共查询到20条相似文献,搜索用时 0 毫秒
1.
Fitness-dependent dispersal in metapopulations and its consequences for persistence and synchrony 总被引:2,自引:0,他引:2
1. We present a novel metapopulation model where dispersal is fitness dependent: the strength of migration from a site is dependent on the expected reproductive fitness of individuals there. Furthermore, individuals continue to migrate until they reach a suitable habitat where their expected fitness is above a threshold value.
2. Fitness-dependent dispersal has a very strong stabilizing effect on population dynamics, even when the intrinsic dynamics of populations in the absence of dispersal exhibit complex high-amplitude oscillations. This stabilizing effect is much stronger than that of the density-independent dispersal normally considered in metapopulation models.
3. Even when fitness-dependent dispersal does not stabilize the dynamics in a formal sense, it generally leads to simplification, with complex or even chaotic fluctuations being reduced to simple cycles.
4. This form of dispersal also has a strong tendency to synchronize local population dynamics across the spatial extent of the metapopulation.
5. These conclusions are robust to the addition of strong stochasticity in the migration threshold. 相似文献
2. Fitness-dependent dispersal has a very strong stabilizing effect on population dynamics, even when the intrinsic dynamics of populations in the absence of dispersal exhibit complex high-amplitude oscillations. This stabilizing effect is much stronger than that of the density-independent dispersal normally considered in metapopulation models.
3. Even when fitness-dependent dispersal does not stabilize the dynamics in a formal sense, it generally leads to simplification, with complex or even chaotic fluctuations being reduced to simple cycles.
4. This form of dispersal also has a strong tendency to synchronize local population dynamics across the spatial extent of the metapopulation.
5. These conclusions are robust to the addition of strong stochasticity in the migration threshold. 相似文献
2.
A number of ecologically and economically important pathogens exhibit a complex transmission dynamics that involves distinct transmission modes. In this paper, we study the evolutionary dynamics of pathogens for which transmission includes direct host-to-host as well as indirect environmental transmission. Different routes of infection spread require specific adaptations of the parasite, which may result in conflicting selection pressures. Using the framework of Adaptive dynamics, we investigate how these conflicting selection pressures are resolved in the course of evolution and determine the conditions for evolutionary diversification of pathogen strains. We show that evolutionary branching and subsequent evolution of specialist strains occurs in wide parameter regions but evolutionary bistability and evolution of generalist pathogens are possible as well. Our analysis reveals that the relative contributions of direct and environmental transmission, as well as the underlying ecological dynamics, play a crucial role in shaping the course of pathogen evolution. Our findings may explain the coexistence of high and low virulence strains observed in several pathogenic organisms using different transmission modes (e.g., influenza viruses) and highlight the importance of considering ecological dynamics in virulence management. 相似文献
3.
Petteri Karisto va Kisdi 《Evolution; international journal of organic evolution》2019,73(12):2529-2537
Functional connectivity, the realized flow of individuals between the suitable sites of a heterogeneous landscape, is a prime determinant of the maintenance and evolution of populations in fragmented habitats. While a large body of literature examines the evolution of dispersal propensity, it is less known how evolution shapes functional connectivity via traits that influence the distribution of the dispersers. Here, we use a simple model to demonstrate that, in a heterogeneous environment with clustered and solitary sites (i.e., with variable structural connectivity), the evolutionarily stable population contains strains that are strongly differentiated in their pattern of connectivity (local vs. global dispersal), but not necessarily in the fraction of dispersed individuals. Also during evolutionary branching, selection is disruptive predominantly on the pattern of connectivity rather than on dispersal propensity itself. Our model predicts diversification along a hitherto neglected axis of dispersal strategies and highlights the role of the solitary sites—the more isolated and therefore seemingly less important patches of habitat—in maintaining global dispersal that keeps all sites connected. 相似文献
4.
5.
