首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A P22 specialized transducing phage has been constructed which carries the structural gene for aspartate transcarbamylase (ATCase). This gene (pyrB) was first brought close to the P22 attachment site by fusing an F' pyrB+ episome to an F' prolac episome which carries a P22 prophage attachment site. A prophage was added to these fused F' episomes and the lysogen was UV-induced. The specialized transducing phage was isolated from the resulting lysate. The phage also carries argI, the structure gene for ornithine transcarbamylase.  相似文献   

2.
3.
A temperate bacteriophage (F108) has been isolated through mitomycin C induction of a Pasteurella multocida serogroup A strain. F108 has a typical morphology of the family Myoviridae, presenting a hexagonal head and a long contractile tail. F108 is able to infect all P. multocida serogroup A strains tested but not those belonging to other serotypes. Bacteriophage F108, the first P. multocida phage sequenced so far, presents a 30,505-bp double-stranded DNA genome with cohesive ends (CTTCCTCCCC cos site). The F108 genome shows the highest homology with those of Haemophilus influenzae HP1 and HP2 phages. Furthermore, an F108 prophage attachment site in the P. multocida chromosome has been established to be inside a gene encoding tRNALeu. By using several chromosomal markers that are spread along the P. multocida chromosome, it has been demonstrated that F108 is able to perform generalized transduction. This fact, together with the absence of pathogenic genes in the F108 genome, makes this bacteriophage a valuable tool for P. multocida genetic manipulation.  相似文献   

4.
5.
Plaque-forming, galactose-transducing lambda strains have been isolated from lysogens in which bacterial genes have been removed from between the galactose operon and the prophage by deletion mutation.—A second class has been isolated starting with a lysogenic strain which carries a deletion of the genes to the right of the galactose operon and part of the prophage. This strain was lysogenized with a second lambda phage to yield a lysogen from which galactose-transducing, plaque-forming phages were obtained. These plaque-forming phages were found to be genetically unstable, due to a duplication of part of the lambda chromosome. The genetic instability of these partial diploid strains is due to homologous genetic recombindation between the two identical copies of the phage DNA comprising the duplication. The galactose operon and the duplication of phage DNA carried by these strains is located between the phage lambda P and Q genes.  相似文献   

6.
The contribution of parental DNA to progeny phages genetically recombinant for close markers, distant markers, or both simultaneously was studied in biparental and triparental replication-blocked crosses. The data are compatible with the previously proposed view that heterozygous overlaps at the sites of crossing over are sometimes about as long as the lambda chromosome. However, about half of the close marker recombinants have enjoyed triparental interactions, attenuating that conclusion and obscuring predictions of the long overlap model.  相似文献   

7.
By selecting survivors of λ phage infection, mutants of Escherichia coli K12 that block reproduction cycle of the phage have been isolated. Fourteen of these phage-tolerant mutants (lam mutants) were chosen and characterized biochemically and genetically. It was shown that these mutants were tolerant to infection by all the lambdoid phages, except for few cases, but they were susceptible to infection by a non-lambdoid temperate phage (φ299), P1 or T phages. The mutants can be divided into at least three groups: (1) A mutant (lam 16) strain that seems to block normal penetration of phage DNA: (2) Three mutant (lam 64, lam 67 and lam 71) strains that block an “early” step(s) of phage growth, including phage DNA synthesis: (3) Six mutant (lam 24, lam 25, lam 26, lam 27, lam 646 and lam 6) strains that block normal functioning of the gene E products and produce unusual head structures. Some lambdoid phages and λ mutants that overcome the interference by the lam mutations have been obtained, and were used as tools for characterizing the host mutations. Two (lam 12 and lam 13) mutant strains and one (lam 1) mutant were inferred as affecting the expression of “late” genes, and early gene, respectively, by this test.  相似文献   

8.
A heat-inducible lysis-defective lambda prophage has been integrated directly into the E. coli chromosome at a site (bfe) very closely linked to the ribonucleic acid polymerase mutation rif(d), a dominant rifampin resistance allele. This unusual lysogen has facilitated the isolation of specialized transducing phages conferring rifampin resistance to sensitive cells, and carrying at least the beta subunit gene of RNA polymerase in intact form.  相似文献   

