首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bisphosphoglyceromutase, 2,3-bisphosphoglycerate phosphatase and phosphoglyceromutase have been purified from human red cells. Three enzymes were co-purified throughout all purification steps. Three fractions (peaks I, II and III) which were chromatographically separable and had three activities in different ratios were obtained. Peak III which contained the main bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities was purified to homogeneity by electrophoretic and ultracentrifugal analyses. The homogeneous preparation had the phosphoglyceromutase activity. The three activities were lost at the same rate during thermal inactivation. Thus, bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities, which are responsible for 2,3-bisphosphoglycerate metabolism in red cells, are displayed by the same enzyme protein which has phosphoglyceromutase activity. Peaks I and II were rich in the phosphoglyceromutase activity. Both peaks showed bisphosphoglyceromutase and 2,3-bisphosphoglycerate phosphatase activities, although these two activities were much smaller than those of peak III. Some of the enzymic properties of peak III are described. Comparative studies on three peaks showed that the phosphoglyceromutase of peak III differed from that of peaks I and II in the kinetic property and thermostability.  相似文献   

2.
Phosphoglycerate mutase isozymes (types M, B and MB) from pig tissues are inactivated upon treatment with reagents specific for histidyl, arginyl and lysyl residues. Their mutase, 2,3-bisphosphoglycerate synthase and 2,3-bisphosphoglycerate phosphatase activities are concurrently lost, although some differences exist in the rate of inactivation. No significant differences are observed between the isozymes. The reversion of the modifying reactions reactivates the three enzymatic activities. Substrates and cofactors protect against inactivation, the protective effects varying with the modifying reagent. Titration with pCMB shows the existence of two essential thiol groups per subunit type M. These results provide evidence of the intrinsic character of the three enzymatic activities, favor their location at the same active site and suggest the existence of separate binding sites for monophosphoglycerates and bisphophoglycerates. Both type M and B subunit from pig phosphoglycerate mutase are similar to type M subunit from rabbit and to the enzyme from yeast.  相似文献   

3.
The bisphosphatase domain of the rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase has been shown to exhibit a structural similarity to yeast phosphoglycerate mutase and human red blood cell 2,3-bisphosphoglycerate mutase including very similar active site sequences with a histidyl residue being involved in phospho group transfer. The liver bifunctional enzyme was found to catalyze the hydrolysis of glycerate 1,3-bisphosphate to glycerate 3-phosphate and inorganic phosphate. The Km for glycerate 1,3-bisphosphate was 320 microM and the Vmax was 11.5 milliunits/mg. Incubation of the rat liver enzyme with [1-32P]glycerate 1,3-bisphosphate resulted in the formation of a phosphoenzyme intermediate, and the labeled amino acid was identified as 3-phosphohistidine. Tryptic and endoproteinase Lys-C peptide maps of the 32P-phosphoenzyme labeled either with [2-32P]fructose 2,6-bisphosphate or [1-32P]glycerate 1,3-bisphosphate revealed that 32P-radioactivity was found in the same peptide, proving that the same histidyl group accepts phosphate from both substrates. Fructose 2,6-bisphosphate inhibited competitively the formation of phosphoenzyme from [1-32P]glycerate 1,3-bisphosphate. Effectors of fructose-2,6-bisphosphatase also inhibited phosphoenzyme formation. Substrates and products of phosphoglycerate mutase and 2,3-bisphosphoglycerate mutase also modulated the activities of the bifunctional enzyme. These results demonstrate that, in addition to a structural homology, the bisphosphatase domain of the bifunctional enzyme has a functional similarity to phosphoglycerate mutase and 2,3-bisphosphoglycerate mutase and support the concept of an evolutionary relationship between the three enzyme activities.  相似文献   

4.
In pig skeletal muscle exist four enzymes with 2,3-bisphosphoglycerate phosphatase activity. Two of them (forms I-A and I-C) are multi-functional enzymes which, in addition to the phosphatase activity, possess 2,3-bisphosphoglycerate synthase and phosphoglycerate mutase activities. The other two enzyme forms (II-A and II-B) only show the phosphatase activity. The four enzymes differ in substrate specificity. Form I-C is highly specific for glycerate 2,3-P2; form I-A also hydrolyzes the monophosphoglycerates and forms II-A and II-B are specific for phosphoester bonds adjacent to a C-1 carboxylic group. The enzymes possess similar Km, Kcat and optimum pH value, but they are differently inhibited by the reaction products. They are also differently affected by glycolate-2-P (their main activator) and by other modifiers. Probably form I-A, which corresponds to M-type phosphoglycerate mutase, is the main enzyme implicated in the breakdown of glycerate 2,3-P2 in pig muscle.  相似文献   