Van Dooren TJ 《Evolution; international journal of organic evolution》2006,60(10):1991-2003
When alleles have pleiotropic effects on a number of quantitative traits, the degree of dominance between a pair of alleles can be different for each trait. Such trait-specific dominance has been studied previously in models for the maintenance of genetic variation by antagonistic effects of an allele on two fitness components. By generalizing these models to an arbitrary number of fitness components or other phenotypic traits with different degrees of dominance, I show that genetic polymorphism is generally impossible without antagonistic fitness effects of different traits and without trait-specific dominance. I also investigate dominance and pleiotropy from a more long-term evolutionary perspective, allowing for the study of general ecological scenarios, and I discuss the effects of trait-specific dominance on evolutionary stability criteria. When selection is mainly directional and only trait-specific dominance and antagonism cause the emergence of polymorphism, then these polymorphisms can be overtaken by single mutants again, such that they are probably short-lived on an evolutionary time scale. Near evolutionarily singular points where directional selection is absent, trait-specific dominance and overdominance facilitate the emergence of polymorphism and cause evolutionary divergence in some cases. An important outcome of these models is that trait-specific dominance allows for the emergence of genetic polymorphisms without a selective disadvantage for heterozygotes. This removes the scope for the evolution of assortative mate choice and affects dominance modification. Sympatric speciation by disruptive ecological selection requires this heterozygote disadvantage in order to evolve, and therefore it becomes less plausible if the emergence of genetic polymorphism usually occurs via trait-specific dominance and antagonistic effects. 相似文献
6.
Lutz Becks Stephen P. Ellner Laura E. Jones Nelson G. Hairston Jr 《Ecology letters》2010,13(8):989-997
7.
Michael Doebeli Graeme D. Ruxton 《Evolution; international journal of organic evolution》1997,51(6):1730-1741
We study the evolution of dispersal rates in a two patch metapopulation model. The local dynamics in each patch are given by difference equations, which, together with the rate of dispersal between the patches, determine the ecological dynamics of the metapopulation. We assume that phenotypes are given by their dispersal rate. The evolutionary dynamics in phenotype space are determined by invasion exponents, which describe whether a mutant can invade a given resident population. If the resident metapopulation is at a stable equilibrium, then selection on dispersal rates is neutral if the population sizes in the two patches are the same, while selection drives dispersal rates to zero if the local abundances are different. With non-equilibrium metapopulation dynamics, non-zero dispersal rates can be maintained by selection. In this case, and if the patches are ecologically identical, dispersal rates always evolve to values which induce synchronized metapopulation dynamics. If the patches are ecologically different, evolutionary branching into two coexisting dispersal phenotypes can be observed. Such branching can happen repeatedly, leading to polymorphisms with more than two phenotypes. If there is a cost to dispersal, evolutionary cycling in phenotype space can occur due to the dependence of selection pressures on the ecological attractor of the resident population, or because phenotypic branching alternates with the extinction of one of the branches. Our results extend those of Holt and McPeek (1996), and suggest that phenotypic branching is an important evolutionary process. This process may be relevant for sympatric speciation. 相似文献
8.
Individual organisms often show pronounced changes in body size throughout life with concomitant changes in ecological performance. We synthesize recent insight into the relationship between size dependence in individual life history and population dynamics. Most studies have focused on size‐dependent life‐history traits and population size‐structure in the highest trophic level, which generally leads to population cycles with a period equal to the juvenile delay. These cycles are driven by differences in competitiveness of differently sized individuals. In multi‐trophic systems, size dependence in life‐history traits at lower trophic levels may have consequences for both the dynamics and structure of communities, as size‐selective predation may lead to the occurrence of emergent Allee effects and the stabilization of predator–prey cycles. These consequences are linked to that individual development is density dependent. We conjecture that especially this population feedback on individual development may lead to new theoretical insight compared to theory based on unstructured or age‐dependent models. Density‐dependent individual development may also cause individuals to realize radically different life histories, dependent on the state and dynamics of the population during their life and may therefore have consequences for individual behaviour or the evolution of life‐history traits as well. 相似文献
9.