9.
Like most gram-positive oral bacteria, Actinomyces naeslundii is resistant to salivary lysozyme and to most other lytic enzymes. We are interested in studying the lysins of phages of this important oral bacterium as potential diagnostic and therapeutic agents. To identify the Actinomyces phage genes encoding these species-specific enzymes in Escherichia coli, we constructed a new cloning vector, pAD330, that can be used to enrich for and isolate phage holin genes, which are located adjacent to the lysin genes in most phage genomes. Cloned holin insert sequences were used to design sequencing primers to identify nearby lysin genes by using whole phage DNA as the template. From partial digestions of A. naeslundii phage Av-1 genomic DNA we were able to clone, in independent experiments, inserts that complemented the defective λ holin in pAD330, as evidenced by extensive lysis after thermal induction. The DNA sequence of the inserts in these plasmids revealed that both contained the complete lysis region of Av-1, which is comprised of two holin-like genes, designated holA and holB, and an endolysin gene, designated lysA. We were able to subclone and express these genes and determine some of the functional properties of their gene products.  相似文献   

10.
11.
Genomic analysis has revealed heterogeneity among bacterial 16S rRNA gene sequences within a single species; yet the cause(s) remains uncertain. Generalized transducing bacteriophages have recently gained recognition for their abundance as well as their ability to affect lateral gene transfer and to harbor bacterial 16S rRNA gene sequences. Here, we demonstrate the ability of broad-host-range, generalized transducing phages to acquire 16S rRNA genes and gene sequences. Using PCR and primers specific to conserved regions of the 16S rRNA gene, we have found that generalized transducing phages (D3112, UT1, and SN-T), but not specialized transducing phages (D3), acquired entire bacterial 16S rRNA genes. Furthermore, we show that the broad-host-range, generalized transducing phage SN-T is capable of acquiring the 16S rRNA gene from two different genera: Sphaerotilus natans, the host from which SN-T was originally isolated, and Pseudomonas aeruginosa. In sequential infections, SN-T harbored only 16S rRNA gene sequences of the final host as determined by restriction fragment length polymorphism analysis. The frequency of 16S rRNA gene sequences in SN-T populations was determined to be 1 × 10−9 transductants/PFU. Our findings further implicate transduction in the horizontal transfer of 16S rRNA genes between different species or genera of bacteria.  相似文献   

12.
13.
The recombination hotspot Chi, 5' G-C-T-G-G-T-G-G 3', stimulates the RecBCD recombination pathway of Escherichia coli. We have determined, with precision greater than previously reported, the distribution of Chi-stimulated exchanges around a Chi site in phage lambda. Crosses of lambda phages with single base-pair mutations surrounding a Chi site were conducted in and analyzed on mismatch correction-impaired hosts to preserve heteroduplex mismatches for analysis. Among phages recombinant for flanking markers, Chi stimulated exchanges most intensely in the intervals immediately adjacent to the Chi site, both to its right and to its left. Stimulation fell off abruptly to the right but gradually to the left (with respect to the orientation of the Chi sequence written above). We have also determined that Chi stimulated the formation of heteroduplex DNA, which frequently had one endpoint to the right of Chi and the other endpoint to the left. These data support a model of Chi-stimulated recombination in which RecBCD enzyme cuts DNA immediately to the right of Chi and unwinds DNA to the left of Chi; segments of unwound single-stranded DNA are sometimes, but not always, degraded before synapsis with homologous DNA.  相似文献   

14.
Induction of a heat-inducible abnormal lambda prophage inserted between lysA and thyA in Escherichia coli resulted in a number of auxotrophic mutants in the surviving cured-cell populations. These mutants could not be accounted for by deletions arising on formation of lambda hybrid particles carrying regions adjacent to the insertion site. The properties of these mutants, which were almost all spontaneously revertable, have been described and mapped by F′ episome complementation. Tentatively, it was suggested that induction of the lambda lysogen leads to a mutagenic state.  相似文献   

