首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vacuolar H(+)-ATPase (V-ATPase) binds actin filaments with high affinity (K(d) = 55 nm; Lee, B. S., Gluck, S. L., and Holliday, L. S. (1999) J. Biol. Chem. 274, 29164-29171). We have proposed that this interaction is an important mechanism controlling transport of V-ATPase from the cytoplasm to the plasma membrane of osteoclasts. Here we show that both the B1 (kidney) and B2 (brain) isoforms of the B subunit of V-ATPase contain a microfilament binding site in their amino-terminal domain. In pelleting assays containing actin filaments and partially disrupted V-ATPase, B subunits were found in greater abundance in actin pellets than were other V-ATPase subunits, suggesting that the B subunit contained an F-actin binding site. In overlay assays, biotinylated actin filaments also bound to the B subunit. A fusion protein containing the amino-terminal half of B1 subunit bound actin filaments tightly, but fusion proteins containing the carboxyl-terminal half of B1 subunit, or the full-length E subunit, did not bind F-actin. Fusion proteins containing the amino-terminal 106 amino acids of the B1 isoform or the amino-terminal 112 amino acids of the B2 isoform bound filamentous actin with K(d) values of 130 and 190 nm, respectively, and approached saturation at 1 mol of fusion protein/mol of filamentous actin. The B1 and B2 amino-terminal fusion proteins competed with V-ATPase for binding to filamentous actin. In summary, binding sites for F-actin are present in the amino-terminal domains of both isoforms of the B subunit, and likely are responsible for the interaction between V-ATPase and actin filaments in vivo.  相似文献   

2.
Feng S  Deng L  Chen W  Shao J  Xu G  Li YP 《The Biochemical journal》2009,417(1):195-203
Bone resorption relies on the extracellular acidification function of V-ATPase (vacuolar-type proton-translocating ATPase) proton pump(s) present in the plasma membrane of osteoclasts. The exact configuration of the osteoclast-specific ruffled border V-ATPases remains largely unknown. In the present study, we found that the V-ATPase subunit Atp6v1c1 (C1) is highly expressed in osteoclasts, whereas subunits Atp6v1c2a (C2a) and Atp6v1c2b (C2b) are not. The expression level of C1 is highly induced by RANKL [receptor activator for NF-kappaB (nuclear factor kappaB) ligand] during osteoclast differentiation; C1 interacts with Atp6v0a3 (a3) and is mainly localized on the ruffled border of activated osteoclasts. The results of the present study show for the first time that C1-silencing by lentivirus-mediated RNA interference severely impaired osteoclast acidification activity and bone resorption, whereas cell differentiation did not appear to be affected, which is similar to a3 silencing. The F-actin (filamentous actin) ring formation was severely defected in C1-depleted osteoclasts but not in a3-depleted and a3(-/-) osteoclasts. C1 co-localized with microtubules in the plasma membrane and its vicinity in mature osteoclasts. In addition, C1 co-localized with F-actin in the cytoplasm; however, the co-localization chiefly shifted to the cell periphery of mature osteoclasts. The present study demonstrates that Atp6v1c1 is an essential component of the osteoclast proton pump at the osteoclast ruffled border and that it may regulate F-actin ring formation in osteoclast activation.  相似文献   

3.
Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 μM) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 μM enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.  相似文献   

4.
Excessive activity of osteoclasts becomes manifest in many common lytic bone disorders such as osteoporosis, Paget's disease, bone aseptic loosening and tumor-induced bone destruction. Vacuolar proton pump H+-adenosine triphosphatases (V-ATPases), located on the bone-apposed plasma membrane of the osteoclast, are imperative for the function of osteoclasts, and thus are a potential molecular target for the development of novel anti-resorptive agents. To date, the V-ATPases core structure has been well modeled and consists of two distinct functional domains, the V1 (A, B1, B2, C1, C2, D, E1, E2, F, G1, G2, G3, and H subunits) and V0 (a1, a2, a3, a4, d1, d2, c, c' e1, e2 subunits) as well as the accessory subunits ac45 and M8-9. However, the exact configuration of osteoclast specific V-ATPases remains to be established. Inactivation of subunit a3 leads to osteopetrosis in both mice and man because of non-functional osteoclasts that are capable of acidifying the extracellular resorption lacuna. On the other hand, inactivation of subunits c, d1 and ac45 results in early embryonic lethality, indicating that certain subunits, such as a3, are more specific to osteoclast function than others. In osteoclasts, V-ATPases also cooperate with chloride channel protein CLC-7 to acidify the resorption lacuna. In addition, development of V-ATPases inhibitors such as bafilomycin A1, SB 242784 and FR167356 that selectively target osteoclast specific V-ATPases remains a challenge. Understanding the molecular and cellular mechanisms by which specific subunits of V-ATPase regulate osteoclast function might facilitate the development of novel and selective inhibitors for the treatment of lytic bone disorders. This review summarizes recent research developments in V-ATPases with particular emphasis on osteoclast biology.  相似文献   