Donohue K Messiqua D Pyle EH Heschel MS Schmitt J 《Evolution; international journal of organic evolution》2000,54(6):1956-1968
We investigated the conditions under which plastic responses to density are adaptive in natural populations of Impatiens capensis and determined whether plasticity has evolved differently in different selective environments. Previous studies showed that a population that evolved in a sunny site exhibited greater plasticity in response to density than did a population that evolved in a woodland site. Using replicate inbred lines in a reciprocal transplant that included a density manipulation, we asked whether such population differentiation was consistent with the hypothesis of adaptive divergence. We hypothesized that plasticity would be more strongly favored in the sunny site than in the woodland site; consequently, we predicted that selection would be more strongly density dependent in the sunny site, favoring the phenotype that was expressed at each density. Selection on internode length and flowering date was consistent with the hypothesis of adaptive divergence in plasticity. Few costs or benefits of plasticity were detected independently from the expressed phenotype, so plasticity was selected primarily through selection on the phenotype. Correlations between phenotypes and their plasticity varied with the environment and would cause indirect selection on plasticity to be environment dependent. We showed that an appropriate plastic response even to a rare environment can greatly increase genotypic fitness when that environment is favorable. Selection on the measured characters contributed to local adaptation and fully accounted for fitness differences between populations in all treatments except the woodland site at natural density. 相似文献
10.
Steinar Engen Jonathan Wright Yimen G. Araya-Ajoy Bernt-Erik Sæther 《Evolution; international journal of organic evolution》2020,74(9):1923-1941
Understanding how environmental variation affects phenotypic evolution requires models based on ecologically realistic assumptions that include variation in population size and specific mechanisms by which environmental fluctuations affect selection. Here we generalize quantitative genetic theory for environmentally induced stochastic selection to include general forms of frequency- and density-dependent selection. We show how the relevant fitness measure under stochastic selection relates to Fisher's fundamental theorem of natural selection, and present a general class of models in which density regulation acts through total use of resources rather than just population size. In this model, there is a constant adaptive topography for expected evolution, and the function maximized in the long run is the expected factor restricting population growth. This allows us to generalize several previous results and to explain why apparently “-selected” species with slow life histories often have low carrying capacities. Our joint analysis of density- and frequency-dependent selection reveals more clearly the relationship between population dynamics and phenotypic evolution, enabling a broader range of eco-evolutionary analyses of some of the most interesting problems in evolution in the face of environmental variation. 相似文献
11.
F. Pelletier D. Garant A.P. Hendry 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2009,364(1523):1483-1489
Evolutionary ecologists and population biologists have recently considered that ecological and evolutionary changes are intimately linked and can occur on the same time-scale. Recent theoretical developments have shown how the feedback between ecological and evolutionary dynamics can be linked, and there are now empirical demonstrations showing that ecological change can lead to rapid evolutionary change. We also have evidence that microevolutionary change can leave an ecological signature. We are at a stage where the integration of ecology and evolution is a necessary step towards major advances in our understanding of the processes that shape and maintain biodiversity. This special feature about ‘eco-evolutionary dynamics’ brings together biologists from empirical and theoretical backgrounds to bridge the gap between ecology and evolution and provide a series of contributions aimed at quantifying the interactions between these fundamental processes. 相似文献
12.
Loeuille N 《Ecology letters》2010,13(12):1536-1545
In randomly assembled communities, diversity is known to have a destabilizing effect. Evolution may affect this result, but our theoretical knowledge of its role is mostly limited to models of small food webs. In the present article, I introduce evolution in a two-species Lotka-Volterra model in which I vary the interaction type and the cost constraining evolution. Regardless of the cost type, evolution tends to stabilize the dynamics more often in trophic interactions than for mutualism or competition. I then use simulations to study the effect of evolution in larger communities that contain all interaction types. Results suggest that evolution usually stabilizes the dynamics. This stabilizing effect is stronger when evolution affects trophic interactions, but happens for all interaction types. Stabilization decreases with diversity and evolution becomes destabilizing in very diverse communities. This suggests that evolution may not counteract the destabilizing effect of diversity observed in random communities. 相似文献
13.
