首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Bobik 《Life sciences》1982,30(3):219-228
Binding of the alpha adrenergic antagonists (3H) prazosin and (3H) yohimbine to membranes of dog arteries exhibit the characteristics expected of alpha adrenoceptors. Binding of both ligands is saturable with dissociation constants of 0.19nM and 1.15nM for (3H) prazosin and (3H) yohimbine respectively. A series of catecholamines inhibit binding of both ligands with a potency in the order epinephrine > norepinephrinea?isoproterenol, corresponding with the activity of these agents at alpha adrenoceptors in blood vessels. Competition for binding in both instances is stereoselective. ?-Phenylephrine has similar potencies in inhibiting (3H) prazosin and (3H) yohimbine specific binding whilst the imidazoline related partial alpha adrenergic agonists clonidine and guanfacine are more potent in inhibiting (3H) yohimbine specific binding. The affinity of prazosin for the (3H) yohimbine binding site is approximately 2500 times less than for the (3H) prazosin site whilst yohimbine is approximately 150 times more potent in inhibiting (3H) yohimbine than (3H) prazosin specific binding. Non-selective alpha adrenergic antagonists have similar affinities for both binding sites. The concentrations of (3H) yohimbine binding sites in different arteries vary about two fold whilst for (3H) prazosin the variation was about three fold. These results indicate that there are two discrete noradrenergic binding sites in the major arteries of dog which have binding properties expected of alpha1 and alpha2 adrenoceptors.  相似文献   

2.
A C Petrash  D B Bylund 《Life sciences》1986,38(23):2129-2137
Pharmacologic characterization of mammalian alpha-2 adrenergic receptors in various tissues and species has provided evidence for the existence of two alpha-2 adrenergic receptor subtypes. Prazosin and oxymetazoline have been shown to differentiate between the receptor subtypes as defined in rat tissues. In order to determine the relative proportions of these two receptor subtypes in human brain, the inhibition of the binding of the alpha-2 adrenergic antagonist [3H]yohimbine by oxymetazoline and prazosin was studied in membranes from three brain regions. Inhibition curves in membranes from the cerebral cortex and cerebellum were consistent with a single class of receptor binding sites suggesting that these two brain regions contain only one of the two subtypes. This subtype has the pharmacologic characteristics of the alpha-2A adrenergic subtype (yohimbine greater than oxymetazoline much greater than prazosin). In contrast, inhibition curves for both ligands in the human caudate nucleus were consistent with a model of two classes of binding sites in approximately equal proportions, suggesting that this tissue contains approximately equal densities of the alpha-2A and alpha-2B adrenergic receptor subtypes.  相似文献   

3.
We describe a method for quantitatively determining the alpha- adrenergic receptor subtypes in membrane fractions by studying the displacement of [3H] dihydroergocryptine by selective alpha antagonists and analyzing this data by a computer modeling technique. Alpha1 receptors are those with a higher affinity for prazosin than for yohimbine; alpha2 receptors have a higher affinity for yohimbine than for prazosin. Phentolamine does not discriminate between the two receptor subtypes present in rabbit uterus. The alpha receptor population of rabbit uterus was found to be 37% alpha1 receptors and 63% alpha2 receptors. The human platelet and rat liver alpha receptors were determined to be exclusively alpha2 and alpha1, respectively. In the uterus, prazosin had a 8800 fold greater affinity for alpha1 than alpha2 receptors while yohimbine had a 510 fold greater affinity for alpha2 than alpha1 receptors. The use of [3H] dihydroergocryptine displacement curves generated with selective alpha receptor antagonists coupled with subsequent computer modeling provides a precise and powerful method for quantifying the alpha receptor population of a tissue; this technique should be of value in studying the detailed regulation of alpha receptors in tissues which have both alpha1 and alpha2 receptors.  相似文献   