5.
Qin A  Cheng TS  Lin Z  Pavlos NJ  Jiang Q  Xu J  Dai KR  Zheng MH 《PloS one》2011,6(11):e27155
Vacuolar-type H(+)-ATPases (V-ATPases) are macromolecular proton pumps that acidify intracellular cargos and deliver protons across the plasma membrane of a variety of specialized cells, including bone-resorbing osteoclasts. Extracellular acidification is crucial for osteoclastic bone resorption, a process that initiates the dissolution of mineralized bone matrix. While the importance of V-ATPases in osteoclastic resorptive function is well-defined, whether V-ATPases facilitate additional aspects of osteoclast function and/or formation remains largely obscure. Here we report that the V-ATPase accessory subunit Ac45 participates in both osteoclast formation and function. Using a siRNA-based approach, we show that targeted suppression of Ac45 impairs intracellular acidification and endocytosis, both are prerequisite for osteoclastic bone resorptive function in vitro. Interestingly, we find that knockdown of Ac45 also attenuates osteoclastogenesis owing to a reduced fusion capacity of osteoclastic precursor cells. Finally, in an effort to gain more detailed insights into the functional role of Ac45 in osteoclasts, we attempted to generate osteoclast-specific Ac45 conditional knockout mice using a Cathepsin K-Cre-LoxP system. Surprisingly, however, insertion of the neomycin cassette in the Ac45-Flox(Neo) mice resulted in marked disturbances in CNS development and ensuing embryonic lethality thus precluding functional assessment of Ac45 in osteoclasts and peripheral bone tissues. Based on these unexpected findings we propose that, in addition to its canonical function in V-ATPase-mediated acidification, Ac45 plays versatile roles during osteoclast formation and function.  相似文献   

6.
Vacuolar H(+)-ATPases (V-ATPases) are essential for acidification of intracellular compartments and for proton secretion from the plasma membrane in kidney epithelial cells and osteoclasts. The cellular proteins that regulate V-ATPases remain largely unknown. A screen for proteins that bind the V-ATPase E subunit using the yeast two-hybrid assay identified the cDNA clone coded for aldolase, an enzyme of the glycolytic pathway. The interaction between E subunit and aldolase was confirmed in vitro by precipitation assays using E subunit-glutathione S-transferase chimeric fusion proteins and metabolically labeled aldolase. Aldolase was isolated associated with intact V-ATPase from bovine kidney microsomes and osteoclast-containing mouse marrow cultures in co-immunoprecipitation studies performed using an anti-E subunit monoclonal antibody. The interaction was not affected by incubation with aldolase substrates or products. In immunocytochemical assays, aldolase was found to colocalize with V-ATPase in the renal proximal tubule. In osteoclasts, the aldolase-V-ATPase complex appeared to undergo a subcellular redistribution from perinuclear compartments to the ruffled membranes following activation of resorption. In yeast cells deficient in aldolase, the peripheral V(1) domain of V-ATPase was found to dissociate from the integral membrane V(0) domain, indicating direct coupling of glycolysis to the proton pump. The direct binding interaction between V-ATPase and aldolase may be a new mechanism for the regulation of the V-ATPase and may underlie the proximal tubule acidification defect in hereditary fructose intolerance.  相似文献   

