首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism of stimulation of pulmonary prostacyclin synthesis at birth   总被引:3,自引:0,他引:3  
In order to investigate the mechanism behind ventilation-induced pulmonary prostacyclin production at birth, chloralose anesthetized, exteriorized, fetal lambs were ventilated with a gas mixture that did not change blood gases (fetal gas) and unventilated fetal lungs were perfused with blood containing increased O2 and decreased CO2. Ventilation with fetal gas (3%O2, 5%CO2) increased net pulmonary prostacyclin (as 6-keto-PGF1 alpha) production from -5.1 +/- 4.4 to +12.6 +/- 7.6 ng/kg X min. When ventilation was stopped, net pulmonary prostacyclin production returned to nondetectable levels. Ventilation with gas mixtures which increased pulmonary venous PO2 and decreased PCO2 also stimulated pulmonary prostacyclin production, but did not have greater effects than did ventilation with fetal gas. In order to determine if increasing PO2 or decreasing PCO2 could stimulate pulmonary prostacyclin production independently from ventilation, unventilated fetal lamb lungs were perfused with blood that had PO2 and PCO2 similar to fetal blood, blood with elevated O2, and blood that had PO2 and PCO2 values similar to arterial blood of newborn animals. Neither increased O2 nor decreased CO2 in the blood perfusing the lungs stimulated pulmonary prostacyclin synthesis. We conclude that the mechanism responsible for the stimulation of pulmonary prostacyclin production with the onset of ventilation at birth is tissue stress during establishment of gaseous ventilation and rhythmic ventilation.  相似文献   

2.
The effects of cold plasmas are due to charged particles, reactive oxygen species (ROS), reactive nitrogen species (RNS), UV photons, and intense electric field. In order to obtain a more efficient action on mammalian cells (useful for cancer therapy), we used in our studies chemically activated cold plasma (He and O2 gas mixture). V79-4 cells were exposed to plasma jet for different time periods (30, 60, 90, 120 and 150s), using different combinations of helium and oxygen inputs (He:2.5l/min + 02:12.5ml/min; He:2.51/min + O2:25ml/min; He:2.51/min + O2:37.5 ml/min). Using MTT test we demonstrated that plasma jet induced cell viability decrease in all cases. The effect of chemically activated cold plasma--apoptosis or necrosis--depends on gas mixture and treatment period. Taking into account that ROS density in cell microenvironment is related to O2 percent in the gas mixture and treatment period, we can presume that cell death is due to ROS produced in plasma jet.  相似文献   

3.
We have examined the effect of acute hypoxemia and hypercarbia on bronchial blood flow (Qbr) in 10 anesthetized, ventilated, open-chest dogs using a modification of the radioactive microsphere technique. After surgery, dogs were divided into two groups of five. Group 1 was ventilated for 30 min with each of the following gas mixtures: 1) room air; 2) 15% O2-85% N2; 3) 10% O2-90% N2, and group 2 with 1) room air; 2) 5% CO2-30% O2-65% N2; 3) 10% CO2-30% O2-60% N2. Measurements of pulmonary arterial, left atrial and aortic pressures, cardiac output, and blood gases were made before injection of 46Sc-, 153Gd-, and 103Ru-labeled microspheres into the left atrium as a marker of Qbr. After the final measurements, dogs were killed and the lungs removed and the parenchyma stripped off the large and small airways of the left lung. Knowing the radioactivity in the trachea, bronchi, parenchyma, and in the blood from the reference-flow sample and also the aortic and left atrial pressures, total and regional Qbr, and bronchovascular resistance (BVR) were calculated. Results showed that acute hypoxemia (10% O2) caused a significant (P less than 0.05) decrease in Qbr and increase in BVR and acute hypercarbia (10% CO2) caused a significant (P less than 0.05) increase in Qbr and decrease in BVR.  相似文献   

4.
Suspensions of influenza virus were dried by sublimation of ice in vacuo to contents of residual moisture of 2.8, 1.6, or 0.6%. After drying, the preparations were sealed under helium, argon, nitrogen, or a mixture of oxygen and nitrogen (30% O(2), 70% N(2)). Stabilities of the several preparations were determined by an accelerated storage test. Based on the times predicted for the dried preparations stored at preselected temperatures to lose 1 log of infectivity titer, the order of stabilities in relation to residual moisture, gas was as follows: 1.6%, He > 0.6%, He > 2.8%, He > 1.6%, Ar > 2.8%, N(2) > 2.8%, Ar > 1.6%, N(2) > 2.8%, O(2) > 0.6%, Ar > 0.6%, N(2) > 1.6%, O(2) > 0.6%, O(2). The stability of the preparation sealed under helium and dried to the content of residual moisture found best for this gas (1.6%) resulted in an increased stability of the order of years as compared to the other preparations tested.  相似文献   

