly to differences in the mean gs. Overall, photosynthetic capacity appeared to be co‐regulated with stomatal conductance, minimizing the variability of Ci at ambient CO2 (and hence, Ci/Ca). Based on the results of in vitro assays, regulation of photosynthesis in R. mangle appeared to be accomplished, at least in part, by regulation of Rubisco activity.  相似文献   

2.
In the present study the response of stomatal conductance (gs) to increasing leaf‐to‐air vapour pressure difference (D) in early season C3 (Bromus japonicus) and late season C4 (Bothriochloa ischaemum) grasses grown in the field across a range of CO2 (200–550 µmol mol?1) was examined. Stomatal sensitivity to D was calculated as the slope of the response of gs to the natural log of externally manipulated D (dgs/dlnD). Increasing D and CO2 significantly reduced gs in both species. Increasing CO2 caused a significant decrease in stomatal sensitivity to D in Br. japonicus, but not in Bo. ischaemum. The decrease in stomatal sensitivity to D at high CO2 for Br. japonicus fit theoretical expectations of a hydraulic model of stomatal regulation, in which gs varies to maintain constant transpiration and leaf water potential. The weaker stomatal sensitivity to D in Bo. ischaemum suggested that stomatal regulation of leaf water potential was poor in this species, or that non‐hydraulic signals influenced guard cell behaviour. Photosynthesis (A) declined with increasing D in both species, but analyses of the ratio of intercellular to atmospheric CO2 (Ci/Ca) suggested that stomatal limitation of A occurred only in Br. japonicus. Rising CO2 had the greatest effect on gs and A in Br. japonicus at low D. In contrast, the strength of stomatal and photosynthetic responses to CO2 were not affected by D in Bo. ischaemum. Carbon and water dynamics in this grassland are dominated by a seasonal transition from C3 to C4 photosynthesis. Interspecific variation in the response of gs to D therefore has implications for predicting seasonal ecosystem responses to CO2.  相似文献   

3.
Very few studies have attempted to disentangle the respective role of ontogeny and water stress on leaf photosynthetic attributes. The relative significance of both effects on photosynthetic attributes has been investigated in leaves of field‐grown almond trees [Prunus dulcis (Mill.) D. A. Webb] during four growth cycles. Leaf ontogeny resulted in enhanced leaf dry weight per unit area (Wa), greater leaf dry‐to‐fresh weight ratio and lower N content per unit of leaf dry weight (Nw). Concomitantly, area‐based maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), mesophyll conductance to CO2 diffusion (gm)′ and light‐saturated net photosynthesis (Amax) declined in both well‐watered and water‐stressed almond leaves. Although gm and stomatal conductance (gs) seemed to be co‐ordinated, a much stronger coordination in response to ontogeny and prolonged water stress was observed between gm and the leaf photosynthetic capacity. Under unrestricted water supply, the leaf age‐related decline of Amax was equally driven by diffusional and biochemical limitations. Under restricted soil water availability, Amax was mainly limited by gs and, to a lesser extent, by photosynthetic capacity and gm. When both ontogeny and water stress effects were combined, diffusional limitations was the main determinant of photosynthesis limitation, while stomatal and biochemical limitations contributed similarly.  相似文献   