7.
8.
Vacuolar H+-ATPases (V-ATPases) are transported from cytosolic compartments to the ruffled plasma membrane of osteoclasts as they activate to resorb bone. Transport of V-ATPases is essential for bone resorption, and is associated with binding interactions between V-ATPases and microfilaments that are mediated by an actin-binding site in subunit B. This site is contained within 44 amino acids in the amino terminal domain, and requires a sequence motif that resembles an actin-binding motif found in mammalian profilin 1. Small alterations in the profilin-like sequence disrupt the actin-binding activity of subunit B. The interaction between V-ATPases and microfilaments in osteoclasts is regulated in response to changes in phosphatidylinositol-3 kinase activity. During internalization of V-ATPases from the plasma membrane of osteoclasts after a cycle of resorption, V-ATPases bind microfilaments that are in podosomes, dynamic actin-based structures, also present in metastatic cancer cells. Studies are ongoing to establish the physiological role of the microfilament-binding activity of subunit B in osteoclasts and in other cells.  相似文献   

9.
Tobacco smoking is an important risk factor for the development of several cancers, osteoporosis, and inflammatory diseases such as periodontitis. Nicotine is one of the major components of tobacco. In previous study, we showed that nicotine inhibits mineralized nodule formation by osteoblasts, and the culture medium from osteoblasts containing nicotine and lipopolysaccharide increases osteoclast differentiation. However, the direct effect of nicotine on the differentiation and function of osteoclasts is poorly understood. Thus, we examined the direct effects of nicotine on the expression of nicotine receptors and bone resorption-related enzymes, mineral resorption, actin organization, and bone resorption using RAW264.7 cells and bone marrow cells as osteoclast precursors. Cells were cultured with 10−5, 10−4, or 10−3 M nicotine and/or 50 µM α-bungarotoxin (btx), an 7 nicotine receptor antagonist, in differentiation medium containing the soluble RANKL for up 7 days. 1–5, 7, 9, and 10 nicotine receptors were expressed on RAW264.7 cells. The expression of 7 nicotine receptor was increased by the addition of nicotine. Nicotine suppressed the number of tartrate-resistant acid phosphatase positive multinuclear osteoclasts with large nuclei(≥10 nuclei), and decreased the planar area of each cell. Nicotine decreased expression of cathepsin K, MMP-9, and V-ATPase d2. Btx inhibited nicotine effects. Nicotine increased CA II expression although decreased the expression of V-ATPase d2 and the distribution of F-actin. Nicotine suppressed the planar area of resorption pit by osteoclasts, but did not affect mineral resorption. These results suggest that nicotine increased the number of osteoclasts with small nuclei, but suppressed the number of osteoclasts with large nuclei. Moreover, nicotine reduced the planar area of resorption pit by suppressing the number of osteoclasts with large nuclei, V-ATPase d2, cathepsin K and MMP-9 expression and actin organization.  相似文献   

10.
Ryu J  Kim H  Lee SK  Chang EJ  Kim HJ  Kim HH 《Proteomics》2005,5(16):4152-4160
Osteoclasts are cells specialized for bone resorption. For osteoclast activation, tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role. To find new molecules that bind TRAF6 and have a function in osteoclast activation, we employed a proteomic approach. TRAF6-binding proteins were purified from osteoclast cell lysates by affinity chromatography and their identity was disclosed by MS. The identified proteins included several heat shock proteins, actin and actin-binding proteins, and vacuolar ATPase (V-ATPase). V-ATPase, documented for a great increase in expression during osteoclast differentiation, is an important enzyme for osteoclast function; it transports proton to resorption lacunae for hydroxyapatite dissolution. The binding of V-ATPase with TRAF6 was confirmed both in vitro by GST pull-down assays and in osteoclasts by co-immunoprecipitation and confocal microscopy experiments. In addition, the V-ATPase activity associated with TRAF6 increased in osteoclasts stimulated with receptor activator of nuclear factor kappaB ligand (RANKL). Furthermore, a dominant-negative form of TRAF6 abrogated the RANKL stimulation of V-ATPase activity. Our study identified V-ATPase as a TRAF6-binding protein using a proteomics strategy and proved a direct link between these two important molecules for osteoclast function.  相似文献   

