首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse myeloma immunoglobulin IgM heavy chains were cleaved with cyanogen bromide into nine peptide fragments, four of which contain asparagine-linked glycosylation. Three glycopeptides contain a single site, including Asn 171, 402, and 563 in the intact heavy chain. Another glycopeptide contains two sites at Asn 332 and 364. The carbohydrate containing fragments were treated with Pronase and fractionated by elution through Bio-Gel P-6. The major glycopeptides from each site were analyzed by 500 MHz 1H-NMR and the carbohydrate compositions determined by gas-liquid chromatography. The oligosaccharide located at Asn 171 is a biantennary complex and is highly sialylated. The amount of sialic acid varies, and some oligosaccharides contain alpha 1,3-galactose linked to the terminal beta 1,4-galactose. The oligosaccharides at Asn 332, Asn 364, an Asn 402 are all triantennary and are nearly completely sialylated on two branches and partially sialylated on the triantennary branch linked beta 1,4 to the core mannose. The latter is sialylated about 40% of the time for all three glycosylation sites. The major oligosaccharide located at Asn 563 is of the high mannose type. The 1H-NMR determination of structures at Asn 563 suggests that the high mannose oligosaccharide contains only three mannose residues.  相似文献   

2.
We analysed the oligosaccharides of a human IgM produced bya human-human-mouse hybridoma at each of its five conservedheavy chain glycosylation sites. Consistent with previous reports,this IgM possesses sialylated oligosaccharides at Asn171, Asn332and Asn395, and high-mannose-type oligosaccharides at Asn402.In contrast to previous reports for human IgMs, we find thatAsn563 is not occupied by oligosaccharide on perhaps 25% ofIgM heavy chains, while occupied Asn563 sites contain both high-mannose-typeand sialylated oligosaccharides. These latter results are consistentwith the glycosylation at Asn563 previously reported for themouse MOPC 104E IgM. We demonstrate that both the human hybridomaIgM and the mouse MOPC 104E IgM are mixtures of pentamers andhexamers, raising the possibility that the unique findings concerningthe glycosylation at Asn563 in this study and the previous studyof the MOPC 104E IgM could be related, at least in part, tothe different packing requirements of the hexameric geometryand the accessibility of oligosaccharides in the hexameric geometryfor processing to complex type. In addition, we used high-pHanion-exchange (HPAE) chromatography, neutral anion-exchangechromatography, fluorophore-assisted carbohydrate electrophoresisand Western blots to compare the oligosaccharide compositionsof the human hybridoma IgM, pooled human serum IgM and two mousemonoclonal IgMs (MOPC 104E and TEPC 183). Of note is the presenceof N-glycolylneuraminic acid (NeuGc) and N-acetymeuraminic acid(NeuAc) at a 2:1 ratio in the oligosaccharides of the humanhybridoma IgM. The presence of both NeuGc and NeuAc complicatesthe interpretation of HPAE chromato-graphs. glycosylation high-pH anion-exchange chromatography human IgM human—mouse hybridoma oligosaccharide  相似文献   

3.
Glycosylation of IgG occurs at asparagine 297 of the gamma H chain and is necessary for the normal capacity of IgG to activate the classical pathway of complement-dependent cytolysis. IgM is glycosylated at five sites in the constant region of the mu H chain, of which glycosylation at asparagine 402 seems analogous to the glycosylation of IgG. In order to assess the importance of glycosylation at asparagine 402 for IgM cytolytic activity, we have used site-directed mutagenesis to produce IgM which is not glycosylated at this position. In particular we have tested the effects of substituting Gln for Asn 402 and Thr-Gly for Gly 403-Thr 404 in the third constant region domain. We tested the effects of these substitutions by expressing the mutant mu genes in hybridoma cells which produce the hapten-specific kappa-chain. The normal mu-chain is glycosylated at Asn 402, and, as expected, these mutations appear to abrogate glycosylation of the mutant mu-chains at position 402 and do not affect the hapten affinity of the IgM. However, both of these mutations cause the increased production of monomeric rather than polymeric IgM: the ratio of monomeric to polymeric IgM is 0.21, 3.5, and 10.3 for wild-type IgM, IgM-Gln 402, and IgM-Thr 403-Gly 404, respectively. The wild-type and mutant polymeric IgM preparations were compared for their capacity to promote complement-dependent cytolysis: IgM-Gln 402 and IgM-Thr 403-Gly 404 have approximately 31% and 4%, respectively, of the capacity of wild-type IgM.  相似文献   