4.
An investigation to determine whether stomatal acclimation to [CO2] occurred in C3/C4 grassland plants grown across a range of [CO2] (200–550 µmol mol?1) in the field was carried out. Acclimation was assessed by measuring the response of stomatal conductance (gs) to a range of intercellular CO2 (a gsCi curve) at each growth [CO2] in the third and fourth growing seasons of the treatment. The gsCi response curves for Solanum dimidiatum (C3 perennial forb) differed significantly across [CO2] treatments, suggesting that stomatal acclimation had occurred. Evidence of non–linear stomatal acclimation to [CO2] in this species was also found as maximum gs (gsmax; gs measured at the lowest Ci) increased with decreasing growth [CO2] only below 400 µmol mol?1. The substantial increase in gs at subambient [CO2] for S. dimidiatum was weakly correlated with the maximum velocity of carboxylation (Vcmax; r2 = 0·27) and was not associated with CO2 saturated photosynthesis (Amax). The response of gs to Ci did not vary with growth [CO2] in Bromus japonicus (C3 annual grass) or Bothriochloa ischaemum (C4 perennial grass), suggesting that stomatal acclimation had not occurred in these species. Stomatal density, which increased with rising [CO2] in both C3 species, was not correlated with gs. Larger stomatal size at subambient [CO2], however, may be associated with stomatal acclimation in S. dimidiatum. Incorporating stomatal acclimation into modelling studies could improve the ability to predict changes in ecosystem water fluxes and water availability with rising CO2 and to understand their magnitudes relative to the past.  相似文献   

5.
The effect of long-term (7 days) and shortterm (up to 2 h) treatment of barley plants with jasmonic acid (JA) on the components contributing to stomatal and nonstomatal limitation of photosynthesis was studied. Net CO2 assimilation rate (A) responses to intercellular CO2 concentration (C i ), i.e., A/C i curves, were used to assess the photosynthetic ability. Long-term treatment of barley plants with JA led to a noticeable decrease in both the initial slope of the A/C i curves and the maximum A at saturating C i . The proportion of stomatal and nonstomatal factors in limitation of photosynthesis depended on the applied JA concentration. Short-term treatment with JA affected neither the stomatal conductivity for CO2 nor the rate of photosynthetic CO2 assimilation. We suggest that JA may affect photosynthesis indirectly, either as a stress-modulating substance, or through the alterations in gene expression.  相似文献   

6.
Virtually all current estimates of the maximum carboxylation rate (Vcmax) of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) and the maximum electron transport rate (Jmax) for C3 species implicitly assume an infinite CO2 transfer conductance (gi). And yet, most measurements in perennial plant species or in ageing or stressed leaves show that gi imposes a significant limitation on photosynthesis. Herein, we demonstrate that many current parameterizations of the photosynthesis model of Farquhar, von Caemmerer & Berry (Planta 149, 78–90, 1980 ) based on the leaf intercellular CO2 concentration (Ci) are incorrect for leaves where gi limits photosynthesis. We show how conventional A–Ci curve (net CO2 assimilation rate of a leaf –An– as a function of Ci) fitting methods which rely on a rectangular hyperbola model under the assumption of infinite gi can significantly underestimate Vcmax for such leaves. Alternative parameterizations of the conventional method based on a single, apparent Michaelis–Menten constant for CO2 evaluated at Ci[Km(CO2)i] used for all C3 plants are also not acceptable since the relationship between Vcmax and gi is not conserved among species. We present an alternative A–Ci curve fitting method that accounts for gi through a non‐rectangular hyperbola version of the model of Farquhar et al. (1980 ). Simulated and real examples are used to demonstrate how this new approach eliminates the errors of the conventional A–Ci curve fitting method and provides Vcmax estimates that are virtually insensitive to gi. Finally, we show how the new A–Ci curve fitting method can be used to estimate the value of the kinetic constants of Rubisco in vivo is presented  相似文献   

7.
8.
Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt‐stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt‐stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO2 concentrations in the chloroplasts (Cc) of rice leaves. Decreased A in salt‐stressed leaves was mainly attributable to low Cc, which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt‐stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity‐tolerant rice cultivars.  相似文献   