11.
The vacuolar (H+)-ATPases (or V-ATPases) function to acidify intracellular compartments in eukaryotic cells, playing an important role in such processes as receptor-mediated endocytosis, intracellular membrane traffic, protein degradation and coupled transport. V-ATPases in the plasma membrane of specialized cells also function in renal acidification, bone resorption and cytosolic pH maintenance. The V-ATPases are composed of two domains. The V1 domain is a 570-kDa peripheral complex composed of 8 subunits (subunits A–H) of molecular weight 70–13 kDa which is responsible for ATP hydrolysis. The V0 domain is a 260-kDa integral complex composed of 5 subunits (subunits a–d) which is responsible for proton translocation. The V-ATPases are structurally related to the F-ATPases which function in ATP synthesis. Biochemical and mutational studies have begun to reveal the function of individual subunits and residues in V-ATPase activity. A central question in this field is the mechanism of regulation of vacuolar acidification in vivo. Evidence has been obtained suggesting a number of possible mechanisms of regulating V-ATPase activity, including reversible dissociation of V1 and V0 domains, disulfide bond formation at the catalytic site and differential targeting of V-ATPases. Control of anion conductance may also function to regulate vacuolar pH. Because of the diversity of functions of V-ATPases, cells most likely employ multiple mechanisms for controlling their activity.  相似文献   

12.
Increasing evidence suggests the existence of osteoclast diversity. Here we investigated whether precursors obtained from marrow of the mandibula or long bone could give rise to phenotypically different osteoclasts. Formation of multinucleated cells was assessed after culturing mouse marrow cells of the two bone types with macrophage colony stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL) for up to 10 days on plastic, bone or dentin. Two times more osteoclasts formed from long bone marrow cells on bone compared to dentin, whereas higher numbers of jaw osteoclasts formed on dentin. Resorption of dentin or bone was similar for osteoclasts formed from both types of precursors. In contrast to jaw marrow derived osteoclasts, long bone osteoclasts predominantly had a multi-compartmented shape, with at least two nuclei containing compartments per cell. Osteoclasts on bone contained two times more actin rings than osteoclasts on dentin, regardless of their precursor origin. However, the area per osteoclast covered by actin rings was similar (20%) for both substrates. This study suggests that marrow cells obtained from different bones give rise to different osteoclasts. The substrate on which the osteoclasts are generated plays a role in steering their formation rather than their resorption.  相似文献   

13.
Primary proton transport by V-ATPases is regulated via the reversible dissociation of the V(1)V(0) holoenzyme into its V(1) and V(0) subcomplexes. Laser scanning microscopy of different tissues from the tobacco hornworm revealed co-localization of the holoenzyme and F-actin close to the apical membranes of the epithelial cells. In midgut goblet cells, no co-localization was observed under conditions where the V(1) complex detaches from the apical membrane. Binding studies, however, demonstrated that both the V(1) complex and the holoenzyme interact with F-actin, the latter with an apparently higher affinity. To identify F-actin binding subunits, we performed overlay blots that revealed two V(1) subunits as binding partners, namely subunit B, resembling the situation in the osteoclast V-ATPase (Holliday, L. S., Lu, M., Lee, B. S., Nelson, R. D., Solivan, S., Zhang, L., and Gluck, S. L. (2000) J. Biol. Chem. 275, 32331-32337), but, in addition, subunit C, which gets released during reversible dissociation of the holoenzyme. Overlay blots and co-pelleting assays showed that the recombinant subunit C also binds to F-actin. When the V(1) complex was reconstituted with recombinant subunit C, enhanced binding to F-actin was observed. Thus, subunit C may function as an anchor protein regulating the linkage between V-ATPase and the actin-based cytoskeleton.  相似文献   