Predator-prey oscillations are expected to show a 1/4-phase lag between predator and prey. However, observed dynamics of natural or experimental predator-prey systems are often more complex. A striking but hardly studied example are sudden interruptions of classic 1/4-lag cycles with periods of antiphase oscillations, or periods without any regular predator-prey oscillations. These interruptions occur for a limited time before the system reverts to regular 1/4-lag oscillations, thus yielding intermittent cycles. Reasons for this behaviour are often difficult to reveal in experimental systems. Here we test the hypothesis that such complex dynamical behaviour may result from minor trait variation and trait adaptation in both the prey and predator, causing recurrent small changes in attack rates that may be hard to capture by empirical measurements. Using a model structure where the degree of trait variation in the predator can be explicitly controlled, we show that a very limited amount of adaptation resulting in 10–15% temporal variation in attack rates is already sufficient to generate these intermittent dynamics. Such minor variation may be present in experimental predator-prey systems, and may explain disruptions in regular 1/4-lag oscillations. 相似文献
14.
va Kisdi Stefan A. H. Geritz 《Evolution; international journal of organic evolution》1999,53(4):993-1008
We demonstrate how a genetic polymorphism of distinctly different alleles can develop during long-term frequency-dependent evolution in an initially monomorphic diploid population, if mutations have only small phenotypic effect. As a specific example, we use a version of Levene's (1953) soft selection model, where stabilizing selection acts on a continuous trait within each of two habitats. If the optimal phenotypes within the habitats are sufficiently different, then two distinctly different alleles evolve gradually from a single ancestral allele. In a wide range of parameter values, the two locally optimal phenotypes will be realized by one of the homozygotes and the heterozygote, rather than by the two homozygotes. Unlike in the haploid analogue of the model, there can be multiple polymorphic evolutionary attractors with different probabilities of convergence. Our results differ from the population genetic models of short-term evolution in two aspects: (1) a polymorphism that is population genetically stable may be invaded by a new mutant allele and, as a consequence, the population may fall back to monomorphism, (2) long-term evolution by allele substitutions may lead from a population where polymorphism is not possible into one where polymorphism is possible. 相似文献
15.
Katri Korpela Pekka Helle Heikki Henttonen Erkki Korpim?ki Esa Koskela Otso Ovaskainen Hannu Pieti?inen Janne Sundell Jari Valkama Otso Huitu 《Proceedings. Biological sciences / The Royal Society》2014,281(1797)
The cyclic population dynamics of vole and predator communities is a key phenomenon in northern ecosystems, and it appears to be influenced by climate change. Reports of collapsing rodent cycles have attributed the changes to warmer winters, which weaken the interaction between voles and their specialist subnivean predators. Using population data collected throughout Finland during 1986–2011, we analyse the spatio-temporal variation in the interactions between populations of voles and specialist, generalist and avian predators, and investigate by simulations the roles of the different predators in the vole cycle. We test the hypothesis that vole population cyclicity is dependent on predator–prey interactions during winter. Our results support the importance of the small mustelids for the vole cycle. However, weakening specialist predation during winters, or an increase in generalist predation, was not associated with the loss of cyclicity. Strengthening of delayed density dependence coincided with strengthening small mustelid influence on the summer population growth rates of voles. In conclusion, a strong impact of small mustelids during summers appears highly influential to vole population dynamics, and deteriorating winter conditions are not a viable explanation for collapsing small mammal population cycles. 相似文献
16.
Andrés JA Sánchez-Guillén RA Cordero Rivera A 《Evolution; international journal of organic evolution》2000,54(6):2156-2161
The significance of female color polymorphism in Odonata remains controversial despite many field studies. The importance of random factors (founder effects, genetic drift and migration) versus selective forces for the maintenance of this polymorphism is still discussed. In this study, we specifically test whether the female color polymorphism of Ischnura graellsii (Odonata, Coenagrionidae) is under selection in the wild. We compared the degree of genetic differentiation based on RAPD markers (assumed to be neutral) with the degree of differentiation based on color alleles. Weir and Cockerham's theta values showed a significant degree of population differentiation for both sets of loci (RAPD and color alleles) but the estimated degree of population differentiation (theta) was significantly greater for the set of RAPD loci. This result shows that some sort of selection contributes to the maintenance of similar color morph frequencies across the studied populations. Our results combined with those of previous field studies suggest that at least in some I. graellsii populations, density-dependent mechanisms might help to prevent the loss of this polymorphism but cannot explain the similarity in morph frequencies among populations. 相似文献
17.