9.
Šantrůček  J.  Hronková  M.  Květoň  J.  Sage  R.F. 《Photosynthetica》2003,41(2):241-252
Environmental factors that induce spatial heterogeneity of stomatal conductance, g s, called stomatal patchiness, also reduce the photochemical capacity of CO2 fixation, yet current methods cannot distinguish between the relative effect of stomatal patchiness and biochemical limitations on photosynthetic capacity. We evaluate effects of stomatal patchiness and the biochemical capacity of CO2 fixation on the sensitivity of net photosynthetic rate (P N) to stomatal conductance (g s), θ (θ = δP N/g s). A qualitative model shows that stomatal patchiness increases the sensitivity θ while reduced biochemical capacity of CO2 fixation lowers θ. We used this feature to distinguish between stomatal patchiness and mesophyll impairments in the photochemistry of CO2 fixation. We compared gas exchange of sunflower (Helianthus annuus L.) plants grown in a growth chamber and fed abscisic acid, ABA (10−5 M), for 10 d with control plants (-ABA). P N and g s oscillated more frequently in ABA-treated than in control plants when the leaves were placed into the leaf chamber and exposed to a dry atmosphere. When compared with the initial CO2 response measured at the beginning of the treatment (day zero), both ABA and control leaves showed reduced P N at particular sub-stomatal CO2 concentration (c i) during the oscillations. A lower reduction of P N at particular g s indicated overestimation of c i due to stomatal patchiness and/or omitted cuticular conductance, g c. The initial period of damp oscillation was characterised by inhibition of chloroplast processes while stomatal patchiness prevailed at the steady state of gas exchange. The sensitivity θ remained at the original pre-treatment values at high g s in both ABA and control plants. At low g s, θ decreased in ABA-treated plants indicating an ABA-induced impairment of chloroplast processes. In control plants, g c neglected in the calculation of g s was the likely reason for apparent depression of photosynthesis at low g s. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Leaf photosynthesis of crops acclimates to elevated CO2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free‐air CO2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0–2.0°C). Parameters of the C3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (gs) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO2, elevated temperature, and their combination. The combination of elevated CO2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The gs model significantly underestimated gs under the combination of elevated CO2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled gs–FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of gs hardly improved prediction of leaf photosynthesis under the four combinations of CO2 and temperature. Therefore, the typical procedure that crop models using the FvCB and gs models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change.  相似文献   

11.
Atmospheric CO2 (Ca) has risen dramatically since preglacial times and is projected to double in the next century. As part of a 4‐year study, we examined leaf gas exchange and photosynthetic acclimation in C3 and C4 plants using unique chambers that maintained a continuous Ca gradient from 200 to 550 µmol mol?1 in a natural grassland. Our goals were to characterize linear, nonlinear and threshold responses to increasing Ca from past to future Ca levels. Photosynthesis (A), stomatal conductance (gs), leaf water‐use efficiency (A/gs) and leaf N content were measured in three common species: Bothriochloa ischaemum, a C4 perennial grass, Bromus japonicus, a C3 annual grass, and Solanum dimidiatum, a C3 perennial forb. Assimilation responses to internal CO2 concentrations (A/Ci curves) and photosynthetically active radiation (A/PAR curves) were also assessed, and acclimation parameters estimated from these data. Photosynthesis increased linearly with Ca in all species (P < 0.05). S. dimidiatum and B. ischaemum had greater carboxylation rates for Rubisco and PEP carboxylase, respectively, at subambient than superambient Ca (P < 0.05). To our knowledge, this is the first published evidence of A up‐regulation at subambient Ca in the field. No species showed down‐regulation at superambient Ca. Stomatal conductance generally showed curvilinear decreases with Ca in the perennial species (P < 0.05), with steeper declines over subambient Ca than superambient, suggesting that plant water relations have already changed significantly with past Ca increases. Resource‐use efficiency (A/gs and A/leaf N) in all species increased linearly with Ca. As both C3 and C4 plants had significant responses in A, gs, A/gs and A/leaf N to Ca enrichment, future Ca increases in this grassland may not favour C3 species as much as originally thought. Non‐linear responses and acclimation to low Ca should be incorporated into mechanistic models to better predict the effects of past and present rising Ca on grassland ecosystems.  相似文献   