4.
Adrenergic receptors of canine peripheral lung tissues were measured by direct binding techniques using [3H]dihydroergocryptine ([3H]DHE), [3H]prazosin and [3H]dihydroalprenolol ([3H]DHA). All three ligands bound to canine lung tissue with saturability, stereospecificity and reversibility. Adrenergic agonists competed for binding of [3H]DHE and [3H]prazosin in the order: 1-epinephrine > 1-norepinephrine > d-epinephrine > d-norepinephrine > 1-isoproterenol. Adrenergic antagonists competed for binding of [3H]prazosin in the order: prazosin > phentolamine > yohimbine. Inhibition curves of [3H]DHE by prazosin or yohimbine were biphasic suggesting two subtypes of binding sites. Maximum binding capacities of [3H]DHE ranged from 30.6 to 42.7 fmol/mg protein. [3H]prazosin from 18.3 to 26.9 fmol/mg protein and [3H]DHA from 135.2 to 359.4 fmol/mg protein. When both [3H]DHE and [3H]prazosin were used in the same membrane preparation, specific binding of [3H]DHE was always more than that of [3H]prazosin. Since [3H]prazosin is considered to bind to alpha1 adrenergic receptors specifically and [3H]DHE is considered to bind alpha2 adrenergic receptors nonselectively, the difference between the numbers of the specific binding sites of these two ligands should represent alpha2 adrenergic receptors. Alpha2 adrenergic receptor density ranged from 9.5 to 21.1 fmol/mg protein. Our results suggest the existence of both alpha1 and alpha2 adrenergic receptors in canine peripheral lung tissue. Approximately 40% of alpha adrenergic receptors were alpha2. The ratio of alpha/beta adrenrgic receptors ranged from 1:3.3 to 1:10.4. The ratio of alpha1/be ta adrenergic receptors ranged from 1:6.7 to 1:21.1.  相似文献   

5.
Serotonergic raphe deafferentiation elicits an up regulation of a nM (3H)WB-4101 binding site in rat hippocampus for which norepinephrine displays high affinity and prazosin displays low affinity. Guanine nucleotide affects the nM binding to hippocampal alpha-1 adrenergic receptors. Firstly, Gpp(NH)p, a nonhydrolyzable analog of GTP, inhibits (3H)WB-4101 binding at 3 nM concentration of the radioligand, the ligand concentration labelling the lower affinity, nM, binding site. Secondly, the addition of Gpp(NH)p causes recovery of the heterogeneity of binding sites lost upon preincubation of the membranes with 100 microM epinephrine, apparently by decreasing the affinity of the nM (3H)WB-4101 binding site for the adrenergic receptors. The phenomenon was still observed in the presence of saturating concentrations of the alpha-2 antagonist, yohimbine, and the beta antagonist, propranolol. The results imply that Gpp(NH)p regulates ligand binding to hippocampal alpha-1 agonist sites. It is likely that agonist and antagonist binding sites for the alpha-1 receptor exist in hippocampus with the agonist site being modulated by serotonin.  相似文献   

6.
1. Affinities of agonists for porcine adipose tissue β-adrenergic receptors, determined by competitive ligand binding with 3H-dihydroalprenolol to crude adipose tissue membranes in vitro, varied from 50 times > to 25 times < than isoproterenol. Affinities for antagonists varied from 8 times > to 1000 times < propranolol.2. Receptor affinity was not related to the ability to stimulate or inhibit lipolysis, or to the agonist or antagonist purported receptor subtype specificity.3. Modeling of ligand-binding data indicated more than one binding site for several ligands. The assignment of β-adrenergic subtypes to the individual binding sites was unclear because this would depend on the individual ligands used to establish binding sites.  相似文献   

7.
Amitriptyline was found to compete with (3H) dihydroergocryptine (3H-DHE), a potent alpha adrenergic antagonist, for specific alpha-adrenergic binding sites in rabbit uterine membranes preparation. Amitriptyline and adrenergic agonists compete for (3H) DHE binding sites in the following order of potency : (?) epinephrine > (?) nor-epinephrine > amitriptyline > ethylphenylephrine. Amitriptyline and alpha and beta antagonists compete in the order : phentolamine ? phenoxybenzamine > amitriptyline > propranolol. Based on 50 per cent inhibition values from binding competition curves, the affinity of amitriptyline for alpha-adrenergic sites was 83-fold lower than phentolamine, but only ten fold lower than epinephrine. These data are consistent with the hypothesis that the hypotensive action of amitriptyline results at least in part from alpha-adrenergic blockade.  相似文献   

8.
Lesions of the serotonergic afferents to the hippocampus, by fimbrial transection or by 5,7-dihydroxytryptamine treatment, produce an increase in the Bmax of [3H]WB4101 to its nanomolar affinity binding site, with no effect on its picomolar affinity binding site or on [3H]prazosin binding. The nanomolar site is serotonergic as the serotonergic agonists, serotonin and 8-hydroxydipropylaminotetraline (8-OH-DPAT) have nanomolar affinity for [3H]WB4101 binding when studied in the presence of a prazosin mask (30 nM) of the alpha-1 component of [3H]WB4101 binding. The serotonin receptor antagonists metergoline, lysergic acid diethylamide and lisuride also have high nanomolar affinities while ketanserin, yohimbine, prazosin and noradrenergic agonists have affinities in the micromolar range. Fimbrial transection or 5,7-dihydroxytryptamine injections produced 32% and 44% increases in the Bmax of [3H]WB4101 binding in the presence of a prazosin mask. Serotonin competition for [3H]WB4101 binding was identical in control and experimental tissue from each lesion experiment. Although specific binding of [3H]WB4101 was increased, there was no change in the affinities or the percentages of the two binding components for serotonin competition with [3H]WB4101. These data suggest that removal of the serotonergic input to the hippocampus produces an increase in the Bmax of serotonin receptor binding sites labeled by [3H]WB4101.  相似文献   

