首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to estimate the importance of leaf movements on photosynthesis in well-watered and water-stressed field grown bean cultivars (Arroz Tuscola (AT), Orfeo INIA (OI), Bayos Titan (BT), and Hallados Dorado (HD)), CO2 assimilation, leaf temperature, and capacity for the maximum quantum yield recovery, measured as Fv/Fm, were assessed. Leaf water potential was lower in water-stressed compared to control plants throughout the day. Water status determined a decrease in the CO2 assimilation and stomatal conductance as light intensity and temperature increased up to maximal intensities at midday. Both parameters were lower in stressed compared to control plants. Even though high light intensity and water-stress induced stomatal closure is regarded as a photoinhibitory condition, the recovery of variable to maximal fluorescence (Fv/Fm) after 30min of darkness was nearly constant in both water regimes. In fact, higher values were observed in OI and AT when under stress. Photochemical and non-photochemical fluorescence quenching resulted in minor changes during the day and were similar between watered and stressed plants. It is concluded that paraheliotropism, present in the four bean cultivars, efficiently protects stressed plants from photoinhibition in the field and helps maintain leaf temperatures far below the ambient temperatures, however, it may also be responsible for low CO2 assimilation rates in watered plants.  相似文献   

3.
The mechanisms of photosynthetic adaptation to different combinations of temperature and irradiance during growth, and especially the consequences of exposure to high light (2000 micro mol m(-2) s(-1) PPFD) for 5 min, simulating natural sunflecks, was studied in bean plants (Phaseolus vulgaris L.). A protocol using only short (3 min) dark pre-treatment was introduced to maximize the amount of replication possible in studies of chlorophyll fluorescence. High light at low temperature (10 degrees C) significantly down-regulated photosynthetic electron transport capacity [as measured by the efficiency of photosystem II (PSII)], with the protective acclimation allowing the simulated sunflecks to be used more effectively for photosynthesis by plants grown in low light. The greater energy dissipation by thermal processes (lower F(v)'/F(m)' ratio) at low temperature was related to increased xanthophyll de-epoxidation and to the fact that photosynthetic carbon fixation was more limiting at low than at high temperatures. A key objective was to investigate the role of photorespiration in acclimation to irradiance and temperature by comparing the effect of normal (21 kPa) and low (1.5 kPa) O(2) concentrations. Low [O(2)] decreased F(v)/F(m) and the efficiency of PSII (Phi(PSII)), related to greater PSII down-regulation in cold pre-treated plants, but minimized further inhibition by the mild 'sunfleck' treatment used. Results support the hypothesis that photorespiration provides a 'safety-valve' for excess energy.  相似文献   

4.
Summary The effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L. var. ‘Red Kidney’) grown in water culture was studied at different levels of manganese supply. Without silicon, growth depression and toxicity symptoms occurred already at 5 × 10−4 mM Mn in the nutrient solution. After addition of Aerosil (0.75 ppm Si), the plants tolerated 5 × 10−3 mM Mn and, at a higher silicon supply of 40 ppm, as much as 10−2 mM Mn in the nutrient solution without any growth depression. This increase in manganese tolerance was not caused by a depressing effect of silicon on uptake or translocation of manganese but rather by an increase in the manganese tolerance of the leaf tissue. In absence of silicon, 100 ppm Mn was already toxic for the leaf tissue, whereas with a supply of 40 ppm Si, this ‘critical level’ in the leaves was increased to more than 1000 ppm Mn. At lower manganese levels in the leaf tissue, a molar ratio Si/Mn of 6 within the tissue was sufficient to prevent manganese toxicity. Above 1000 ppm Mn, however, even a much wider Si/Mn ratio (> 20) could not prevent growth depression by manganese toxicity. With54Mn and autoradiographic studies, it could be demonstrated that, in absence of silicon, even at optimal manganese supply (10−4 mM), the distribution of manganese within the leaf blades was inhomogeneous and characterized by spot-like accumulations. In presence of silicon, however, the manganese distribution was homogeneous in the lower concentration range of manganese and still fairly homogeneous in the high concentration range. This effect of silicon on manganese distribution on the tissue level was also reflected on the cellular level. In the presence of silicon, a higher proportion of the leaf manganese could be found in the press sap,i.e., had been transported into the vacuoles, than in the absence of silicon. The increase in manganese tolerance of bean leaves by silicon therefore seems to be primarily caused by the prevention of local manganese accumulation within the leaf tissue which leads to local disorders of the metabolism and, correspondingly, growth depression.  相似文献   