12.
Native scrub‐oak communities in Florida were exposed for three seasons in open top chambers to present atmospheric [CO2] (approx. 350 μmol mol?1) and to high [CO2] (increased by 350 μmol mol?1). Stomatal and photosynthetic acclimation to high [CO2] of the dominant species Quercus myrtifolia was examined by leaf gas exchange of excised shoots. Stomatal conductance (gs) was approximately 40% lower in the high‐ compared to low‐[CO2]‐grown plants when measured at their respective growth concentrations. Reciprocal measurements of gs in both high‐ and low‐[CO2]‐grown plants showed that there was negative acclimation in the high‐[CO2]‐grown plants (9–16% reduction in gs when measured at 700 μmol mol?1), but these were small compared to those for net CO2 assimilation rate (A, 21–36%). Stomatal acclimation was more clearly evident in the curve of stomatal response to intercellular [CO2] (ci) which showed a reduction in stomatal sensitivity at low ci in the high‐[CO2]‐grown plants. Stomatal density showed no change in response to growth in high growth [CO2]. Long‐term stomatal and photosynthetic acclimation to growth in high [CO2] did not markedly change the 2·5‐ to 3‐fold increase in gas‐exchange‐derived water use efficiency caused by high [CO2].  相似文献   

13.
In addition to other factors, high altitude (HA) environment is characterized by high photosynthetic photon flux density (PPFD). Photosynthetic characteristics of wild and cultivated plants were studied at different irradiances at Losar, India (altitude 4 200 m). Wild plants were tolerant to high PPFDs. Slopes of curve between net photosynthetic rate (P N) and intercellular CO2 concentration (C i) or stomatal conductance (g s) increased with increase in irradiance suggesting insensitivity or tolerance of these plants to higher PPFD. Cultivated plants, however, were sensitive to higher PPFD, their slopes of curves between P N and C i or g s decreased with increased PPFD. Tolerance or insensitivity to higher PPFD was an important parameter affecting plant performance at HA.  相似文献   

14.
Most C3 plant species have partially open stomata during the night especially in the 3–5 h before dawn. This pre‐dawn stomatal opening has been hypothesized to enhance early‐morning photosynthesis (A) by reducing diffusion limitations to CO2 at dawn. We tested this hypothesis in cultivated Helianthus annuus using whole‐shoot gas exchange, leaf level gas exchange and modelling approaches. One hour pre‐dawn low‐humidity treatments were used to reduce pre‐dawn stomatal conductance (g). At the whole‐shoot level, a difference of pre‐dawn g (0.40 versus 0.17 mol m?2 s?1) did not significantly affect A during the first hour after dawn. Shorter term effects were investigated with leaf level gas exchange measurements and a difference of pre‐dawn g (0.10 versus 0.04 mol m?2 s?1) affected g and A for only 5 min after dawn. The potential effects of a wider range of stomatal apertures were explored with an empirical model of the relationship between A and intercellular CO2 concentration during the half‐hour after dawn. Modelling results demonstrated that even extremely low pre‐dawn stomatal conductance values have only a minimal effect on early‐morning A for a few minutes after dawn. Thus, we found no evidence that pre‐dawn stomatal opening enhances A.  相似文献   