4.
The structures of the predominant high mannose oligosaccharides present in a human IgM myeloma protein (Patient Wa) have been determined. The IgM glycopeptides, produced by pronase digestion, were fractionated on DEAE-cellulonalysis shows that glycopeptide I contains Asn, Pro, Ala, Thr, and His and glycopeptide II contains Asn, Val, and Ser, which are the same amino acids found in the sequences around Asn 402 and Asn 563 respectively, to which high mannose oligosaccharides are attached in IgM (Patient Ou) (Putnman, F.W., Florent, G., Paul, C., Shinoda, T., and Shimizu, A. (1973) Science 182, 287-290). The high mannose glycopeptides in IgM (Wa) exhibit heterogeneity in the oligosaccharide portion. Structural analysis of the major oligosaccharides indicates that the simplest structure is: (see article of journal). The larger oligosaccharides present have additional mannose residues linked alpha 1 yields 2 to terminal mannose residues in the above structure. Glycopeptide I contains primarily Man5 and Man6 species, while glycopeptide II contains Man6 and Man8 species. The two Man6 oligosaccharides have different branching patterns.  相似文献   

5.
The oligosaccharide side chains of a human anti-lipopolysaccharide IgM produced by a human-human-mouse heterohybridoma were analyzed at each of its five conserved N-glycosylation sites. This antibody also has a potential sixth N-glycosylation site in the variable region of its heavy chain which is not glycosylated. The oligosaccharides were released by digestion with various endo- and exoglycosidases and analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and fluorophore-assisted carbohydrate electrophoresis. The antibody has various complex- and hybrid-type oligosaccharide structures at Asn 171, various sialylated complex-type oligosaccharides at Asn 332 and 395, and high-mannose-type oligosaccharides at Asn 402 and 563. Of note is the presence in this human IgM of oligosaccharides containing N-glycolylneuraminic acid and N-acetylneuraminic acid in the ratio of 98:2 as determined using anion- exchange chromatography. Furthermore, we observed oligosaccharide structures containing Gal alpha (1,3)Gal that have not been reported as components of human glycoproteins.   相似文献   

6.
We have previously shown that IgM-Asn406, a mutant IgM which has asparagine in place of the serine which is normally found at position 406, also has an abnormally glycosylated mu-chain and is defective in complement-dependent cytolysis. Here we show by analyzing cyanogen bromide fragments from normal and mutant mu-chains that the site of abnormal glycosylation is at the neighboring position, Asn402. The cytolytic defect was shown to be due to impaired C1 binding. At physiological ionic strength, the C1 binding defect was estimated to be 12-fold, which correlates well with the measured defect in cytolytic activity; also, the severity of the defect in C1 binding by the mutant protein decreases with decreasing ionic strength. Kinetic studies showed that the difference in affinities is due to a proportional difference in the association rate for C1q. By comparing IgM made in the presence and absence of deoxymannojirimycin, we show further that the defect in cytolytic activity derives mostly from the abnormal oligosaccharide.  相似文献   