5.
In vivo monitoring of cells labeled with paramagnetic iron oxide particles by magnetic resonance imaging (MRI) is complicated by intrinsic contrast of blood vessels. Distinction between T2* effects caused by blood vessels from those caused by labeled cells was so far only possible after carefully following the location of hypointense regions through subsequent slices of T2*-weighted 3-D MRI datasets, a procedure that is time consuming and not always reliable in the case of smaller blood vessels. Here, we demonstrate that the modification of the inhalation gas mixture from the routinely used composition 35% O2 and 65% N2O to a mixture containing 95% O2 and 5% CO2 results in a contrast suppression of most small blood vessels and reduces the intrinsic T2* effect of large vessels dramatically in an animal model. This change in protocol of physiological conditions was well tolerated by all studied animals, even over prolonged experimental times. The changed inhalation gas mixture thus provides a more reliable identification method for small clusters of iron oxide labeled cells in vivo.  相似文献   

6.
The ultrasonic method was used in acute experiments on cats with an open (under artificial lung ventilation) and closed chest to explore lung circulation in a changed gaseous medium. Moderate hypoxia (10% O2) and hypercapnia (5, 10% CO2) induce a 10-15% decrease in the lung blood flow in the inferolobular pulmonary artery in the presence of unchanged or slightly elevated minute volume of the heart. The higher hypoxia (5% O2) provokes inconclusive changes in the lung blood flow: biphasic response or increase. It is assumed that considerable elevation of blood pressure in the common pulmonary artery in all the cases points to vasoconstriction that occurs under the effect of hypoxia and hypercapnia.  相似文献   

7.
Smoke inhalation can produce acute pulmonary edema. Previous studies have shown that the bronchial arteries are important in acute pulmonary edema occurring after inhalation of a synthetic smoke containing acrolein, a common smoke toxin. We hypothesized that inhalation of smoke from burning cotton, known to contain acrolein, would produce in sheep acute pulmonary edema that was mediated by the bronchial circulation. We reasoned that occluding the bronchial arteries would eliminate smoke-induced pulmonary edema, whereas occlusion of the pulmonary artery would not. Smoke inhalation increased lung lymph flow from baseline from 2.4 +/- 0.7 to 5.6 +/- 1.2 ml/0.5 h at 30 min (P < 0.05) to 9.1 +/- 1 ml/0.5 h at 4 h (P < 0.05). Bronchial artery ligation diminished and delayed the rise in lymph flow with baseline at 2.8 +/- 0.7 ml/0.5 h rising to 3.1 +/- 0. 8 ml/0.5 h at 30 min to 6.5 +/- 1.5 ml/0.5 h at 240 min (P < 0.05). Wet-to-dry ratio was 4.1 +/- 0.2 in control, 5.1 +/- 0.3 in smoke inhalation (P < 0.05), and 4.4 +/- 0.4 in bronchial artery ligation plus smoke-inhalation group. Smoke inhalation after occlusion of the right pulmonary artery resulted in a wet-to-dry ratio after 4 h in the right lung of 5.5 +/- 0.8 (P < 0.05 vs. control) and in the left nonoccluded lung of 5.01 +/- 0.7 (P < 0.05). Thus the bronchial arteries may be major contributors to acute pulmonary and airway edema following smoke inhalation because the edema occurs in the lung with the pulmonary artery occluded but not in the lungs with bronchial arteries ligated.  相似文献   