9.
T E Cote  J W Kebabian 《Life sciences》1978,23(16):1703-1713
The properties of specific 3H-dihydroalprenolol binding sites resemble the properties of the beta-receptor regulating hormone-sensitive adenylyl cyclase activity in an homogenate of rabbit cerebellum. The rabbit cerebellum has 5 to 6 pmole per gm (wet weight) of high affinity (KD=1.3 nM) specific binding sites for 3H-dihydroalprenolol. the interaction of several beta-adrenergic agonists and antagonists with the specific binding sites is rapid, reversible, and demonstrates stereospecificity which parallels the properties of the beta receptor. Beta-adrenergic agonists show a similar potency as agonists upon adenylyl cyclase activity and as inhibitors of 3H-dihydroalprenolol binding: i.e. l-isoproterenol > l-epinephrine > l-norepinephrine (suggesting a beta2 adrenergic receptor). The binding affinities of several beta-adrenergic agonists and antagonists for the specific binding sites approximate the affinities of these compounds for the stimulation of adenylyl cyclase. Thus, the 3H-dihydroalprenolol binding sites have properties similar to the beta-adrenergic receptor regulating adenylyl cyclase activity in a rabbit cerebellar homogenate.  相似文献   

10.
The effects of the GABA agonist, muscimol on [3H]flunitrazepam binding were examined in cerebellum and hippocampus regions proposed to contain different populations of benzodiazepine binding site subtypes. Quantitative analysis was made of the contribution of different components of [3H]flunitrazepam binding by utilising the selective affinities of propyl β-carboline-3-carboxylate for these sites. The influence of muscimol on each of these components was determined and the results provide clear evidence that GABA receptors interact with only some subtypes of benzodiazepine binding sites; for example, whilst the cerebellar site and the low affinity hippocampal site are influenced, the high affinity site in hippocampus appears to be quite unaffected.  相似文献   

11.
Functional denervation of the central adrenergic receptors by 30 daily injections of reserpine (0.25 mg/kg/day s.c.) produced an increase in the Bmax of alpha-l adrenergic receptor binding sites labeled by [3H]prazosin. A similar increase was also observed for the alpha-1 adrenergic receptor component of [3H]WB4101 binding in the hippocampus but not in the cortex. No change in the lower affinity [3H]WB4101 binding site, which identifies S-l serotonin receptors was detected after this treatment. These data support the hypothesis that alpha-1 receptors are regulated by their neurotransmitter and may explain why previous studies have not detected alpha-1 receptor increases following 6-hydroxydopamine lesions of the dorsal bundle and locus coeruleus.  相似文献   

12.
I Creese  D R Burt  S H Snyder 《Life sciences》1975,17(6):933-1001
3H-Dopamine and 3H-haloperidol bind with high affinity and selectivity to synaptic dopamine receptors in membrane preparations of the calf caudate. Binding of both ligands shows marked regional variations with greatest density in caudate, putamen, globus pallidus, nucleus accumbens and olfactory tubercle, areas rich in dopamine nerve terminals. The rank-order of phenothiazines and related agents as well as catecholamines in displacing both dopamine and haloperidol binding closely parallels their pharmacological potencies and affinities for the dopamine-sensitive adenylate cyclase. Dopamine's affinity for specific 3H-dopamine binding sites is 100 times its apparent affinity for the dopamine sensitive adenylate cyclase. Agonists have about 50 times more affinity for dopamine than haloperidol sites, whereas antagonists display about 100 times greater affinity for haloperidol than dopamine sites.  相似文献   