14.
The vacuolar ATPase (V-ATPase) is a multisubunit enzyme that couples ATP hydrolysis to proton pumping across membranes. Recently, there is increasing evidence that V-ATPase may contribute to the pathogenesis of bone resorption disorders due to it is predominantly expressed in osteoclasts also function in bone resorption making it a good candidate in a therapeutic target for osteoporosis. Osteoclasts are capable of generating an acidic microenvironment necessary for bone resorption by utilizing V-ATPases to pump protons into the resorption lacuna. In addition, it has been shown that therapeutic interventions have been proposed that specifically target inhibition of the osteoclast proton pump. Modulation of osteoclastic V-ATPase activity has been considered to be a suitable therapy for the treatment of osteoporosis. All theses findings suggest that V-ATPase have important biological effects in bone resorption that might be a promising therapeutic target for osteoporosis. In this review, we will briefly discuss the biological features of osteoporosis and summarize recent advances on the role of V-ATPase in the pathogenesis and treatment of osteoporosis.  相似文献   

15.
Recent identification in bone of transporters, receptors, and components of synaptic signaling suggests a role for glutamate in the skeleton. We investigated effects of glutamate and its antagonist MK801 on osteoclasts in vitro. Glutamate applied to patch clamped osteoclasts induced significant increases in whole-cell membrane currents (P<0.01) in the presence of the coagonist glycine. Agonist-elicited currents were significantly decreased after application of MK801 (100 microM, P<0.01), but MK801 had no effect on actin ring formation necessary for osteoclast polarization, attachment, and resorption. In cocultures of bone marrow cells and osteoblasts in which osteoclasts develop, MK801 inhibited osteoclast differentiation and reduced resorption of pits in dentine (3 to 100 microM; P<0.001). MK801 added early in the culture (for as little as 2-4 days) was as effective as addition for the entire culture period. Addition of MK801 for any time after day 7 of culture was ineffective in reducing osteoclast activity. Using rat and rabbit mature osteoclasts cultured on dentine or explants of mouse calvariae prelabeled with (45)Ca, we could not detect significant effects of MK801 on osteoclastic resorption. These data show clearly that glutamate receptor function is critical during osteoclastogenesis and suggest that glutamate is less important in regulating mature osteoclast activity.-Peet, N. M., Grabowski, P. S., Laketic-Ljubojevic, I., Skerry, T. M. The glutamate receptor antagonist MK801 modulates bone resorption in vitro by a mechanism predominantly involving osteoclast differentiation.  相似文献   

16.
Function, structure and regulation of the vacuolar (H+)-ATPases   总被引:2,自引:0,他引:2  
The vacuolar ATPases (or V-ATPases) are ATP-driven proton pumps that function to both acidify intracellular compartments and to transport protons across the plasma membrane. Intracellular V-ATPases function in such normal cellular processes as receptor-mediated endocytosis, intracellular membrane traffic, prohormone processing, protein degradation and neurotransmitter uptake, as well as in disease processes, including infection by influenza and other viruses and killing of cells by anthrax and diphtheria toxin. Plasma membrane V-ATPases are important in such physiological processes as urinary acidification, bone resorption and sperm maturation as well as in human diseases, including osteopetrosis, renal tubular acidosis and tumor metastasis. V-ATPases are large multi-subunit complexes composed of a peripheral domain (V1) responsible for hydrolysis of ATP and an integral domain (V0) that carries out proton transport. Proton transport is coupled to ATP hydrolysis by a rotary mechanism. V-ATPase activity is regulated in vivo using a number of mechanisms, including reversible dissociation of the V1 and V0 domains, changes in coupling efficiency of proton transport and ATP hydrolysis and changes in pump density through reversible fusion of V-ATPase containing vesicles. V-ATPases are emerging as potential drug targets in treating a number of human diseases including osteoporosis and cancer.  相似文献   

17.
Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man   总被引:45,自引:0,他引:45  
Chloride channels play important roles in the plasma membrane and in intracellular organelles. Mice deficient for the ubiquitously expressed ClC-7 Cl(-) channel show severe osteopetrosis and retinal degeneration. Although osteoclasts are present in normal numbers, they fail to resorb bone because they cannot acidify the extracellular resorption lacuna. ClC-7 resides in late endosomal and lysosomal compartments. In osteoclasts, it is highly expressed in the ruffled membrane, formed by the fusion of H(+)-ATPase-containing vesicles, that secretes protons into the lacuna. We also identified CLCN7 mutations in a patient with human infantile malignant osteopetrosis. We conclude that ClC-7 provides the chloride conductance required for an efficient proton pumping by the H(+)-ATPase of the osteoclast ruffled membrane.  相似文献   