8.
Blood volume changes in the fetal lung following the onset of ventilation were studied by isotopic measurement of red blood cell and plasma volume in rapidly frozen lungs of ten near term fetal lambs. Total pulmonary blood volumes of fetal lambs ventilated with 3% O2 and 7% CO2 in nitrogen (so that blood gas levels were little changed from fetal values), or with air, were compared with measurements in unventilated lambs. Regional correlations of blood volume and blood flow (measured with isotope-labeled microemboli) within the lungs were also examined. Total pulmonary blood volume averaged 5.6 ml/kg body weight in unventilated fetal lambs and was approximately 43% greated in fetal lambs after 5-20 min of air ventilation, but not significantly different in lambs ventilated with 3% O2 and 7% CO2 in nitrogen. Thus it is ventilation with air, rather than the introduction of gas into the alveoli, which enlarges the fetal pulmonary vascular bed. Regional pulmonary blood volume and blood flow were correlated, though poorly, in air-ventilated lungs, but not in lungs ventilated with 3% O2 and 7% CO2 in nitrogen; this suggests that a common factor may operate to increase both blood flow and blood volume in the fetal lung following the introduction of air.  相似文献   

9.
Abstrac The processes of dissociation and recombination of CO molecules in the plasmas of discharges in He/CO and He/CO/Xe mixtures under conditions characteristic of sealed-off CO lasers are investigated. The concentrations of CO molecules and the main products of their dissociation—O and C atoms and CO2 molecules—are measured simultaneously for the first time, and the time evolution of the initial working mixture composition in the discharge is calculated. It is shown that the main channel for the regeneration of CO molecules in a sealed-off discharge is the heterogeneous recombination of C and O atoms. The rate constants for this process are estimated. __________ Translated from Fizika Plazmy, Vol. 30, No. 9, 2004, pp. 845–854. Original Russian Text Copyright ? 2004 by Grigorian, Kochetov.  相似文献   

10.
Campylobacter jejuni in fresh chilled chicken meat is known to be a major risk factor for human gastrointestinal disease. In the present study, the survival under chilled conditions of different C. jejuni strains exposed to different gas mixtures usually used for gas packaging of food was examined. Bolton broth and fresh, skinless chicken fillets were inoculated with six and four strains, respectively, and exposed to the gas mixtures 70/30% O(2)/CO(2), 70/30% N(2)/CO(2), and 100% N(2) (the latter only investigated in broth) at refrigeration temperature (4-5 degrees C). In broth culture, the strains survived significantly longer when exposed to 100% N(2) and 70/30% N(2)/CO(2) than in the oxygen-containing gas mixture, 70/30% O(2)/CO(2) (P<0.0001). For the two anaerobic gas mixtures, the reductions only reached 0.3-0.8 log(10) CFU mL(-1) within the same period. In the presence of oxygen, the numbers of C. jejuni were reduced by a minimum of 4.6 log(10) CFU mL(-1) over 21 days. When inoculated onto chicken fillets, the C. jejuni strains also died significantly faster in the oxygen-containing gas mixture, 70/30% O(2)/CO(2) (P<0.0001), reaching reductions of 2.0-2.6 log(10) CFU g(-1) after 8 days. In the gas mixture without oxygen (70/30% N(2)/CO(2)), no reductions were observed.  相似文献   

11.
It has become common practice in pig fattening production systems to castrate young boar piglets without the use of anaesthesia. In this study, we examined whether or not CO2 gas is capable of inducing an acceptable anaesthetic state during which castration can be performed. The first step was to identify the most promising CO2/O2 mixture. Based on the results from this first experiment, a mixture of 70% CO2 + 30% O2 was chosen for further investigation as a potential anaesthetic during the castration of young piglets. Thereby, it was established whether the duration and depth of anaesthesia were acceptable for castration where the animal has to be insensible and unconscious. Physiological effects were assessed based on electroencephalogram (EEG) and electrocardiogram (ECG) measurements, blood gas values and behavioural responses. During the induction phase, the only typical behaviour the piglets exhibited when exposed to the 70/30 gas mixture was heavy breathing. All piglets (n = 25) lost consciousness after approximately 30 s according to the EEG. Heart rate decreased slowly during the induction phase, a serious drop occurred when piglets lost their posture. Immediately after this drop, the heart rate neared zero or showed a very irregular pattern. Shortly after loss of posture, most animals showed a few convulsions. None of the animals showed any reaction to castration in behaviour and/or on the EEG and ECG. On average, the piglets recovered within 59 s, i.e. EEG returned to its pre-induction pattern and piglets were able to regain a standing position. After 120 s, heart rate returned to pre-induction levels. In order to explore the usage range of CO2 concentration, 24 piglets were exposed to 60% CO2 + 20% O2 + 20% N2 for up to 30 s after loss of consciousness (as registered on EEG), and castrated after removal from the chamber. Sixteen of the 24 animals showed a reaction to the castration on the EEG. To establish the maximum time piglets survive in 70% CO2 + 30% O2, five piglets were placed in this mixture for 3 min. Two of them died. After that, four piglets were placed in this mixture for 2 min after unconsciousness, one died after 2 min. It was concluded from this study that it is possible to anaesthetise piglets with a mixture of 70% CO2 + 30% O2, but that there are limits to its safety in terms of CO2 concentration and duration of exposure. Before implementation for practical use, further research is essential to assess the limits of gas concentration and exposure times.  相似文献   