15.
A series of bacteriophages which grow in various strains of Acinetobacter have been isolated. One of these, phage P78, which forms turbid plaques on Acinetobacter strain 78 is specific for this particular host and fails to attack 389 other independently isolated strains of Acinetobacter. Phage P78 appears to be a temperate phage which lysogenizes its host. Various agents such as N-methyl-N'-nitro-N-nitrosoguanidine, diethyl sulfate, mitomycin C, and ultraviolet light are effective inducers of the lysogen. Phage lysates of wild-type cells are capable of transducing auxotrophs of strain 78 to prototrophy at frequencies ranging from 0.3 x 10(-7) to 34 x 10(-7) per plaque-forming unit adsorbed. To date, no linkage has been detected between any of the markers studied in two-factor crosses. Donor phage grown in one particular mutant, strain 78 (arg-1), has been shown to give rise to significantly higher transduction frequencies than when phage is grown on wild-type or other auxotrophic strains. Phage P78 is rapidly adsorbed to its bacterial host and has a latent period of 25 min, and infection results in a burst size of approximately 50. Some of the physical properties of phage P78 and its DNA are described.  相似文献   

16.
17.
A Streptomyces plasmid, pR4C2, with an inserted DNA fragment of R4 phage, was encapsidated into R4 phage particles in vivo and transduced to Streptomyces lividans at 3 ×10?6CFIJ/PFU. Formation of transducing phage was dependent on the inserted R4 DNA, and some of the transducing phages had larger DNA than R4 phage. A possible transduction mechanism through plasmid-phage cointegrate formation in vivo is discussed.  相似文献   

18.
Isolation of the Bacteriophage Lambda Receptor from Escherichia coli   总被引:30,自引:49,他引:30       下载免费PDF全文
A factor which inactivates the phage lambda can be extracted from Escherichia coli. This factor is a protein and is located in the outer membrane of the bacterial envelope. It is found in extracts of strains which are sensitive to phage lambda, but not in extracts of strains specifically resistant to this phage. We conclude that this factor is the lambda receptor, responsible for the specific adsorption of the phage lambda to E. coli cells. A partial purification of the lambda receptor is described. Inactivation of the phage by purified receptor is shown to be accompanied by the release of deoxyribonucleic acid from the phage.  相似文献   

19.
Two independently isolated specialized transducing phages, P22 pro-1 and P22pro-3, have been studied. Lysates of P22pro-1 contain a majority of transducing phages which can go through the lytic cycle only in mixed infection; these defective phages transduce by lysogenization in mixed infection and by substitution in single infection. A few of the transducing phages in P22pro-1 lysates appear to be non-defective, being able to form plaques and to transduce by lysogenization in single infection. Transduction by P22pro-3 lysates is effected by non-defective transducing phages, which transduce by lysogenization; these lysates also contain a majority of defective phages which do not co-operate in mixed infection.

The P22 pro-1 genome is thought to contain an insertion of bacterial DNA longer than the terminal repetition present in P22 wild type, so that at maturation a population of differently defective phages is produced. The exact structure of the P22pro-3 genome is open to conjecture, but it seems clear that the insertion of bacterial DNA is smaller than that in P22pro-1. Both P22pro-1 and P22pro-3 are defective in integration at ataA under non-selective conditions, although both integrate on medium that lacks proline.

  相似文献   

20.
K. R. Tindall  J. Stein    F. Hutchinson 《Genetics》1988,118(4):551-560
Mutations in the cI (repressor) gene were induced by gamma-ray irradiation of lambda phage and of prophage, and 121 mutations were sequenced. Two-thirds of the mutations in irradiated phage assayed in recA host cells (no induction of the SOS response) were G:C to A:T transitions; it is hypothesized that these may arise during DNA replication from adenine mispairing with a cytosine product deaminated by irradiation. For irradiated phage assayed in host cells in which the SOS response had been induced, 85% of the mutations were base substitutions, and in 40 of the 41 base changes, a preexisting base pair had been replaced by an A:T pair; these might come from damaged bases acting as AP (apurinic or apyrimidinic) sites. The remaining mutations were 1 and 2 base deletions. In irradiated prophage, base change mutations involved the substitution of both A:T and of G:C pairs for the preexisting pairs; the substitution of G:C pairs shows that some base substitution mechanism acts on the cell genome but not on the phage. In the irradiated prophage, frameshifts and a significant number of gross rearrangements were also found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号