5.
Histidine, arginine and lysine residues are essential for the multifunctional 2,3-bisphosphoglycerate synthase-phosphatase purified from pig skeletal muscle. The synthase, phosphatase and phosphoglycerate mutase activities of the enzyme are concurrently lost upon treatment with diethylpyrocarbonate, phenylglyoxal and trinitrobenzenesulfonate. The phosphatase activity shows hyperbolic kinetics. In contrast, the synthase activity shows a nonhyperbolic pattern which fits to a second-degree polynomial. The Km values for glycerate 1,3-P2, glycerate 3-P and glycerate 2,3-P2 are similar to those of the enzyme from mammalian erythrocytes.  相似文献   

6.
In contrast to the species with erythrocytes of high 2,3-bisphosphoglycerate content, in the sheep the concentration of 2,3-bisphosphoglycerate decreases during maturation of reticulocytes. The decrease can be explained by the drop of the phosphofructokinase/pyruvate kinase and 2,3-bisphosphoglycerate synthase/2,3-bisphosphoglycerate phosphatase activity ratios that result from the decline of phosphofructokinase, pyruvate kinase, phosphoglycerate mutase and the bifunctional enzyme 2,3-bisphosphoglycerate synthase/phosphatase. The concentrations of fructose 2,6-bisphosphate and aldohexose 1,6-bisphosphates also decrease during sheep reticulocyte maturation in parallel to the 6-phosphofructo 2-kinase and the glucose 1,6-bisphosphate synthase activities.  相似文献   

7.
2,3-Bisphosphoglycerate synthase-phosphatase and the hybrid phosphoglycerate mutase/2,3-bisphosphoglycerate synthase-phosphatase have been partially purified from pig brain. Their 2,3-bisphosphoglycerate synthase, 2,3-bisphosphoglycerate phosphatase and phosphoglycerate mutase activities are concurrently lost upon heating and treatment with reagents specific for histidyl, arginyl and lysyl residues. The two enzymes differ in their thermal stability and sensitivity to tetrathionate. Substrates and cofactors protect against inactivation, the protective effects varying with the modifying reagent. The synthase activity of both enzymes shows a nonhyperbolic pattern which fits to a second degree polynomial. The Km, Ki and optimum pH values are similar to those of the 2,3-bisphosphoglycerate synthase-phosphatase from erythrocytes and the hybrid enzyme from skeletal muscle. The synthase activity is inhibited by inorganic phosphate and it is stimulated by glycolyate 2-P.  相似文献   

8.
The concentration of 3-phosphoglyceroyl phosphate in erythrocytes was increased by more than 100-fold when red cells were incubated with extracellular phosphoenolpyruvate at 37 degrees C. Since these elevated levels were maintained for 60 min, the metabolism of 3-phosphoglyceroyl phosphate and related compounds could be investigated in phosphoenolpyruvate-treated erythrocytes. 2,3-Bisphosphoglycerate synthesis was not affected by intracellular pH when the 3-phosphoglyceroyl phosphate level was constant but did vary with 3-phosphoglyceroyl phosphate concentration. On the other hand, the relationship between the rate of 2,3-bisphosphoglycerate synthesis and 3-phosphoglyceroyl phosphate concentration was not straightforward. At relatively low concentrations of 3-phosphoglyceroyl phosphate, the observed rate of 2,3-bisphosphoglycerate synthesis agreed with a rate calculated from a formula incorporating kinetic parameters of purified 2,3-bisphosphoglycerate synthase (Rose, Z.B. (1973) Arch. Biochem. Biophys. 158, 903-910). However, at high concentrations of 3-phosphoglyceroyl phosphate, the observed rate of 2,3-bisphosphoglycerate synthesis was lower than the calculated value. The concentration of glucose 1,6-bisphosphate did not increase even when 3-phosphoglyceroyl phosphate was elevated to 200 microM. Elevated levels of intracellular 2,3-bisphosphoglycerate did not inhibit glycolytic activity in these erythrocytes. These results suggest that incubation of erythrocytes with phosphoenolpyruvate is a useful technique to investigate the effect of metabolic perturbations at the intermediate stages of glycolysis.  相似文献   