7.
The asparagine-linked carbohydrate structures at each of the three glycosylation sites of human thyrotrophin were investigated by 400 MHz 1H-NMR spectroscopy. Highly purified, biologically active human thyrotrophin (hTSH) was dissociated into its subunits hTSH alpha (glycosylated at Asn 52 and Asn 78) and hTSH beta (glycosylated at Asn 23). The alpha-subunit was further treated with trypsin which gave two glycopeptides that were subsequently separated by reverse-phase HPLC and identified by amino acid sequence analysis. The oligosaccharides were liberated from hTSH alpha glycopeptides and from intact hTSH beta by hydrazinolysis, and were fractionated as alditols by anion-exchange and ion-suppression amine-adsorption HPLC preparatory to structural analysis. The N-glycans present on hTSH were mainly diantennary complex-type structures with a common Man alpha 1-3 branch that terminated with 4-O-sulphated GalNAc. The Man alpha 1-6 branch displayed structural heterogeneity in the terminal sequence, with chiefly alpha 2-3-sialylated Gal and/or 4-O-sulphated GalNAc. The relative amounts of the two major complete diantennary oligosaccharides and their core fucosylation differed according to glycosylation site; the sulphated/sialylated diantennary oligosaccharide was most abundant at the two sites on the alpha-subunit, whereas the disulphated, core-fucosylated oligosaccharide was more plentiful on the beta-subunit. Some interesting structural features, not previously reported for the N-glycans of hTSH, included 3-O-sulphated galactose (SO4-3Gal) and peripheral fucose (Fuc alpha 1-3GlcNAc) in the Man alpha 1-6 branch of some diantennary structures; the former suggests the presence of a hitherto uncharacterized galactose-3-O-sulphotransferase in thyrotroph cells of the human anterior pituitary gland.  相似文献   

8.
Recombinant human uterine tissue plasminogen activator (tPA), in part metabolically labeled with [6-3H]glucosamine or [35S]sulfate, was isolated from mouse epithelial cells (C127). Oligosaccharides present were liberated by treatment of tryptic glycopeptides with endo-beta-N-acetylglucosaminidase H or peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F and fractionated by high-performance liquid chromatography. The glycans were characterized by digestion with exoglycosidases, methylation analysis and, in part, by acetolysis and 1H-NMR spectroscopy. Glycopeptides comprising individual glycosylation sites were identified by N-terminal amino acid sequencing. The results demonstrate that recombinant tPA from C127 cells carries at Asn117 oligomannosidic glycans with 5-8 mannose residues as well as small amounts of hybrid-type species. Asn184 is only partially glycosylated and substituted by fucosylated triantennary and small amounts of diantennary N-acetyllactosaminic glycans. Likewise, Asn448 carries predominantly fucosylated triantennary species, in addition to, small amounts of diantennary and tetraantennary oligosaccharides. As a characteristic feature, part of the triantennary glycans at Asn184 and Asn448 contain additional Gal(alpha 1-3) substituents and/or sulfate groups linked to position six of beta-galactosyl residues forming NeuAc(alpha 2-3)[HO3S-6]Gal(beta 1-4) units. Oligosaccharides attached to Asn448 are almost completely substituted by (alpha 2-3)- or (alpha 2-6)-linked sialic acid residues and carry the majority of sulfate groups present. Glycans at Asn184 were found to be less sialylated and sulfated.  相似文献   

9.
Rat liver Golgi apparatus are shown to have a CMP-N-acetylneuraminate: N-acetylglucosaminide (alpha 2----6)-sialyltransferase which catalyzes the conversion of the human milk oligosaccharide LS-tetrasaccharide-a (NeuAc alpha 2----3Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----4Glc) to disialyllacto -N- tetraose containing the terminal sequence: (formula: see text) found in N-linked oligosaccharides of glycoproteins. The N-acetylglucosaminide (alpha 2----6)-sialyltransferase has a marked preference for the sequence NeuAc alpha 2----3-Gal beta 1---- 3GlcNAc as an acceptor substrate. Thus, the order of addition of the two sialic acids in the disialylated structure shown above is proposed to be first the terminal sialic acid in the NeuAc alpha 2----3Gal linkage followed by the internal sialic acid in the NeuAc alpha 2---- 6GlcNAc linkage. Sialylation in vitro of the type 1 branches (Gal beta 1---- 3GlcNAc -) of the N-linked oligosaccharides of asialo prothrombin to produce the same disialylated sequence is also demonstrated.  相似文献   