5.
6.
A cholinesterase was partially purified from bush bean (Phaseolus vulgaris L.) roots by using acridinium-based ligand affinity chromatography. The procedure gave a 78-fold increase in specific activity, although at least three inactive contaminants remained. The enzyme activity was maximal against acetyl esters of choline and was inhibited by neostigmine. Di-isopropyl phosphorofluoridate completely inhibited activity at concentrations greater than 0.1 mM. The catalytic centre activity was 2 X 10(-4) times that of electric eel acetylcholinesterase. Cholinesterase activity appeared as a peak (s = 4.2 +/- 0.1 S) after isokinetic sedimentation. The Stokes radius was 4.00 nm and the apparent molecular weight was 72700 +/- 1900. The smallest active and native form of the enzyme appeared to be a monomer. This contrasts with animal acetylcholinesterases, in which the smallest active and native forms are multimeric.  相似文献   

7.
The quantity and quality of light required for light-stimulated cell expansion in leaves of Phaseolus vulgaris L. have been determined. Seedlings were grown in dim red light (RL; 4 micromoles photons m-2 s-1) until cell division in the primary leaves was completed, then excised discs were incubated in 10 mM sucrose plus 10 mM KCl in a variety of light treatments. The growth response of discs exposed to continuous white light (WL) for 16 h was saturated at 100 micromoles m-2 s-1, and did not show reciprocity. Extensive, but not continuous, illumination was needed for maximal growth. The wavelength dependence of disc expansion was determined from fluence-response curves obtained from 380 to 730 nm provided by the Okazaki Large Spectrograph. Blue (BL; 460 nm) and red light (RL; 660 nm) were most effective in promoting leaf cell growth, both in photosynthetically active and inhibited leaf discs. Far-red light (FR; 730 nm) reduced the effectiveness of RL, but not BL, indicating that phytochrome and a separate blue-light receptor mediate expansion of leaf cells.  相似文献   

8.
Cell expansion in dicotyledonous leaves is strongly stimulated by bright white light (WL), at least in part as a result of light-induced acidification of the cell walls. It has been proposed that photosynthetic reactions are required for light-stimulated transport processes across plasma membranes of leaf cells, including proton excretion. The involvement of photosynthesis in growth and wall acidification of primary leaves of bean has been tested by inhibiting photosynthesis in two ways: by reducing chlorophyll content of intact plants with tentoxin (TX) and by treating leaf discs with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Exposure to bright WL stimulated growth of intact leaves of TX-treated plants. Discs excised from green as well as from TX-or DCMU-treated leaves also responded by growing faster in WL, as long as exogenous sucrose was supplied to the photosynthetically inhibited tissues. The WL caused acidification of the epidermal surface of intact TX-leaves, but acidification of the incubation medium by mesophyll cells only occurred when photosynthesis was not inhibited. It is concluded that light-stimulated cell enlargement of bean leaves, and the necessary acidification of epidermal cell walls, are mediated by a pigment other than chlorophyll. Light-induced proton excretion by mesophyll cells, on the other hand, may require both a photosynthetic product (or exogenous sugars) and a non-photosynthetic light effect.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1 -dimethylurea - OC osmotic concentration - RL red light - TX tentoxin - WL white light We thank Dr. G.E. Templeton, University of Arkansas, Fayetteville, USA, for initially supplying us with TX, and also Dr. Stephen O. Duke, Southern Weend Science Laboratory, Stoneville, Miss., USA, for suggesting this compound for our experiments. We are grateful to Professor E. Ballio for his generous gift of fusicoccin.  相似文献   