9.
The influence of the positive effectors AMP, sulphate, glucose 1,6-bisphosphate and the negative effector 2,3-bisphosphoglycerate on rat erythrocyte phosphofructokinase has been investigated. The kinetic data have been fitted to the Monod-Wyman-Changeux model as well as to a model based on a closed association-dissociation equilibrium. The application of the fitting procedure yeilds for both models a good corresponding between theoretical and experimental data and equal results with respect to the action of the effectors on the enzyme. The corresponding dissociation constants for the binding of the positive effectors to the active state are: AMP 35 micronM, sulphate 0.43 mM and glucose 1,6-bisphosphate 15 micronM. 2,3-Bisphosphoglycerate as in inhibitor stabilizes the inactive state (dissociation constant: 1.4 mM). A preliminary discrimination between the Monod-Wyman-Changeux model and the association-dissociation model has been attempted.  相似文献   

10.
The action of a potent tricyclic cholinesterase inhibitor ethopropazine on the hydrolysis of acetylthiocholine and butyrylthiocholine by purified horse serum butyrylcholinesterase (EC 3.1.1.8) was investigated at 25 and 37 degrees C. The enzyme activities were measured on a stopped-flow apparatus and the analysis of experimental data was done by applying a six-parameter model for substrate hydrolysis. The model, which was introduced to explain the kinetics of Drosophila melanogaster acetylcholinesterase [Stojan et al. (1998) FEBS Lett. 440, 85-88], is defined with two dissociation constants and four rate constants and can describe both cooperative phenomena, apparent activation at low substrate concentrations and substrate inhibition by excess of substrate. For the analysis of the data in the presence of ethopropazine at two temperatures, we have enlarged the reaction scheme to allow primarily its competition with the substrate at the peripheral site, but the competition at the acylation site was not excluded. The proposed reaction scheme revealed, upon analysis, competitive effects of ethopropazine at both sites; at 25 degrees C, three enzyme-inhibitor dissociation constants could be evaluated; at 37 degrees C, only two constants could be evaluated. Although the model considers both cooperative phenomena, it appears that decreased enzyme sensitivity at higher temperature, predominantly for the ligands at the peripheral binding site, makes the determination of some expected enzyme substrate and/or inhibitor complexes technically impossible. The same reason might also account for one of the paradoxes in cholinesterases: activities at 25 degrees C at low substrate concentrations are higher than at 37 degrees C. Positioning of ethopropazine in the active-site gorge by molecular dynamics simulations shows that A328, W82, D70, and Y332 amino acid residues stabilize binding of the inhibitor.  相似文献   

11.
Stopped-flow techniques were utilized to investigate the kinetics of the reaction of lignin peroxidase compounds I and II (LiPI and LiPII) with veratryl alcohol (VA). All rate data were collected from single turnover experiments under pseudo first-order conditions. The reaction of LiPI with VA strictly obeys second-order kinetics over the pH range 2.72-5.25 as demonstrated by linear plots of the pseudo first-order rate constants versus concentrations of VA. The second-order rate constants are strongly dependent on pH and range from 2.62 x 10(6) M-1 s-1 (pH 2.72) to 1.45 x 10(4) M-1 s-1 (pH 5.25). The reaction of LiPII and VA exhibits saturation behavior when the observed pseudo first-order rate constants are plotted against VA concentrations. The saturation phenomenon is quantitatively explained by the formation of a 1:1 LiPII-substrate complex. Results of kinetic and rapid scan spectral analyses exclude the formation of a LiPII-VA cation radical complex. The first-order dissociation rate constant and the equilibrium dissociation constant for the LiPII reaction are also pH dependent. Binding of VA to LiPII is controlled by a heme-linked ionizable group of pKa approximately 4.2. The pH profiles of the second-order rate constants for the LiPI reaction and of the first-order dissociation constants for the LiPII reaction both demonstrate two pKa values at approximately 3.0 and approximately 4.2. Protonated oxidized enzyme intermediates are most active, suggesting that only electron transfer, not proton uptake from the reducing substrate, occurs at the enzyme active site. These results are consistent with the one-electron oxidation of VA to an aryl cation radical by LiPI and LiPII.  相似文献   

12.
Spinach chloroplasts were incubated in the dark with methyl acetimidate in order to amidinate and thereby protect free amino groups. An energy-dependent attack on the coupling factor (CF1) of these amidinated chloroplasts by trinitrobenzenesulfonate was apparent in a second reaction, as long as the reagent was applied in the light or after an acid-base transition. Trinitrophenyl residues approached one each on the alpha and beta subunits, and two to three on the gamma subunit polypeptide of CF1. Accompanying trinitrophenylation was an inhibition of the ATPase activity of CF1 due to a major decrease in the affinity for ATP; however, neither the maximal ATPase rate nor the ability of the protein to serve as a coupling factor for EDTA-extracted chloroplasts was affected. Trinitrophenylation and consequent inhibition of ATPase were 50% prevented by the presence of phosphate, or ADP, or ATP during exposure to trinitrobenzenesulfonate. The protective effects of adenylates were additive with those of phosphate. The ratio of trinitrophenyl groups on the three subunits concerned was the same whether phosphate or ATP was providing 50% protection, or whether neither was present. It is inferred that a conformational change occurs in the amidinated coupling factor when a proton activity gradient is placed across the membranes, and effective ligands tend to prevent the resulting exposure of free amino groups from a previously hidden location.  相似文献   