10.
Immunoglobulin M is an especially important product of the immune system because it plays a critical role in early protection against infections. In this report, the glycosylation pattern of the protective murine monoclonal IgM 12A1 to Cryptococcus neoformans polysaccharide was analyzed by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Peptide mapping studies covering 88% of the deduced amino acid sequence indicated that of the six potential N-glycosylation sites in this antibody only five were utilized, as the tryptic peptide derived from monoclonal IgM 12A1 containing Asn-260 was recovered without carbohydrates. The oligosaccharide side chains of monoclonal IgM 12A1 were characterized at each of the N-glycosylation sites. Asn-166 possessed 20 monosialylated and nonsialylated, and fucosylated and nonfucosylated complex- and hybrid-type oligosaccharides and one high-mannose-type oligosaccharide. Thirteen oligosaccharides were attached to the site at Asn-401, including six complex-type, four hybrid-type, and three high-mannose-type oligosaccharides. Twelve hybrid-type oligosaccharides were attached to Asn-378, three of which had terminal sialic acids. Eleven hybrid-type oligosaccharides were attached to Asn-331, seven of which had terminal sialic acids. Only two high-mannose type oligosaccharides were attached to Asn-363. These results indicated great complexity in the structure and composition of oligosaccharides attached to individual IgM glycosylation sites.  相似文献   

11.
The oligosaccharide structures linked to Asn289 of a recombinant (r) variant (R561S) human plasminogen (HPg) expressed in Chinese hamster ovary (CHO) cells, after transfection of these cells with a plasmid containing the cDNA coding for the variant HPg, have been determined. Employing high-performance anion-exchange liquid chromatography mapping of the oligosaccharide units cleaved from the protein by glycopeptidase F, compared with elution positions of standard oligosaccharides, coupled with monosaccharide compositional determinations and analyses of sequential exoglycosidase digestions and specific lectin binding, we find that considerable microheterogeneity in oligosaccharide structure exists at this sole potential N-linked glycosylation site on HPg. A variety of high-mannose structures, as well as bi-, tri-, and tetraantennary complex-type carbohydrate, has been found, in relative amounts of 1-25% of the total oligosaccharides. The complex-type structures contain variable amounts of sialic acid (Sia), ranging from 0 to 5 mol/mol of oligosaccharide in the different glycan structures. Neither hybrid-type molecules, N-acetylglucosamine bisecting oligosaccharides, nor N-acetyllactosaminyl-repeat structures were found to be present in the complex-type carbohydrate pool in observable amounts. Of interest, a significant portion of the Sia exists an outer arm structures in an (alpha 2,6) linkage to the penultimate galactose, a novel finding in CHO cell-directed glycosylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The change in glycosylation of the two acute-phase proteins, alpha-1-proteinase inhibitor (API) and haptoglobin (Hp), in progressive ovarian cancer is different. This has been shown by monosaccharide analysis and lectin-binding studies of proteins purified from serum. In the glycan chains of API, there is decreased branching (more biantennary chains), less branches ending in alpha 2-3 sialic acid, more branches ending in alpha 2-6 sialic acid and more fucose, probably linked alpha 1-6 to the core region. On the other hand, Hp shows increased branching (more triantennary chains), more branches ending in alpha 2-3 sialic acid, less branches ending in alpha 2-6 sialic acid, and more fucose, probably in the alpha 1-3 linkage at the end of the chains. This is surprising because API and Hp are thought to be glycosylated by a common pathway in the liver. We have also shown that the fucose-specific lectin,lotus tetragonolobus, extracts abnormal forms of both Hp and API in ovarian cancer, but the expression of this Hp is related to tumour burden and the expression of this API is related to lack of response to therapy. It is suggested that this difference in the behaviour of API and Hp in ovarian cancer may be associated with the different changes in their glycosylation. Of the many mechanisms that could explain these findings, a likely one is that a pathological process is removing API with triantennary chains from the circulation. In addition to their normal roles (API-enzyme inhibitor and Hp-transport protein) these proteins are reported to have many other effects in biological systems, such as immunosuppression. As correct glycosylation of API and Hp is required for their normal stability/activity, changes in glycosylation could affect their functions in ovarian cancer and these modifications could alter the course of the disease.  相似文献   