13.
Abstract Using ligand binding techniques, we studied α-adrenergic receptors in brains obtained at autopsy from seven histologically normal controls and seven patients with histopathologically verified Alzheimer-type dementia (ATD). Binding of the α-adrenergic antagonists [3H]prazosin and [3H]yohimbine to membranes of human brains exhibited characteristics compatible with α1- and α2-adrenergic receptors, respectively. Binding of both ligands was saturable and reversible, with dissociation constants of 0.15 nM for [3H]prazosin and 5.5 nM for [3H]yohimbine. [3H]Prazosin binding was highest in the hippocampus and frontal cortex and lowest in the caudate and putamen in the control brains. [3H]Yohimbine binding was highest in the nucleus basalis of Meynert (NbM) and frontal cortex and lowest in the caudate and cerebellar hemisphere in the control brains. Compared with values for the controls, [3H]prazosin binding sites were significantly reduced in number in the hippocampus and cerebellar hemisphere, and [3H]yohimbine binding sites were significantly reduced in number in the NbM in the ATD brains. These results suggest that α1 and α2-adrenergic receptors are present in the human brain and that there are significant changes in numbers of both receptors in selected regions in patients with ATD.  相似文献   

14.
[3H]Clonidine, a α-noradrenergic agonist, and [3H]WB-4101, a benzodioxan derivative α-antagonist, bind with high affinity and selectivity to membranes of rat brain in a fashion indicating that they label postsynaptic α-noradrenergic receptors. Binding for both ligands is saturable with KD values of 5 nM and 0.6 nM respectively for clonidine and WB-4101. The relative affinities of a series of phenylethylamines for binding sites corresponds well with their relative influences at α-receptors. Binding of both [3H]-ligands is stereoselective with about a 50 fold preference for (-)-norepinephrine. Of a series of ergot alkaloids, only those with known α-receptor activity have high affinities for the binding sites. Binding does not involve pre-synaptic norepinephrine nerve endings, because after an 80% depletion of endogenous norepinephrine by treatment with 6-hydroxydopamine, no decrease can be detected in [3H]clonidine and [3H]WB-4101 binding. α-Agonists have much higher affinities for [3H]clonidine than [3H]WB-4101 sites, while the reverse holds true for α-antagonists. Mixed agonist-antagonist ergots have similar affinities for binding of the two [3H]ligands. These data suggest that [3H]clonidine and [3H]WB-4101 respectively label distinct agonist and antagonist states of the α-receptor.  相似文献   

15.
The alpha-2-adrenoceptor antagonist (3H)-rauwolscine has been used to label adrenoreptors in membranes from human cerebral cortex. The radioligand binds with high affinity (KD 2.08 nM) to a single population of sites with a density of 135 fmoles/mg protein. Adrenoceptor antagonists displaced binding in a simple monomolecular fashion with an order of affinity rauwolscine > yohimbine > phentolamine > corynanthine > prazosin indicating binding to alpha-2-adrenoceptors. Agonists displaced with an order of affinity clonidine > (-) adrenaline > (-) noradrenaline > dopamine > (-) isoprenaline but all displayed apparent Hill coefficients less than unity indicating heterogeneity of binding. The relatively high affinity of the alpha-1 antagonist prazosin for (3H)-rauwolscine binding sites in rat cerebral cortex was not observed in the human tissue which had pharmacological properties similar to those described previously in human platelet.  相似文献   

16.
The function of guanine nucleotide binding (G) proteins is Mg2+ dependent with guanine nucleotide exchange requiring higher metal ion concentration than guanosine 5′-triphosphate hydrolysis. It is unclear whether two Mg2+ binding sites are present or if one Mg2+ binding site exhibits different affinities for the inactive GDP-bound or the active GTP-bound conformations. We used furaptra, a Mg2+-specific fluorophore, to investigate Mg2+ binding to α subunits in both conformations of the stimulatory (G) and inhibitory (Giα1) regulators of adenylyl cyclase. Regardless of the conformation or α protein studied, we found that two distinct Mg2+ sites were present with dissimilar affinities. With the exception of G in the active conformation, cooperativity between the two Mg2+ sites was also observed. Whereas the high affinity Mg2+ site corresponds to that observed in published X-ray structures of G proteins, the low affinity Mg2+ site may involve coordination to the terminal phosphate of the nucleotide.  相似文献   

17.
Fractionation of preparations of rat-liver membranes on linear sucrose gradients revealed different profiles for the binding of α1-, α2- and β-adrenergic radioligands. The peaks of binding activities of [3H]prazosin and [3H]epinephrine were clearly separated from those of [3H]yohimbine and [125I]iodocyanopindolol which appeared at lower sucrose densities. Enzyme marker activities in the sucrose subfractions indicated the presence of plasma membranes in all of the subfractions. Furthermore, the binding peaks of the various adrenergic radioligands cannot be correlated with the presence of membranes derived from microsomes, lysosomes or Golgi apparatus. Pretreatment of rat livers with concanavalin A, in order to prevent the fragmentation of the plasma membranes during isolation, resulted in the shift of the binding of [3H]yohimbine and [125I]iodocyanopindolol to sucrose-gradient subfractions of higher densities, clearly separate from fractions containing microsomes and Golgi apparatus. There was no distinct separation of the binding peaks of prazosin, yohimbine, and cyanopindolol in sucrose-gradient subfractions from concanavalin A-pretreated livers. These results are consistent with the hypothesis that α1-, α2-, and β-adrenergic binding sites are associated with plasma membranes, and are heterogeneously distributed on the rat-liver cell surface.  相似文献   