9.
Microsatellite marker diversity in common bean (Phaseolus vulgaris L.)   总被引:7,自引:0,他引:7  
A diversity survey was used to estimate allelic diversity and heterozygosity of 129 microsatellite markers in a panel of 44 common bean (Phaseolus vulgaris L.) genotypes that have been used as parents of mapping populations. Two types of microsatellites were evaluated, based respectively on gene coding and genomic sequences. Genetic diversity was evaluated by estimating the polymorphism information content (PIC), as well as the distribution and range of alleles sizes. Gene-based microsatellites proved to be less polymorphic than genomic microsatellites in terms of both number of alleles (6.0 vs. 9.2) and PIC values (0.446 vs. 0.594) while greater size differences between the largest and the smallest allele were observed for the genomic microsatellites than for the gene-based microsatellites (31.4 vs. 19.1 bp). Markers that showed a high number of alleles were identified with a maximum of 28 alleles for the marker BMd1. The microsatellites were useful for distinguishing Andean and Mesoamerican genotypes, for uncovering the races within each genepool and for separating wild accessions from cultivars. Greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool and polymorphism rate between genotypes was consistent with genepool and race identity. Comparisons between Andean genotypes had higher polymorphism (53.0%) on average than comparisons among Mesoamerican genotypes (33.4%). Within the Mesoamerican parental combinations, the intra-racial combinations between Mesoamerica and Durango or Jalisco race genotypes showed higher average rates of polymorphism (37.5%) than the within-race combinations between Mesoamerica race genotypes (31.7%). In multiple correspondance analysis we found two principal clusters of genotypes corresponding to the Mesoamerican and Andean gene pools and subgroups representing specific races especially for the Nueva Granada and Peru races of the Andean gene pool. Intra population diversity was higher within the Andean genepool than within the Mesoamerican genepool and this pattern was observed for both gene-based and genomic microsatellites. Furthermore, intra-population diversity within the Andean races (0.356 on average) was higher than within the Mesoamerican races (0.302). Within the Andean gene pool, race Peru had higher diversity compared to race Nueva Granada, while within the Mesoamerican gene pool, the races Durango, Guatemala and Jalisco had comparable levels of diversity which were below that of race Mesoamerica.  相似文献   

10.
The effect of excess copper on the expression of soluble proteins in 10-day old Phaseolus vulgaris seedlings was studied with two-dimensional electrophoresis and mass spectrometry, to find sensitive biochemical markers of exposure. Despite major differences in root Cu contents, both 15 and 50 microM Cu treatments resulted in equal enhancements of Cu in the primary leaves. Three proteins, apparently reacting in a dose-dependent manner to Cu exposure, were identified from roots. The levels of an intracellular pathogenesis-related protein and a newly identified protein homologous to PvPR1, PvPR2, were increased with increasing Cu concentration. The level of a newly identified PR-10 protein decreased in a dose-dependent manner. No significant difference was observed in the leaf protein pattern between controls and 15 microM Cu-treated plants. However, at 50 microM Cu exposure, the appearance of PvPR1 and a homologue of Arabidopsis thaliana thylakoid lumenal 17.4kDa protein was observed. Another protein slightly enhanced by Cu treatment had sequence homology to a mitochondrial precursor of glycine cleavage system H protein of Flaveria pringlei.  相似文献   

11.
Changes in the rates of synthesis of three enzymes of phenyl-propanoid biosynthesis in Phaseolus vulgaris L. (dwarf French bean) have been investigated by immunoprecipitation of [35S]methionine-labeled enzyme subunits with mono-specific antisera. Elicitor causes marked, rapid but transient co-ordinated increases in the rate of synthesis of phenyl-alanine ammonia-lyase, chalcone synthase and chalcone isomerase concomitant with the phase of rapid increase in enzyme activity at the onset of accumulation of phenyl-propanoid-derived phytoalexin antibiotics in suspension cultures of P. vulgaris. Co-ordinate induction of enzyme synthesis is also observed in hypocotyl tissue during race:cultivar-specific interactions with Colletotrichum lindemuthianum, causal agent of anthracnose. In an incompatible interaction (host resistant) there are early increases apparently localized to the initial site of infection prior to the onset of phytoalexin accumulation and expression of hypersensitive resistance. In contrast, in a compatible interaction (host susceptible) there is no induction of synthesis in the early stages of infection, but a delayed widespread response at the onset of lesion formation associated with attempted lesion limitation. It is concluded that expression of the phytoalexin defense response in biologically stressed cells of P. vulgaris characteristically involves co-ordinate induction of synthesis of phytoalexin biosynthetic enzymes.  相似文献   