13.
Haptoglobin is one of acute phase glycoproteins often used as markers in glycopathology studies. In this work the oligosaccharide structures of haptoglobin from 'healthy' subjects have been studied in detail, taking into consideration the possible dependence of glycosylation on the phenotype. About 75% of charged haptoglobin glycans were of biantennary complex structure, and some of them lacked one terminal sialic acid molecule. Triantennary structures made up almost 25% of the charged glycans pool, and highly branched tetrasialylated oligosaccharides did not exceed 1%. The main difference between haptoglobin derived from the sample of pooled 44 sera and from the 2-2 phenotype individual concerned the relative content of trisialylated oligosaccharide with one 2-3 linked sialic acid residue. The oligosaccharide profile of haptoglobin derived from serum of a patient suffering from congenital disorder of glycosylation was compared to 'healthy' controls. It was shown, that four main glycans are identical in patient and 'normal' haptoglobins. Some alterations were found in the relative content of mono-, bi-, and trisialylated glycans as well as in the appearance of some tracely abundant oligosaccharides in haptoglobin of the patient with congenital disorder of glycosylation.  相似文献   

14.
Since sialic acid content is known to be a critical determinant of the biological properties of glycoproteins, it is essential to characterize and monitor sialylation patterns of recombinant glycoproteins intended for therapeutic use. This study reports site- and branch-specific differences in sialylation of human interferon-gamma (IFN-gamma) derived from Chinese hamster ovary (CHO) cell culture. Sialylation profiles were quantitated by reversed-phase HPLC separations of the site-specific pools of tryptic glycopeptides representing IFN-gamma's two potential N-linked glycosylation sites (i.e., Asn(25) and Asn(97)). Although sialylation at each glycosylation site was found to be incomplete, glycans of Asn(25) were more heavily sialylated than those of Asn(97). Furthermore, Man(alpha1-3) arms of the predominant complex biantennary structures were more favorably sialylated than Man(alpha1-6) branches at each glycosylation site. When the sialylation profile was analyzed throughout a suspension batch culture, sialic acid content at each site and branch was found to be relatively constant until a steady decrease in sialylation was observed coincident with loss of cell viability. The introduction of a competitive inhibitor of sialidase into the culture supernatant prevented the loss of sialic acid after the onset of cell death but did not affect sialylation prior to cell death. This finding indicated that incomplete sialylation prior to loss of cell viability could be attributed to incomplete intracellular sialylation while the reduction in sialylation following loss of cell viability was due to extracellular sialidase activity resulting from cell lysis. Thus, both intracellular and extracellular processes defined the sialic acid content of the final product. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 390-398, 1977.  相似文献   

15.
The structural determinants required for interaction of oligosaccharides with Ricinus communis agglutinin I (RCAI) and Ricinus communis agglutinin II (RCAII) have been studied by lectin affinity high-performance liquid chromatography (HPLC). Homogeneous oligosaccharides of known structure, purified following release from Asn with N-glycanase and reduction with NaBH4, were tested for their ability to interact with columns of silica-bound RCAI and RCAII. The characteristic elution position obtained for each oligosaccharide was reproducible and correlated with specific structural features. RCAI binds oligosaccharides bearing terminal beta 1,4-linked Gal but not those containing terminal beta 1,4-linked GalNAc. In contrast, RCAII binds structures with either terminal beta 1,4-linked Gal or beta 1,4-linked GalNAc. Both lectins display a greater affinity for structures with terminal beta 1,4-rather than beta 1,3-linked Gal, although RCAII interacts more strongly than RCAI with oligosaccharides containing terminal beta 1,3-linked Gal. Whereas terminal alpha 2,6-linked sialic acid partially inhibits oligosaccharide-RCAI interaction, terminal alpha 2,3-linked sialic acid abolishes interaction with the lectin. In contrast, alpha 2,3- and alpha 2,6-linked sialic acid equally inhibit but do not abolish oligosaccharide interaction with RCAII. RCAI and RCAII discriminate between N-acetyllactosamine-type branches arising from different core Man residues of dibranched complex-type oligosaccharides; RCAI has a preference for the branch attached to the alpha 1,3-linked core Man and RCAII has a preference for the branch attached to the alpha 1,6-linked core Man. RCAII but not RCAI interacts with certain di- and tribranched oligosaccharides devoid of either Gal or GalNAc but bearing terminal GlcNAc, indicating an important role for GlcNAc in RCAII interaction. These findings suggest that N-acetyllactosamine is the primary feature required for oligosaccharide recognition by both RCAI and RCAII but that lectin interaction is strongly modulated by other structural features. Thus, the oligosaccharide specificities of RCAI and RCAII are distinct, depending on many different structural features including terminal sugar moieties, peripheral branching pattern, and sugar linkages.  相似文献   