15.
We examined factors that limit diurnal and seasonal photosynthesis in Leymus cinereus, a robust tussock grass from shrub-steppes of western North America. Data from plants in a natural stand and in experimental field plots indicate that this bunchgrass has 1) a high photosynthetic capacity, 2) high leaf nitrogen content and high nitrogen-use efficiency, 3) a steep leaf-to-air diffusion gradient for carbon dioxide, which enhances intrinsic water-use efficiency, and 4) photosynthetic tissues that tolerate severe water stress and recover quickly from moderate water stress. Midday depressions of CO2 assimilation (A) and stomatal conductance were slight in plants with plentiful water, but marked in plants subject to moderate water stress. Midday stomatal closure in moderately stressed plants reduced intercellular carbon dioxide concentration (ci) by ≈40 μl liter-1. The maximum rate of A achieved during the day for severely stressed plants (predawn water potential = -4 MPa) was one-third and daily carbon gain per unit leaf area was about one-fourth that of well-watered plants. For plants in the natural stand, CO2-saturated photosynthesis declined almost linearly with decreasing soil water availability over the growing season, whereas there was little effect on A at CO2 ambient levels or on carboxylation efficiency until predawn water potentials reached -1.8 MPa. Nitrogen-use efficiency declined with diminishing soil moisture, but there was no seasonal change in stomatal limitation or instantaneous water-use efficiency as estimated from A vs. ci curves at optimal leaf temperature and moderate atmospheric evaporative demand. Thus, reduced stomatal conductance in response to increased evaporative demand may increase stomatal limitation diumally, but over the growing season, stomatal limitation estimated from A vs. ci curves is relatively constant because maximum stomatal conductance is closely tuned to the CO2 assimilatory capacity of the mesophyll.  相似文献   

16.
Chloride (Cl?) has been recently described as a beneficial macronutrient, playing specific roles in promoting plant growth and water‐use efficiency (WUE). However, it is still unclear how Cl? could be beneficial, especially in comparison with nitrate (NO3?), an essential source of nitrogen that shares with Cl? similar physical and osmotic properties, as well as common transport mechanisms. In tobacco plants, macronutrient levels of Cl? specifically reduce stomatal conductance (gs) without a concomitant reduction in the net photosynthesis rate (AN). As stomata‐mediated water loss through transpiration is inherent in the need of C3 plants to capture CO2, simultaneous increase in photosynthesis and WUE is of great relevance to achieve a sustainable increase in C3 crop productivity. Our results showed that Cl?‐mediated stimulation of larger leaf cells leads to a reduction in stomatal density, which in turn reduces gs and water consumption. Conversely, Cl? improves mesophyll diffusion conductance to CO2 (gm) and photosynthetic performance due to a higher surface area of chloroplasts exposed to the intercellular airspace of mesophyll cells, possibly as a consequence of the stimulation of chloroplast biogenesis. A key finding of this study is the simultaneous improvement of AN and WUE due to macronutrient Cl? nutrition. This work identifies relevant and specific functions in which Cl? participates as a beneficial macronutrient for higher plants, uncovering a sustainable approach to improve crop yield.  相似文献   

17.
Elevated atmospheric CO2 (eCO2) is expected to reduce the impacts of drought and increase photosynthetic rates via two key mechanisms: first, through decreased stomatal conductance (gs) and increased soil water content (VSWC) and second, through increased leaf internal CO2 (Ci) and decreased stomatal limitations (Slim). It is unclear if such findings from temperate grassland studies similarly pertain to warmer ecosystems with periodic water deficits. We tested these mechanisms in three important C3 herbaceous species in a periodically dry Eucalyptus woodland and investigated how eCO2‐induced photosynthetic enhancement varied with seasonal water availability, over a 3 year period. Leaf photosynthesis increased by 10%–50% with a 150 μmol mol?1 increase in atmospheric CO2 across seasons. This eCO2‐induced increase in photosynthesis was a function of seasonal water availability, given by recent precipitation and mean daily VSWC. The highest photosynthetic enhancement by eCO2 (>30%) was observed during the most water‐limited period, for example, with VSWC <0.07 in this sandy surface soil. Under eCO2 there was neither a significant decrease in gs in the three herbaceous species, nor increases in VSWC, indicating no “water‐savings effect” of eCO2. Periods of low VSWC showed lower gs (less than ≈ 0.12 mol m?2 s?1), higher relative Slim (>30%) and decreased Ci under the ambient CO2 concentration (aCO2), with leaf photosynthesis strongly carboxylation‐limited. The alleviation of Slim by eCO2 was facilitated by increasing Ci, thus yielding a larger photosynthetic enhancement during dry periods. We demonstrated that water availability, but not eCO2, controls gs and hence the magnitude of photosynthetic enhancement in the understory herbaceous plants. Thus, eCO2 has the potential to alter vegetation functioning in a periodically dry woodland understory through changes in stomatal limitation to photosynthesis, not by the “water‐savings effect” usually invoked in grasslands.  相似文献   