12.
13.
Gniazdowska  A.  Rychter  A. M. 《Plant and Soil》2000,226(1):79-85
Bean (Phaseolus vulgaris L.) plants were cultured for 19 d on complete or on phosphate deficient culture media. Low inorganic phosphate concentration in the roots decreased ATP level and nitrate uptake rate. The mechanisms which may control nitrate uptake rate during phosphate deficiency were examined. Plasma membrane enriched fractions from phosphate sufficient and phosphate deficient plants were isolated and compared. The decrease in total phospholipid content was observed in plasma membranes from phosphate deficient roots, but phospholipid composition was similar. No changes in ATPase and proton pumping activities measured in isolated plasma membrane of phosphate sufficient and phosphate deficient bean roots were noted. The electron microscope observations carried out on cortical meristematic cells of the roots showed that active ATPases were found in plasma membrane of both phosphate sufficient and phosphate deficient plants. The decrease in inorganic phosphate concentration in roots led to increased nitrate accumulation in roots, accompanied by a corresponding alterations in NO3 distribution between shoots and roots. Nitrate reductase activity in roots of phosphate deficient plants estimated in vivo and in vitro was reduced to 50–60% of the control. The increased NO3 concentration in root tissue may be explained by decreased NR activity and lower transport of nitrate from roots to shoots. Therefore, the reduction of nitrate uptake during phosphate starvation is mainly a consequence of nitrate accumulation in the roots.  相似文献   

14.
Decapitation of the fully-elongated fourth internode of Phaseolus vulgaris plants resulted in the disappearance from the internode of soluble acid invertase (EC 3.2.1.26). This loss was prevented by local applications to the internode of indol-3yl-acetic acid (IAA) and, at the point of IAA application, the specific activity of the enzyme increased by up to 3 times its initial value within 48 h of treatment. IAA applications stimulated the acropetal translocation to the internode of 14C-sucrose applied to the subtending (second) trifoliate leaf 30 h after decapitation and the start of the auxin treatment. Labelled assimilates accumulated in the IAA-treated region of the internode. Following decapitation the concentration of hexose sugars in the internode fell and that of sucrose rose substantially, but these trends were reversed by IAA treatment. However, small local accumulations of sucrose occurred at the point of auxin application where tissue concentrations of IAA were greatest (determined using [1-14C] IAA).Considerable quantities of starch were present in the ground parenchyma of the internodes at the start of the experiment but, in the absence of IAA, this was remobilised within 48 h of decapitation. IAA prevented starch loss at and below its point of application to the internode, but not from more distal tissues. Cambial proliferation, radial growth and lignification were stimulated in and below IAA-treated regions of the internode. These observations are discussed in relation to the hormonal regulation of assimilate translocation in the phloem.  相似文献   

15.
16.
UV-B increases the harvest index of bean (Phaseolus vulgaris L.)   总被引:2,自引:1,他引:1  
The effects of small changes in natural UV-B on the photosynthesis, pigmentation, flowering and yield of bean plants (Phaseolus vulgaris L. var. Label) were studied. To obtain a relatively natural growth environment, the plants were grown in small, half-open greenhouses of UV-transmitting Plexiglas of different thickness (3 and 5 mm), resulting in an 8% difference in the weighted UV-B reaching the plants. Although the UV-B doses used did not significantly influence photosynthesis on a leaf area basis during vegetative growth, important changes in biomass allocation were noted. A UV-B-O induced reduction in leaf area during the period of vegetative growth resulted in decreased dry weight after 57 d. During the flowering and pod-filling stages (57–79.d after planting), however, plants grown at high UV-B retained their photosynthetic capacity longer: maximal photosynthesis, chlorophyll and N content of the leaves were higher under the higher UV-B dose at a plant age of 79 d. Combined with an increased allocation under the higher UV-B dose of both N and biomass to the pods, this resulted in a small increase in yield and an important increase in harvest index with increased UV-B.  相似文献   