12.
The purpose of this study is to examine effects of hyperoxic gas mixtures on changes of blood indices during bicycle exercise of human. Oxygen-enriched gases (30% O2) were inspired during the ramp load exercise of 25 watt/min. Changes of blood indices were analyzed with Sequential Multiple Analyzer with the computer (SMAC). The improvement of exercise performance were discussed about relationship between function of hyperoxic gas and physiological mechanism. Three experimental conditions were set as follows (I) 30% O2 +N2 gases balance, (II) air (21% O2), and (III) 30% O2 +2% CO2 +N2 gases balance. Arterial blood were sampled from the radial artery of the forearm in order to analyze following items; 1) pH level, PaO2, PaCO2, and HCO3 of these blood gases, 2) Blood sugar, TG, and F-CH of the blood contents, 3) red blood corpuscle, white blood corpuscle, Hb, and Ht values, 4) LDH, CK, GOT, and GPT of the blood enzymes, 5) TP, ALB, Na, K, Ca and Cl of the electric ions. In the case of inspiring hyperoxic gases, the recovery rate of blood indices increased after this ramp load exercise remarkably, and the whole exercise metabolism were removed from acidosis tendency to alkalosis value of the resting condition significantly. At hyperoxic experimental conditions, the blood sugar and oxygen consumption were much more decreased than these at normal oxygen content one during both states of exercise and recovery times. These data of the blood indices would support strongly to the hypothesis that improvement of oxygen delivery should be depended upon the enhanced performance with the hyperoxic gases. There might be effects of the hyperoxia on the cellular metabolism and on function of the vascular muscle during those aerobic exercise.  相似文献   

13.
We studied the effects of regional hypoxic pulmonary vasoconstriction (HPV) on lobar flow diversion in the presence of hydrostatic pulmonary edema. Ten anesthetized dogs with the left lower lobe (LLL) suspended in a net for continuous weighing were ventilated with a bronchial divider so the LLL could be ventilated with either 100% O2 or a hypoxic gas mixture (90% N2-5% CO2-5% O2). A balloon was inflated in the left atrium until hydrostatic pulmonary edema occurred, as evidenced by a continuous increase in LLL weight. Left lower lobe flow (QLLL) was measured by electromagnetic flow meter and cardiac output (QT) by thermal dilution. At a left atrial pressure of 30 +/- 5 mmHg, ventilation of the LLL with the hypoxic gas mixture caused QLLL/QT to decrease from 17 +/- 4 to 11 +/- 3% (P less than 0.05), pulmonary arterial pressure to increase from 35 +/- 5 to 37 +/- 6 mmHg (P less than 0.05), and no significant change in rate of LLL weight gain. Gravimetric confirmation of our results was provided by experiments in four animals where the LLL was ventilated with an hypoxic gas mixture for 2 h while the right lung was ventilated with 100% O2. In these animals there was no difference in bloodless lung water between the LLL and right lower lobe. We conclude that in the presence of left atrial pressures high enough to cause hydrostatic pulmonary edema, HPV causes significant flow diversion from an hypoxic lobe but the decrease in flow does not affect edema formation.  相似文献   

14.
We measured common carotid blood flow using a range gated Doppler velocimeter, and internal and external blood velocities using a continuous Doppler in 20 lowlanders at sea level, under normal barometric pressure, in 10 subjects in an altitude chamber under a barometric pressure of 462 Torr (61.6 KPa) and then in 5 of them over a 3-weeks period at 3850 m of elevation (475 Torr = 63.3 KPa). The same measurements were also performed in 20 permanent residents at 3850 m. Common carotid blood flow was 15% higher in all subjects exposed to high altitude, due to a lowering in downstream resistances since systemic blood pressure did not change at high altitude. The increase in common carotid blood flow was the result of an immediate increase in internal carotid blood velocities observed in the altitude chamber as well as after the arrival at high altitude, but a few days later those velocities in the internal carotid artery declined to values similar to those observed at sea level. In the same time velocities in external carotid artery rose at high altitude, remained steadily elevated and the result is a permanent increase in common carotid blood flow at altitude. In all subjects we performed the same measurements, during an acute inhalation of gas mixtures to try to quantify the mechanisms controlling the changes in common carotid blood flow while changing gas inhalation. In the limits of the variations in PO2 (60 to 400 Torr) and in PCO2 (30 to 50 Torr) the stimulation by CO2 is twice more efficient than the O2 stimulation on vasomotion.  相似文献   

