首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Pseudomonas putida KT2442 is a root-colonizing strain which can use proline, one of the major components in root exudates, as its sole carbon and nitrogen source. A P. putida mutant unable to grow with proline as the sole carbon and nitrogen source was isolated after random mini-Tn5-Km mutagenesis. The mini-Tn5 insertion was located at the putA gene, which is adjacent to and divergent from the putP gene. The putA gene codes for a protein of 1,315 amino acid residues which is homologous to the PutA protein of Escherichia coli, Salmonella enterica serovar Typhimurium, Rhodobacter capsulatus, and several Rhizobium strains. The central part of P. putida PutA showed homology to the proline dehydrogenase of Saccharomyces cerevisiae and Drosophila melanogaster, whereas the C-terminal end was homologous to the pyrroline-5-carboxylate dehydrogenase of S. cerevisiae and a number of aldehyde dehydrogenases. This suggests that in P. putida, both enzymatic steps for proline conversion to glutamic acid are catalyzed by a single polypeptide. The putP gene was homologous to the putP genes of several prokaryotic microorganisms, and its gene product is an integral inner-membrane protein involved in the uptake of proline. The expression of both genes was induced by proline added in the culture medium and was regulated by PutA. In a P. putida putA-deficient background, expression of both putA and putP genes was maximal and proline independent. Corn root exudates collected during 7 days also strongly induced the P. putida put genes, as determined by using fusions of the put promoters to 'lacZ. The induction ratio for the putA promoter (about 20-fold) was 6-fold higher than the induction ratio for the putP promoter.  相似文献   

9.
The enzymes involved in gluconate utilization in Bacillus subtilis seemed to be gluconate permease and gluconate kinase. Several mutants unable to grow on gluconate were isolated. The mutations they harboured (gnt) were clustered between iol-6 and fdp-74 on the B. subtilis chromosome (a tentative map order of gnt-10, gnt-4, gnt-26, gnt-23 and gnt-9 was obtained). The gnt-10 mutation seemed to be located within the structural gene of the kinase, and the gnt-23 and gnt-26 mutations seemed to be within that of the permease. An EcoRI fragment (4.5 MDal) containing an intact gluconate (gnt) operon consisting of these two structural genes was cloned in phage phi 105 by prophage transformation and was mapped physically. The physical location of the mutations coincided with their order on the genetic map. The HindIII-A fragment (2.4 MDal), which corrects all the gnt mutations, was subcloned in plasmid pC194. The fragment contained the structural genes for the gluconate permease and kinase, but not the regulatory region of the gluconate operon.  相似文献   

10.
B Keuntje  B Masepohl    W Klipp 《Journal of bacteriology》1995,177(22):6432-6439
Four Rhodobacter capsulatus mutants unable to grow with proline as the sole nitrogen source were isolated by random Tn5 mutagenesis. The Tn5 insertions were mapped within two adjacent chromosomal EcoRI fragments. DNA sequence analysis of this region revealed three open reading frames designated selD, putR, and putA. The putA gene codes for a protein of 1,127 amino acid residues which is homologous to PutA of Salmonella typhimurium and Escherichia coli. The central part of R. capsulatus PutA showed homology to proline dehydrogenase of Saccharomyces cerevisiae (Put1) and Drosophila melanogaster (SlgA). The C-terminal part of PutA exhibited homology to Put2 (pyrroline-5-carboxylate dehydrogenase) of S. cerevisiae and to aldehyde dehydrogenases from different organisms. Therefore, it seems likely that in R. capsulatus, as in enteric bacteria, both enzymatic steps for proline degradation are catalyzed by a single polypeptide (PutA). The deduced amino acid sequence of PutR (154 amino acid residues) showed homology to the small regulatory proteins Lrp, BkdR, and AsnC. The putR gene, which is divergently transcribed from putA, is essential for proline utilization and codes for an activator of putA expression. The expression of putA was induced by proline and was not affected by ammonia or other amino acids. In addition, putA expression was autoregulated by PutA itself. Mutations in glnB, nifR1 (ntrC), and NifR4 (ntrA encoding sigma 54) had no influence on put gene expression. The open reading frame located downstream of R. capsulatus putR exhibited strong homology to the E. coli selD gene, which is involved in selenium metabolism. R. capsulatus selD mutants exhibited a Put+ phenotype, demonstrating that selD is required neither for viability nor for proline utilization.  相似文献   