17.
The transgenic plants of French bean (Phaseolus vulgaris) resistant herbicide Pursuit and kanamycin have been obtained. The genetic transformation was carried out with Agrobacterium tumefaciens strain LBA4404 containing binary vector carrying mutant ahas/als and selective nptII genes. Integration of the transgenes into plant genome was confirmed by polymerase chain reaction.  相似文献   

18.
No exact estimation of the amount of radioactive free aminoacids in the cells of the tissue with large size of apparentfree space was possible, since the exact size of the apparentfree space cannot be measured. Furthermore, estimation of thesize of the protein precursor pool, using the method of Hollemanand Key, was not possible in hypocotyl sections of mung bean(Phaseolus mungo L. cv. Black), because of the great differenceover the length of a section in the rate of the incorporationof leucine-14C into protein. Also, most of the radioactivityin the active pool disappeared within 10 min of the chase periodin the presence or absence of IAA, before the effect of IAAon protein synthesis was shown. Thus, neither can the pulse-chaseexperiment be used to study auxin-induced protein synthesis. IAA stimulated neither the formation of amino acids from acetate-14C,nor the incorporation of the newly formed amino acids into protein.However, IAA did stimulate both the uptake of sucrose-14C andpyruvate-14C into tissue and/or the formation of amino acidsfrom these substances, which resulted in stimulation of theincorporation of these radioactive amino acids into proteins.Enhancement effects of IAA on the rates of amino acid formationand the incorporation of amino acids into protein were of thesame magnitude. These results indicate that radioactive amino acids are spontaneouslyincorporated into proteins without any positive effect by IAA.Furthermore, IAA protects the degradation of some protein fractions.All diis evidence raises questions as to the validity of thehypothesis that auxin promotes protein synthesis. (Received July 17, 1972; )  相似文献   

19.
Phaseolin, the major seed storage protein of Phaseolus vulgaris from forty-four wild and cultivated accessions, was studied using sodium dodecyl sulphate-capillary gel electrophoresis (SDS-CGE). In total, eleven phaseolin profiles, revealing polypeptide subunit variation in the range from 45.6 kDa to 54.4 kDa, were recorded. The number of polypeptide subunits recorded in particular profiles varied from 3 to 6; in total, eight phaseolin subunits were distinguished in the examined material. Ferguson plot analysis was used to correct non-ideal behaviour of phaseolin polypeptide subunits in capillary gel electrophoresis in the presence of SDS. The obtained results are compared to electrophoretic data received by slab polyacrylamide gel electrophoresis. The SDS-CGE method appears to provide a powerful tool for disclosure of phaseolin subunit variability.  相似文献   

20.
Common bean (Phaseolus vulgaris L.) plants were grown for 21–28 days in plastic container-modified Leonard jar assemblies and placed in a controlled-environment room. The nodules on each plant were removed, counted; selected plants were repotted, grown and intercrossed to produce progenies for the next cycle of recurrent selection. Among the ten parent lines, Puebla 152 and WBR 22–34 produced the most nodules and Rio Tibagi and Negro Argel the fewest, when averaged over five experiments. An analysis of number of nodules on F1 plants resulting from crosses made in a partial diallel design among the ten parents revealed highly significants variation for general combining ability (GCA) but not for specific combining ability (SCA). After three cycles of recurrent selection for nodule number per plant, the mean nodule number was 211% of the mean for the 10 parents control. Total nodule weight on selected plants also increased, but individual nodule weight decreased. Nineteen C1 and 18 C2 lines resulting from the individual plants selected for greater nodule number, along with the ten parents and two non-nodulating soybean lines included as non-fixing check plants were grown in a single experiment in a low-N field. C2 lines on average accumulated significantly more N per plant than either the parents or C1 lines, providing evidence for increased N2 fixation measured by the N difference method. These data show that more nodules, possibly resulting from greater susceptibility to nodulation, are an important, heritable component of symbiosis and that selection for increased nodule number resulted in lines capable of fixing more atmospheric N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号