16.
Cheng J  Yu H  Lau K  Huang S  Chokhawala HA  Li Y  Tiwari VK  Chen X 《Glycobiology》2008,18(9):686-697
CstII from bacterium Campylobacter jejuni strain OH4384 has been previously characterized as a bifunctional sialyltransferase having both alpha2,3-sialyltransferase (GM3 oligosaccharide synthase) and alpha2,8-sialyltransferase (GD3 oligosaccharide synthase) activities which catalyze the transfer of N-acetylneuraminic acid (Neu5Ac) from cytidine 5'-monophosphate (CMP)-Neu5Ac to C-3' of the galactose in lactose and to C-8 of the Neu5Ac in 3'-sialyllactose, respectively (Gilbert M, Karwaski MF, Bernatchez S, Young NM, Taboada E, Michniewicz J, Cunningham AM, Wakarchuk WW. 2002. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem. 277:327-337). We report here the characterization of a truncated CstII mutant (CstIIDelta32(I53S)) cloned from a synthetic gene whose codons are optimized for an Escherichia coli expression system. In addition to the alpha2,3- and alpha2,8-sialyltransferase activities reported before for the synthesis of GM3- and GD3-type oligosaccharides, respectively, the CstIIDelta32(I53S) has alpha2,8-sialyltransferase (GT3 oligosaccharide synthase) activity for the synthesis of GT3 oligosaccharide. It also has alpha2,8-sialidase (GD3 oligosaccharide sialidase) activity that catalyzes the specific cleavage of the alpha2,8-sialyl linkage of GD3-type oligosaccharides and alpha2,8-trans-sialidase (GD3 oligosaccharide trans-sialidase) activity that catalyzes the transfer of a sialic acid from a GD3 oligosaccharide to a different GM3 oligosaccharide (3'-sialyllactoside). The donor substrate specificity study of the CstIIDelta32(I53S) GD3 oligosaccharide synthase activity indicates that the enzyme is flexible in using different CMP-activated sialic acids and their analogs for the synthesis of GD3 oligosaccharides containing natural and nonnatural modifications at the terminal sialic acid.  相似文献   

17.
It has been shown previously that chicken ovalbumin synthesized and secreted in a heterologous cell system is glycosylated at the correct site and that the oligosaccharides at that site, similar to the protein made in hen oviduct, are predominantly of the hybrid type (Sheares, B. T., and Robbins, P. W. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1993-1997). This site-specific glycosylation of Asn293, but not Asn312, suggested a prominent role for the nascent protein chain rather than the specific cell type in directing the proper attachment of oligosaccharide chains. In the present study, the effect of glycosylation at Asn293 on the glycosylation of Asn312 has been investigated. Using a 20-base oligodeoxynucleotide primer containing a 2-base mismatch, the codon for Asn293 in the chicken ovalbumin gene (AAC) was changed to that for Gln (CAA), thereby preventing glycosylation at amino acid 293. Constructions containing this mutation were transfected into mouse L (tk-) cells which were subsequently labeled with [35S]methionine. Ovalbumin secreted by these cells was recovered by immunoaffinity chromatography and analyzed for the presence of an oligosaccharide attached at Asn312. Treatment of the material with peptide:N-glycosidase F demonstrated that ovalbumin molecules containing Gln substituted for Asn293 were not glycosylated. This further supports our earlier hypothesis that the nascent protein chain is responsible for directing site-specific glycosylation of ovalbumin, and that the presence of an oligosaccharide chain at the first site has no influence on glycosylation at the second site.  相似文献   