13.
1. A new and efficient method for preparation of pure phosphoglyceromutase from baker's yeast (Saccharomyces cerevisiae) is described. Proteolytic alterations of the enzyme during extraction can be minimized by grinding the dried yeast with aluminium oxide at low temperature. 2. Yeast phosphoglyceromutase contains four highly similar, probably idential subunits of molecular weight 28000, a conclusion based on the following observations. Polyacrylamide gel electrophoresis containing dodecylsulphate or urea gives a single band, indicating that the enzyme is composed of four subunits similar in their molecular weight and net charge. Cyanogen bromide cleavage and tryptic digestion of the enzyme yield the number of peptides expected for identical subunites from the amino acid composition analysis. 3. The purified phosphoglyceromutase preparation has bisphosphoglyceromutase activity synthesizing 2,3-bisphosphoglycerate from 1,3-bisphosphoglycerate and 3-phosphoglycerate. It has been reported that yeast phosphoglyceromutase catalyzes the hydrolysis of 2,3-bisphosphoglycerate at the same active site which catalyzes the phosphoglyceromutase reaction [Sasaki, R. et al (1971) Biochim. Biophys, Acta, 227, 584-594, 595-607]. Immunological studies and chemical modification experiments indicate that bisphosphoglyceromutase activity also is due to the phosphoglyceromutase protein and involves amino groups which have been shown to be essential for the other two activities.  相似文献   

14.
Purified phosphoglycerate mutase from pig skeletal muscle and 2,3-bisphosphoglycerate synthase-phosphatase from pig erythrocytes were hybridized “in vitro”. The hybrid showed a behaviour on electrophoresis and on ion-exchange chromatography similar to that of a naturally occurring enzyme with phosphoglycerate mutase, 2,3-bisphosphoglycerate synthase and 2,3-bisphosphoglycerate phosphatase activities present in pig skeletal and heart muscle. Both the hybrid and the muscle enzyme possess similar activities ratio. From these and previous data it is suggested that the six enzymatic forms with phosphoglycerate mutase, 2,3-bisphosphoglycerate synthase and 2,3-bisphosphoglycerate phosphatase activities detected in mammalian tissues (Carreras et al. 1981, Comp. Biochem. Physiol. 70B, 477–485) result from combination of three subunits (types M, B and E).  相似文献   

15.
In human erythrocytes the reactions of the 2,3-bisphosphoglycerate shunt are catalyzed primarily by one protein, 2,3-bisphosphoglycerate synthase-phosphatase. At low concentrations of 2,3-bisphosphoglycerate the phosphatase is activated by several anions including inorganic phosphate and sulfite, and the phosphate activation is inhibited by low concentrations of 3-phosphoglycerate [Z. B. Rose and J. Liebowitz (1970) J. Biol. Chem. 245, 3232-3241]. Phosphate and sulfite also activate at high but physiological concentrations of 2,3-bisphosphoglycerate (5 mM), but the inhibition by 3-phosphoglycerate is much weaker. The basal activity (without added phosphate or sulfite) was also found to be higher and to be 3-phosphoglycerate sensitive; this is attributed to activation either by 2,3-bisphosphoglycerate itself or by a contaminant in it. These results allow previous observations of 2,3-bisphosphoglycerate hydrolysis in intact erythrocytes to be reconciled with the properties of the purified enzyme under near-physiological conditions.  相似文献   

16.
Trinitrophenylation of smooth muscle myosin   总被引:1,自引:0,他引:1  
The reaction of trinitrobenzenesulfonate with gizzard myosin was studied. The initial phase of the reaction involved two residues and at this level of modification the following was observed: the Mg2+-ATPase of myosin, the actin-activated ATPase of phosphorylated myosin and the phosphorylation kinetics of myosin were not affected. However, trinitrophenylation did induce an activation of the actin-activated ATPase of dephosphorylated myosin and in this respect mimicked the effect of light chain phosphorylation. The Mg2+-dependence of actin-activated ATPase also is altered on trinitrophenylation. These alterations of enzymatic properties could be at least partly explained by the finding that trinitrophenylation favored the 6S conformation of myosin.  相似文献   