18.
I Creese  D R Burt  S H Synder 《Life sciences》1975,17(11):1715-1719
Dopamine receptor binding is calf striatal membranes of 3H-dopamine and 3H-haloperidol appears to differentiate agonist and antagonist states of the receptor. Agonists and antagonists have selective affinities for dopamine and haloperidol sites respectively. In evaluating relative affinities for dopamine and haloperidol binding sites, we have observed that d-LSD interacts with considerable affinity at the dopamine receptor. Its similar competition petition for binding of the two tritiated ligands suggests that it is a mixed agonist-antagonist, which is consistent with its interactions with the dopamine-sensitive adenylate cyclase. The effects of LSD on dopamine receptor binding are stereospecific, with d-LSD being 1,000 times more potent than d-LSD. 2-Bromo-LSD has more of an antagonist profile than d-LSD for the dopamine receptor. In binding experiments methiothepin behaves like a potent and relatively pure antagonist at dopamine receptors.  相似文献   

19.
Transection of the fimbria/fornix, producing a 75% reduction in the activity of the cholinergic marker choline-o-acetyltransferase (CAT EC. 2.3.1.6) in rat hippocampus, did not change the binding characteristics of the non-subtype selective, muscarinic cholinergic receptor antagonist ligand [3H](−)quinuclidinyl benzilate {[3H](−)QNB}. Pirenzepine competition for [3H](−)QNB binding in the hippocampus was best described by a computer derived model assuming two binding sites of high affinity (putative M1 receptors) and low affinity (putative M2 receptors). There was no change in the proportion of high and low affinity pirenzepine binding sites in the hippocampus following cholinergic deafferentation. Thus, these data provide no evidence for a discrete localization of either putative subtype of muscarinic receptor discriminated by pirenzepine restricted to the terminals of CAT containing neurons innervating the rat hippocampus.Chronic scopolamine treatment produced a 48% increase in the Bmax of [3H](−)QNB binding in the hippocampus, but again there was no change in the proportions of the sites discriminated by pirenzepine demonstrating that both putative subtypes were regulated identically. Similarly, carbachol competition for [3H](−)QNB was unaltered following cholinergic deafferentation or chronic scopolamine treatment. Furthermore, similar guanylyl-5′-imidodiphosphate [Gpp(NH)p] modulation of the proportions of high and low affinity carbachol binding sites was found in the hippocampus following transection of the fimbria/fornix or chronic scopolamine treatment. Thus there is no adaptation of receptor-effector coupling following these treatments that is reflected by changes in receptor recognition site characteristics.Carbachol competition for [3H]pirenzepine binding to putative M1 receptors in the hippocampus was biphasic and was also modulated by Gpp(NH)p. In the brainstem, there was a homogeneous population of putative M2 [3H](−)QNB binding sites having low affinity for pirenzepine. Carbachol competition for these binding sites was also biphasic and modulated by guanine nucleotides. Thus, both putative M1 and M2 muscarinic receptors, as defined by high or low affinity for pirenzepine respectively, may mediate their effects in rat brain via a guanine nucleotide regulatory subunit.  相似文献   

20.
Alpha1 and alpha2 adrenergic receptors have previously been demonstrated in rat liver membranes by competition curves of [3H]dihydroergocryptine ([3H]DHE) with the alpha1 selective antagonist prazosin (B.B. Hoffman, D. Mullikin-Kilpatrick and R.J. Lefkowitz, J. Biol. Chem. 255:4645–4652, 1980). The present studies have utilized the radioligands [3H]prazosin and [3H]yohimbine to further define alpha receptors in rat liver membranes. [3H]Prazosin was found to label alpha1 receptors whereas [3H]yohimbine labelled alpha2 receptors. The proportion of alpha1 and alpha2 receptors determined directly with these radioligands (79% and 20% respectively) was in good agreement with the proportions determined previously with [3H]DHE. Guanine nucleotides were found to reduce the affinity of the agonist epinephrine at the alpha2 sites labelled by [3H]yohimbine but not at the alpha1 sites labelled by [3H]prazosin. These results have implications for the interpretation of agonist interactions with alpha receptors in liver membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号