18.
Bone remodeling is a process of continuous resorption and formation/mineralization carried out by osteoclasts and osteoblasts, which, along with osteocytes, comprise the bone multicellular unit (BMU). A key component of the BMU is the bone remodeling compartment (BRC), isolated from the marrow by a canopy of osteoblast-like lining cells. Although much progress has been made regarding the cytokine-dependent and hormonal regulation of bone remodeling, less attention has been placed on the role of extracellular pH (pH(e)). Osteoclastic bone resorption occurs at acidic pH(e). Furthermore, osteoclasts can be regarded as epithelial-like cells, due to their polarized structure and ability to form a seal against bone, isolating the lacunar space. The major ecto-phosphatases of osteoclasts and osteoblasts, acid and alkaline phosphatases, both have ATPase activity with pH optima several units different from neutrality. Furthermore, osteoclasts and osteoblasts express plasma membrane purinergic P2 receptors that, upon activation by ATP, accelerate bone osteoclast resorption and impair osteoblast mineralization. We hypothesize that these ecto-phosphatases help regulate [ATP](e) and localized pH(e) at the sites of bone resorption and mineralization by pH-dependent ATP hydrolysis coupled with P2Y-dependent regulation of osteoclast and osteoblast function. Furthermore, osteoclast cellular HCO3(-), formed as a product of lacunar V-ATPase H(+) secretion, is secreted into the BRC, which could elevate BRC pH(e), in turn affecting osteoblast function. We will review the existing data addressing regulation of BRC pH(e), present a hypothesis regarding its regulation, and discuss the hypothesis in the context of the function of proteins that regulate pH(e).  相似文献   

19.
V-ATPase plays important roles in controlling the extra- and intra-cellular pH in eukaryotic cell, which is most crucial for cellular processes. V-ATPases are composed of a peripheral V(1) domain responsible for ATP hydrolysis and integral V(0) domain responsible for proton translocation. Osteoclasts are multinucleated cells responsible for bone resorption and relate to many common lytic bone disorders such as osteoporosis, bone aseptic loosening, and tumor-induced bone loss. This review summarizes the structure and function of V-ATPase and its subunit, the role of V-ATPase subunits in osteoclast function, V-ATPase inhibitors for osteoclast function, and highlights the importance of V-ATPase as a potential prime target for anti-resorptive agents.  相似文献   

20.
We employed a novel technique to inspect the substrate-apposed surface of activated osteoclasts, the cells that resorb bone, in the scanning electron microscope. The surface revealed unexpected complexity. At the periphery of the cells were circles and crescents of individual or confluent nodules. These corresponded to the podosomes and actin rings that form a ‘sealing zone’, encircling the resorptive hemivacuole into which protons and enzymes are secreted. Inside these rings and crescents the osteoclast surface was covered with strips and patches of membrane folds, which were flattened against the substrate surface and surrounded by fold-free membrane in which many orifices could be seen. Corresponding regions of folded and fold-free membrane were found by transmission electron microscopy in osteoclasts incubated on bone. We correlated these patterns with the distribution of several proteins crucial to resorption. The strips and patches of membrane folds corresponded in distribution to vacuolar H+-ATPase, and frequently co-localized with F-actin. Cathepsin K localized to F-actin-free foci towards the center of cells with circular actin rings, and at the retreating pole of cells with actin crescents. The chloride/proton antiporter ClC-7 formed a sharply-defined band immediately inside the actin ring, peripheral to vacuolar H+-ATPase. The sealing zone of osteoclasts is permeable to molecules with molecular mass up to 10,000. Therefore, ClC-7 might be distributed at the periphery of the resorptive hemivacuole in order to prevent protons from escaping laterally from the hemivacuole into the sealing zone, where they would dissolve the bone mineral. Since the activation of resorption is attributable to recognition of the αVβ3 ligands bound to bone mineral, such leakage would, by dissolving bone mineral, release the ligands and so terminate resorption. Therefore, ClC-7 might serve not only to provide the counter-ions that enable proton pumping, but also to facilitate resorption by acting as a ‘functional sealing zone’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号