15.
The purpose of these experiments was to quantify stagnant intrapulmonary blood caused by a pulmonary arterial occlusion (PAO). The hypothesis was that the diffusing capacity of the lung for CO (DLCO) would be altered little by PAO when measured with the usual inspired concentrations (0.3%) of CO, since stagnant blood distal to the occlusion takes up CO for 20 s or more before significant CO backpressure would develop. However, higher levels of CO (i.e., greater than or equal to 3%) would equilibrate faster with capillary blood (within 5-10 s), and DLCO measured 10-20 s subsequent to the high CO exposure would reflect only the DLCO in the unoccluded regions. Thus the fractional reduction in DLCO measured with 3% CO, with respect to that measured with 0.3% CO, should be related to the fractional occlusion of the pulmonary artery in a predictable way. We occluded the right pulmonary artery (RPAO), the left pulmonary artery (LPAO), or the left lower lobar artery (LLPAO) and found that DLCO measured during rebreathing a 0.3% CO mixture was 80, 87, and 94%, respectively, of the preocclusion value, whereas the DLCO measured during rebreathing a 3.3% CO mixture was 59, 73, and 87% of the preocclusion value. A computer model was developed to predict the reduction in DLCO at different levels of CO exposure that would be caused by varying fractions of PAO. Our data indicated that RPAO corresponded to a 42% vascular occlusion, LPAO a 35% occlusion, and LLPAO a 20% occlusion. Measurement of DLCO using low and high concentrations of CO might be useful in assessing the fraction of vascular bed occluded and in following noninvasively the course of vascular occlusion in a variety of pulmonary diseases.  相似文献   

16.
A numerical pressure loss model previously used for adult human airways has been modified to simulate the inhalation pressure distribution in a healthy 9-month-old infant lung morphology model. Pressure distributions are calculated for air as well as helium and xenon mixtures with oxygen to investigate the effects of gas density and viscosity variations for this age group. The results indicate that there are significant pressure losses in infant extrathoracic airways due to inertial effects leading to much higher pressures to drive nominal flows in the infant airway model than for an adult airway model. For example, the pressure drop through the nasopharynx model of the infant is much greater than that for the nasopharynx model of the adult; that is, for the adult-versus-child the pressure differences are 0.08 cm H2O versus 0.4 cm H2O, 0.16 cm H2O versus 1.9 cm H2O and 0.4 cm H2O versus 7.7 cm H2O, breathing helium–oxygen (78/22%), nitrogen–oxygen (78/22%) and xenon–oxygen (60/40%), respectively. Within the healthy lung, viscous losses are of the same order for the three gas mixtures, so the differences in pressure distribution are relatively small.  相似文献   

17.
There are theoretical and experimental indications that the presence of He as a balance gas markedly increase the diffusion velocity of other gases contained in a gas mixture. We allowed dogs with pulmonary vasoconstriction induced by hypoxia to inhale a mixture of 5 parts per million (ppm) of nitric oxide (NO) and O(2) balanced with He (NO in He) instead of N(2) (NO in N(2)). The dilating effect of NO in He and NO in N(2) on the pulmonary artery was evaluated by determining conventional pulmonary hemodynamic parameters, mean pulmonary artery (PA) pressure (MPAP), and pulmonary vascular resistance indexed to body surface area (PVRI), pulmonary impedance (Z), and the recently developed hemodynamic index, time-corrected wave intensity (WI). The main findings in this study were as follows: 1) hypoxia increased MPAP, PVRI, Z at 0 Hz (Z(0)), Z at the first harmonics, characteristic impedance (Z(c)), the reflection coefficient (Gamma), and the first peak of WI; 2) NO in N(2) reduced Z(0) and Gamma; and 3) NO in He reduced the first peak of WI and reduced Z(0) and Gamma more than NO in N(2). The enhanced vasodilatory effect of NO in He might be associated with facilitated diffusion of NO diluted in the gas mixture with He. In conclusion, increased efficacy of NO in He offers the possibility to reduce the inhaled NO concentration.  相似文献   