11.
The putP gene encodes the major proline permease in Salmonella typhimurium that couples transport of proline to the sodium electrochemical gradient. To identify residues involved in the cation binding site, we have isolated putP mutants that confer resistance to lithium during growth on proline. Wild-type S. typhimurium can grow well on proline as the sole carbon source in media supplemented with NaCl, but grows poorly when LiCl is substituted for NaCl. In contrast to the growth phenotype, proline permease is capable of transporting proline via Na+/proline or Li+/proline symport. Therefore, we selected mutants that grow well on media containing proline as the sole carbon source in the presence of lithium ions. All of the mutants assayed exhibit decreased rates of Li+/proline and Na+/proline cotransport relative to wild type. The location of each mutation was determined by deletion mapping: the mutations cluster in two small deletion intervals at the 5' and 3' termini of the putP gene. The map positions of these lithium resistance mutations are different from the locations of the previously isolated substrate specificity mutations. These results suggest that Lir mutations may define domains of the protein that fold to form the cation binding site of proline permease.  相似文献   

12.
13.
Mutations affecting the genes involved in B. subtilis D-glucitol catabolism were mapped either by PBS1-mediated transduction or DNA-mediated transformation. It was shown that the genes gutA and gutB coding for the D-glucitol permease and the D-glucitol dehydrogenase, respectively, and regulatory locus gutR are clustered in a gut operon localized between purB and dal close to the pha marker. A mutation affecting fructokinase activity (fruC) was mapped near the gut markers. The fruC gene does not belong to the operon. A mutation affecting phosphofructokinase activity (pfk) was mapped between the leuA and aroG markers.  相似文献   

14.
K Ekena  M K Liao    S Maloy 《Journal of bacteriology》1990,172(6):2940-2945
Proline uptake can be mediated by three different transport systems in wild-type Salmonella typhimurium: a high-affinity proline transport system encoded by the putP gene and two glycine-betaine transport systems with a low affinity for proline encoded by the proP and proU genes. However, only the PutP permease transports proline well enough t allow growth on proline as a sole carbon or nitrogen source. By selecting for mutations that allow a putP mutant to grow on proline as a sole nitrogen source, we isolated mutants (designated proZ) that appeared to activate a cryptic proline transport system. These mutants enhanced the transport of proline and proline analogs but did not require the function of any of the known proline transport genes. The mutations mapped between 75 and 77.5 min on the S. typhimurium linkage map. Proline transport by the proZ mutants was competitively inhibited by isoleucine and leucine, which suggests that the ProZ phenotype may be due to unusual mutations that alter the substrate specificity of the branched-chain amino acid transport system encoded by the liv genes.  相似文献   

15.
In this paper we demonstrate the existence of a second proline permease, gene proP, in Salmonella typhimurium. Uptake assays demonstrate that this second proline permease has 5 to 10% the uptake rate of the putP permease, the cell's major proline permease, when assayed at 20 microM proline. Genetic mapping by Hfr and P22-mediated genetic crosses placed the second proline permease gene at 92 min on the S. typhimurium genetic map, near the genes for melibiose utilization. F'-mediated complementation tests indicated that Escherichia coli also has the proP gene.  相似文献   