18.
Leaf gas exchange parameters and the content of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2‐year‐old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light‐saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age‐related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes.  相似文献   

19.
Intercellular CO2 mole fractions (Ci) are lower in the upper canopy relative to the lower canopy leaves. This canopy gradient in Ci has been associated with enhanced rates of carbon assimilation at high light, and concomitant greater draw‐downs in Ci. However, increases in irradiance in the canopy are generally also associated with decreases in leaf water availability. Thus, stress effects on photosynthesis rates (A) and stomatal conductance (G), may provide a further explanation for the observed Ci gradients. To test the hypotheses of the sources of canopy variation in Ci, and quantitatively assess the influence of within‐canopy differences in stomatal regulation on A, the seasonal and diurnal variation in G was studied in relation to seasonal average daily integrated quantum flux density (Qint) in tall shade‐intolerant Populus tremula L. trees. Daily time‐courses of A were simulated using the photosynthesis model of Farquhar et al. (Planta 149, 78–90, 1980). Stable carbon isotope composition of a leaf carbon fraction with rapid turnover rate was used to estimate canopy gradient in Ci during the simulations. Daily maximum G (Gmax) consistently increased with increasing Qint. However, canopy differences in Gmax decreased as soil water availability became limiting during the season. In water‐stressed leaves, there were strong mid‐day decreases in G that were poorly associated with vapour pressure deficits between the leaf and atmosphere, and the magnitude of the mid‐day decreases in G occasionally interacted with long‐term leaf light environment. Simulations indicated that the percentage of carbon lost due to mid‐day stomatal closure was of the order of 5–10%, and seasonal water stress increased this percentage up to 20%. The percentage of carbon lost due to stomatal closure increased with increasing Qint. Canopy differences in light environment resulted in a gradient of daily average Ci of approximately 20 µmol mol?1. The canopy variation in seasonal and diurnal reductions in G led to a Ci gradient of approximately 100 µmol mol?1, and the actual canopy Ci gradient was of the same magnitude according to leaf carbon isotope composition. This study demonstrates that stress effects influence Ci more strongly than within‐canopy light gradients, and also that leaves acclimated to different irradiance and water stress conditions may regulate water use largely independent of foliar photosynthetic potentials.  相似文献   

20.
Blue light induced stomatal opening has been studied by applying a short pulse (~5 to 60 s) of blue light to a background of saturating photosynthetic red photons, but little is known about steady-state stomatal responses. Here we report stomatal responses to blue light at high and low CO2 concentrations. Steady-state stomatal conductance (gs) of C3 plants increased asymptotically with increasing blue light to a maximum at 20% blue (120 μmol m−2 s−1). This response was consistent from 200 to 800 μmol mol−1 atmospheric CO2 (Ca). In contrast, blue light induced only a transient stomatal opening (~5 min) in C4 species above a Ca of 400 μmol mol−1. Steady-state gs of C4 plants generally decreased with increasing blue intensity. The net photosynthetic rate of all species decreased above 20% blue because blue photons have lower quantum yield (moles carbon fixed per mole photons absorbed) than red photons. Our findings indicate that photosynthesis, rather than a blue light signal, plays a dominant role in stomatal regulation in C4 species. Additionally, we found that blue light affected only stomata on the illuminated side of the leaf. Contrary to widely held belief, the blue light-induced stomatal opening minimally enhanced photosynthesis and consistently decreased water use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号