Robert Keen 《Hydrobiologia》1976,48(3):269-276
The seasonal population dynamics are described for 21 chydorid species in two shallow Scirpus subterminalis beds of Lawrence Lake, Michigan, USA. Six species were rare; four species were predominantly abundant. The dynamics of the populations followed no consistent pattern among the species. However, each species, with one exception, may follow the same pattern from year to year. Eight species overwintered under the ice as parthenogenetic individuals. Populations of Alonella excisa may be greatly reduced during the summer months because of competition with A. exigua. 相似文献
18.
Kazuya Kobayashi 《Population Ecology》2019,61(2):135-140
Sexual reproduction is a mysterious phenomenon. Most animals and plants invest in sexual reproduction, even though it is more costly than asexual reproduction. Theoretical studies suggest that occasional or conditional use of sexual reproduction, involving facultative switching between sexual and asexual reproduction, is the optimal reproductive strategy. However, obligate sexual reproduction is common in nature. Recent studies suggest that the evolution of facultative sexual reproduction is prevented by males that coerce females into sexual fertilization; thus, sexual reproduction has the potential to enforce costs on a given species. Here, the effect of sex on biodiversity is explored by evaluating the reproductive costs arising from sex. Sex provides atypical selection pressure that favors traits that increase fertilization success, even at the expense of population growth rates, that is, sexual selection. The strength of sexual selection depends on the density of a given species. Sexual selection often causes strong negative effects on the population growth rates of species that occur at high density. Conversely, a species that reduces its density is released from this negative effect, and so increases its growth rate. Thus, this negative density-dependent effect on population growth that arises from sexual selection could be used to rescue endangered species from extinction, prevent the overgrowth of common species and promote the coexistence of competitive species. Recent publications on sexual reproduction provide several predictions related to the evolution of reproductive strategies, which is an important step toward integrating evolutionary dynamics, demographic dynamics and community dynamics. 相似文献
19.
《Journal of biological dynamics》2013,7(4):410-429
This article is concerned with the evolution of certain types of density-dependent dispersal strategy in the context of two competing species with identical population dynamics and same random dispersal rates. Such density-dependent movement, often referred to as cross-diffusion and self-diffusion, assumes that the movement rate of each species depends on the density of both species and that the transition probability from one place to its neighbourhood depends solely on the arrival spot (independent of the departure spot). Our results suggest that for a one-dimensional homogeneous habitat, if the gradients of two cross- and self-diffusion coefficients have the same direction, the species with the smaller gradient will win, i.e. the dispersal strategy with the smaller gradient of cross- and self-diffusion coefficient will evolve. In particular, it suggests that the species with constant cross- and self-diffusion coefficients may have competitive advantage over species with non-constant cross- and self-diffusion coefficients. However, if the two gradients have opposite directions, neither of the two dispersal strategies wins as these two species can coexist. 相似文献
20.
Evolutionary Dynamics of Seed Size and Seedling Competitive Ability 总被引:18,自引:0,他引:18
Stefan A. H. Geritz Ed van der Meijden Johan A. J. Metz 《Theoretical population biology》1999,55(3):324-343
We present a model for the evolutionary dynamics of seed size when there is a trade-off between seed size and seed number, and seedlings from large seeds are better competitors and have a higher precompetitive survival than seedlings from small seeds. We find that strong competitive asymmetry, high resource levels, and intermediate harshness of the precompetitive environment favor coexistence of plants with different seed sizes. If the evolution of seed size is mutation-limited and single mutations have only a small phenotypic effect, then an initially monomorphic population reaches the final evolutionarily stable polymorphic state through one or more discrete evolutionary branching events. At each such branching event, a given lineage already present in the population divides into two phenotypically diverging daughter lines, each with its own seed size. If the precompetitive survival of seeds and seedlings is high for small and large seeds alike, however, evolutionary branching may be followed by the extinction of one or more lineages. Various results presented here are model-independent and point the way to a more general evolutionary bifurcation theory describing how the number and stability properties of evolutionary equilibria may change as a consequence of changes in model parameters. 相似文献