18.
The infection of pandemic influenza viruses such as swine flu (H1N1) and avian flu viruses to the host cells is related to the following two factors: First, the surface protein such as HA (hemagglutinin) and NA (neuraminidase) of the influenza virus. Second, the specific structure of the oligosaccharide [sialic acid(alpha2-6) galactose(beta1-4)glucose or sialic acid(alpha2-3)galactose(beta1-4)glucose] on the host cell. After recognizing the specific structure of the oligosaccharide on the surface of host cells by the surface protein of the influenza virus, the influenza virus can secrete sialidase and cleave the sialic acid attached on the final position of the specific structure of the oligosaccharide on the surface of host cells. Tamiflu (oseltamivir), known as a remedy of swine flu, has a saccharide analog structure, especially the sialic acid analog. Tamiflu can inhibit the invasion of influenza viruses (swine flu and avian flu viruses) into the host cells by competition with sialic acid on the terminal position of the specific oligosaccharide on the surface of the host cell. Because of the emergence of Tamiflu resistance, the development of new potent anti-influenza inhibitors is needed. The inhibitors with positive-charge groups have potential as antiviral therapeutics, and the strain specificity must also be resolved.  相似文献   

19.
E Berman 《Biochemistry》1984,23(16):3754-3759
The analysis of the carbon-13 chemical shift data of NeuAc alpha (2----3)Gal beta (1----4)Glc and NeuAc alpha (2----3)Gla beta-(1----4)GlcNAc and their respective NeuAc alpha (2----6) isomers established distinct and different conformations of the sialic acid residue, depending on the type of anomeric linkage [alpha-(2----3) vs. alpha (2----6)]. Interactions between the NeuAc residue and the Glc or GlcNAc residue are particularly strong in the case of the alpha (2----6) isomers. Similar effects are observed for the larger oligosaccharides [II3(NeuAc)2Lac and IV6NeuAcLcOse4] and even in intact glycoproteins and polysaccharides. It is proposed that the NeuAc alpha (2----3) isomers assume an extended conformation with the sialic residue at the end (terminal) of the oligosaccharide chain or branch. The NeuAc alpha (2----6) isomers are assumed to be folded back toward the inner core sugar residues.  相似文献   

20.
Sialic-acid-containing lipopolysaccharides from Rhodobacter capsulatus 37b4 (S-form lipopolysaccharide), KB-1 (R-type lipopolysaccharide) and Sp 18 (deep R-type lipopolysaccharide) were investigated for the linkage and substitution of sialic acids. Methylation analysis and behaviour towards acid and enzymic hydrolysis indicated a non-reducing terminal location of sialic acids in the R-type lipopolysaccharide of strain Sp 18, whereas an internal, chain-linked location of sialic acids was found in the lipopolysaccharides of strains 37b4 and KB-1. For these latter strains, methylation analysis revealed a substitution of sialic acids by other sugars at position 7 for strain 37b4 and positions 4 and 7 for strain KB-1. In accordance with the chain-linked position of sialic acids, mild hydrolysis of R. capsulatus 37b4 lipopolysaccharide with acetic acid released a trisaccharide with sialic acid at the reducing terminus. Structural investigation of this trisaccharide by methylation analysis, 1H- and 13C-NMR spectroscopy revealed the presence of the disaccharide Gal1-6Glc at the non-reducing end, probably with an alpha-anomeric configuration of the galactose residue, i.e. melibiose, beta-glycosidically linked to position 7 of sialic acid. Therefore the structure Gal alpha 1-6Glc beta 1-7Neu5Ac is proposed for this core oligosaccharide from R. capsulatus 37b4 lipopolysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号