18.
The effects of cold air inhalation and isometric exercise on coronary blood flow are currently unknown, despite the fact that both cold air and acute exertion trigger angina in clinical populations. In this study, we used transthoracic Doppler echocardiography to measure coronary blood flow velocity (CBV; left anterior descending coronary artery) and myocardial function during cold air inhalation and handgrip exercise. Ten young healthy subjects underwent the following protocols: 5 min of inhaling cold air (cold air protocol), 5 min of inhaling thermoneutral air (sham protocol), 2 min of isometric handgrip at 30% of maximal voluntary contraction (grip protocol), and 5 min of isometric handgrip at 30% maximal voluntary contraction while breathing cold air (cold + grip protocol). Heart rate, blood pressure, inspired air temperature, CBV, myocardial function (tissue Doppler imaging), O(2) saturation, and pulmonary function were measured. The rate-pressure product (RPP) was used as an index of myocardial O(2) demand, whereas CBV was used as an index of myocardial O(2) supply. Compared with the sham protocol, the cold air protocol caused a significantly higher RPP, but there was a significant reduction in CBV. The cold + grip protocol caused a significantly greater increase in RPP compared with the grip protocol (P = 0.045), but the increase in CBV was significantly less (P = 0.039). However, myocardial function was not impaired during the cold + grip protocol relative to the grip protocol alone. Collectively, these data indicate that there is a supply-demand mismatch in the coronary vascular bed when cold ambient air is breathed during acute exertion but myocardial function is preserved, suggesting an adequate redistribution of blood flow.  相似文献   

19.
Noninvasive techniques for assessing cardiopulmonary function in small animals are limited. We previously developed a rebreathing technique for measuring lung volume, pulmonary blood flow, diffusing capacity for carbon monoxide (Dl(CO)) and its components, membrane diffusing capacity (Dm(CO)) and pulmonary capillary blood volume (Vc), and septal volume, in conscious nonsedated guinea pigs at rest. Now we have extended this technique to study guinea pigs during voluntary treadmill exercise with a sealed respiratory mask attached to a body vest and a test gas mixture containing 0.5% SF(6) or Ne, 0.3% CO, and 0.8% C(2)H(2) in 40% or 98% O(2). From rest to exercise, O(2) uptake increased from 12.7 to 25.5 ml x min(-1) x kg(-1) while pulmonary blood flow increased from 123 to 239 ml/kg. The measured Dl(CO), Dm(CO), and Vc increased linearly with respect to pulmonary blood flow as expected from alveolar microvascular recruitment; body mass-specific relationships were consistent with those in healthy human subjects and dogs studied with a similar technique. The results show that 1) cardiopulmonary interactions from rest to exercise can be measured noninvasively in guinea pigs, 2) guinea pigs exhibit patterns of exercise response and alveolar microvascular recruitment similar to those of larger species, and 3) the rebreathing technique is widely applicable to human ( approximately 70 kg), dog (20-30 kg), and guinea pig (1-1.5 kg). In theory, this technique can be extended to even smaller animals provided that species-specific technical hurdles can be overcome.  相似文献   

20.
In the present study, the effect of type of stunning (electrical v. gas) and the gas mixtures in a modified atmosphere (MA) packing system (MA-A: 30% CO2 + 70% O2; MA-B: 30% CO2 + 69.3% N2 + 0.7% CO; MA-C: 40% CO2 + 60% N2) on light lamb meat quality, obtained by 20 males of Manchego Spanish breed, was evaluated at 7, 14 and 21 days post packing. For all ageing times, gas-stunned groups reached the highest pH (P < 0.001) and shear force (SF) values (P < 0.05), and at 21 days, water losses were highest; in contrast, meat colour coordinates were lower (P < 0.001). In general, MA-B showed the highest stability for colour coordinates whereas the lowest tenderness (high SF) was found on MA-A. In this study, the gas mixture with a low carbon monoxide level (MA-B) promoted a higher colour stability and good tenderness, in comparison to the other two blends. In contrast, the conventional packaging system (type A, high oxygen levels) had a reduced tenderness and major colour instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号