16.
A mutation resulting in inducer-independent expression of the proline-degradative enzymes was isolated in the yeast Saccharomyces cerevisiae. Strains carrying the mutation, put3, are partially constitutive for proline oxidase and delta 1-pyrroline-5-carboxylate dehydrogenase when grown on a medium lacking proline and are hyperinducible for both enzyme activities when grown on a proline-containing medium. put3 segregates as a single nuclear gene, is not linked to either of the presumed structural genes for proline oxidase and delta 1-pyrroline-5-carboxylate dehydrogenase, and does not affect proline transport. When heterozygous in diploid strains, put3 behaves neither fully dominant nor fully recessive. Endogenous induction by proline has been eliminated as a cause of the inducer-independent enzyme expression in the put3 mutant and the mutation is believed to be in a regulatory component of the proline-degradative pathway.  相似文献   

17.
Fanconi-Bickel syndrome is characterized by hepato-renal glycogenosis with severe renal tubular dysfunction and rickets. It has recently been found to be associated with GLUT2 mutations in three families. In another family, low activities of liver phosphorylase kinase (Phk) have been observed, suggesting that Fanconi-Bickel syndrome might be genetically heterogeneous. We have analyzed this family for mutations in the GLUT2 gene and in the three Phk subunit genes that can cause liver glycogenosis (PHKA2, PHKB, and PHKG2). The coding sequences of all three Phk genes are normal but we have identified a homozygous missense mutation (Pro417Leu) in GLUT2. The affected proline residue is completely conserved in all mammalian glucose permease isoforms and even in bacterial sugar transporters and is believed to be critical for the passage of glucose through the permease. Seven affected individuals from different branches of the same large consanguineous sibship all are homozygous for this mutation. These findings indicate that there is no specific subtype of genetic Phk deficiency giving rise to hepato-renal glycogenosis. Rather, they provide further evidence that Fanconi-Bickel syndrome is caused by GLUT2 mutations. The low Phk activity is probably a secondary phenomenon that contributes to the deposition of glycogen in response to the intracellular glucose retention caused by GLUT2 deficiency.  相似文献   

18.
A large number of quinic acid non-utilizing qut mutants of Aspergillus nidulans deficient in the induction of all three quinic acid specific enzymes have been analysed. One class the qutD mutants, are all recessive and are non-inducible at pH 6.5 due to inferred deficiency in a quinate ion permease. Two regulatory genes have been identified. The QUTA gene encodes an activator protein since most qutA mutants are recessive and non-inducible although a few fully dominant mutants have been found. The QUTR gene encodes a repressor protein since recessive mutations are constitutive for all three enzyme activities. Rare dominant non-inducible mutants which revert readily to yield a high proportion of constitutive strains are inferred to be qutR mutants defective in binding the inducer. The gene cluster has been mapped in the right arm of chromosome VIII in the order: centromere - greater than 50 map units - ornB - 12 map units - qutC (dehydratase)-0.8 map units-qutD (permease), qutB (dehydrogenase), qutE (dehydroquinase), qutA (activator)-4.4 map units - qutR (repressor)-20 map units - galG. This organization differs from that of the qa gene cluster in Neurospora crassa, particularly in the displacement of qutC and qutR.  相似文献   

19.
Exogenous proline specifically stimulates the growth rate of enteric bacteria in media of inhibitory osmotic strength (J. H. B. Christian, Aust. J. Biol. Sci. 8:490-497, 1955). I observed that Salmonella typhimurium mutants which lack both of the previously known proline permeases (putP proP) are stimulated by proline in media of inhibitory osmolarity. I propose that there is a third proline permease which functions only in media of elevated osmolarity. This conclusion is based on the observations that, in media of elevated osmolarity, (i) the sensitivity of putP proP mutants to toxic proline analogs increases, (ii) proline requirements for maximal growth of proline auxotrophic putP proP mutants decreases, and (iii) the specific rate of incorporation of radioactive proline into protein of growing cells increases. I obtained a Tn10-induced mutation in a gene (proU) required for the functioning of the third proline permease and determined the map location to be at 59 map units of the chromosome, between srlA and tct, 66% linked to nalB in P22 transduction. My results suggest that the function of the third, osmotically stimulated permease might be to accumulate high intracellular proline levels during osmotic stress. Possible mechanisms by which proline might cause growth stimulation are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号