17.
2,3-Bisphosphoglycerate is a physiologically important regulator of red cell oxygen affinity during mammalian development. The rat has no fetal hemoglobin, but the newborn red cell has low 2,3-bisphosphoglycerate and high ATP concentrations, and high oxygen affinity. This report shows that red cell bisphosphoglyceromutase activity increases from near zero in the newborn rat to very high levels by four weeks of age. This increase roughly parallels the increase in red cell 2,3-bisphosphoglycerate concentration. Red cell pyruvate kinase activity declines ten-fold from birth to four weeks of age. This decrease is associated with a changeover in red cell populations from larger to smaller cells. The glycolytic rate is at least 50% higher in newborn than adult rat red cells. The data suggest that high pyruvate kinase activity and glycolytic rate contribute to the high ATP concentration in newborn rat red cells, but that their low 2,3-bisphosphoglycerate concentration is due primarily to low bisphosphoglyceromutase activity.  相似文献   

18.
Isocitrate lyase was purified from Phycomyces blakesleeanus N.R.R.L. 1555(-). The native enzyme has an Mr of 240,000. The enzyme appeared to be a tetramer with apparently identical subunits of Mr 62,000. The enzyme requires Mg2+ for activity, and the data suggest that the Mg2(+)-isocitrate complex is the true substrate and that Mg2+ ions act as a non-essential activator. The kinetic mechanism of the enzyme was investigated by using product and dead-end inhibitors of the cleavage and condensation reactions. The data indicated an ordered Uni Bi mechanism and the kinetic constants of the model were calculated. The spectrophotometric titration of thiol groups in Phycomyces isocitrate lyase with 5.5'-dithiobis-(2-nitrobenzoic acid) gave two free thiol groups per subunit of enzyme in the native state and three in the denatured state. The isocitrate lyase was completely inactivated by iodoacetate, with non-linear kinetics. The inactivation data suggest that the enzyme has two classes of modifiable thiol groups. The results are also in accord with the formation of a non-covalent enzyme-inhibitor complex before irreversible modification of the enzyme. Both the equilibrium constants for formation of the complex and the first-order rate constants for the irreversible modification step were determined. The partial protective effect of isocitrate and Mg2+ against iodoacetate inactivation was investigated in a preliminary form.  相似文献   

19.
1. Co2+ is not a cofactor for 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase(phe). 2. The following analogues of phosphoenolpyruvate were tested as inhibitors of 3-deoxy-D-arabinoheptolosonate-7-phosphate synthetase(phe): pyruvate, lactate, glycerate, 2-phosphoglycerate, 2,3-bisphosphoglycerate, 3-methylphosphoenolpyruvate, 3-ethylphosphoenolpyruvate and 3,3-demethylphosphoenolpyruvate. The rusults obtained indicate that the binding of phosphoenolpyruvate to the enzyme requires a phosphoryl group on the C-2 position of the substrate and one free hydrogen atom at the C-3 position. 3. The dead-end inhibition pattern observed with the substrate analogue 2-phosphoglycerate when either phosphoenolpyruvate or erythrose 4-phosphate was the variable substrate is inconsistent with a ping-pong mechanism and indicates that the reaction mechanism for this enzyme must be sequential. The following kinetic constants were determined:Km for phosphoenolpyruvate, 0.08 +/- 0.04 mM; Km for erythrose 4-phosphate, 0.9 +/- 0.3 mM; K is for competitive inhibition by 2-phosphoglycerate with respect to phosphoenolpyruvate, 1.0 +/- 0.1 mM. 4. The enzyme was observed to have a bell-shaped pH PROFILE WITH A PH OPTIMUM OF 7.0. The effects of pH ON V and V/(Km for phosphoenolpyruvate) indicated that an ionizing group of pKa 8.0-8.1 is involved in the catalytic activity of the enzyme. The pKa of this group is unaffected by the binding of phosphoenolpyruvate.  相似文献   

20.
2,3-Bisphosphoglycerate was the most potent effector of glycolytic intermediates tested for their effects on protein synthesis in gel-filtered lysates from rabbit reticulocytes. 2,3-Bisphosphoglycerate at low levels was stimulatory but became inhibitory at high levels. Both effects were dependent on Mg2+ concentrations. The higher the concentration of Mg2+, the higher the concentration of 2,3-bisphosphoglycerate required for maximal activation. 2,3-Bisphosphoglycerate concentrations required to exhibit an inhibitory effect increased as Mg2+ concentration increased. Both effects of 2,3-bisphosphoglycerate are discussed in terms of regulation of hemoglobin synthesis during maturation of erythroid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号