首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signaling on the endocytic pathway   总被引:4,自引:0,他引:4  
Ligand binding to receptor tyrosine kinases and G-protein-coupled receptors initiates signal transduction events and induces receptor endocytosis via clathrin-coated pits and vesicles. While receptor-mediated endocytosis has been traditionally considered an effective mechanism to attenuate ligand-activated responses, more recent studies demonstrate that signaling continues on the endocytic pathway. In fact, certain signaling events, such as the activation of the extracellular signal-regulated kinases, appear to require endocytosis. Protein components of signal transduction cascades can assemble at clathrin coated pits and remain associated with endocytic vesicles following their dynamin-dependent release from the plasma membrane. Thus, endocytic vesicles can function as a signaling compartment distinct from the plasma membrane. These observations demonstrate that endocytosis plays an important role in the activation and propagation of signaling pathways.  相似文献   

2.
Endocytosis is a fine-tuned mechanism of cellular communication through which cells internalize molecules on the plasma membrane, such as receptors and their bound ligands. Through receptor clustering in endocytic pits, recruitment of active receptors to different endocytic routes and their trafficking towards different fates, endocytosis modulates cell signaling and ultimately leads to a variety of biological responses. Many studies have focused their attention on specialized endocytic mechanisms depending on the nature of the internalizing cargo and cellular context, distinct sets of coat proteins, endocytic adaptors and membrane lipids. Here, we review recent advances in our understanding of the principles underlying endocytic vesicle formation, integrating both biochemical and biophysical factors, with a particular focus on intrinsically disordered regions (IDRs) creating weakly interconnected protein networks assembled through liquid–liquid phase separation (LLPS) and driving membrane bending especially in clathrin-mediated endocytosis (CME). We finally discuss how these properties impinge on receptor fate and signaling.  相似文献   

3.
In general, receptors are involved in pathways of endocytosis, either constitutive or ligand induced. These receptors cluster in clathrin-coated pits, enter the cell via clathrin-coated vesicles, pass through an acidified endosome in which the receptors and ligands are sorted, and then either recycle to the cell surface, become stored intracellularly, or are degraded in lysosomes. The internalization pathways serve a variety of functions, such as nutrient uptake, removal of activated proteins, clearance of macromolecules, opportunistic entry of certain viruses and toxins, dissociation and degradation of ligand, and receptor-level regulation. Many receptors follow more than one intracellular pathway, depending on the cell type, receptor concentration, type of ligand, ligand valency, and ligand concentration. Although endocytosis is common to all nucleated eukaryotic cells, the factors that regulate these receptor-mediated endocytic pathways are not fully understood. Defective receptors that are not capable of undergoing normal endocytosis can lead to certain disease states, as in the case of familial hypercholesteremia (FH). This review has three objectives: (i) to describe the different routes that receptors and ligands follow after internaliation; (ii) to describe the potential mechanisms which regulate the initiation and subsequent sorting of receptors and ligands so they reach their final destination; and (iii) to describe the potential functions of receptor-mediated endocytosis.  相似文献   

4.
The low density lipoprotein receptor (LDLR) family is composed of a class of cell surface endocytic receptors that recognize extracellular ligands and internalize them for degradation by lysosomes. In addition to LDLR, mammalian members of this family include the LDLR-related protein (LRP), the very low density lipoprotein receptor (VLDLR), the apolipoprotein E receptor-2 (apoER2), and megalin. Herein we have analyzed the endocytic functions of the cytoplasmic tails of these receptors using LRP minireceptors, its chimeric receptor constructs, and full-length VLDLR and apoER2 stably expressed in LRP-null Chinese hamster ovary cells. We find that the initial endocytosis rates mediated by different cytoplasmic tails are significantly different, with half-times of ligand internalization ranging from less than 30 s to more than 8 min. The tail of LRP mediates the highest rate of endocytosis, whereas those of the VLDLR and apoER2 exhibit least endocytosis function. Compared with the tail of LRP, the tails of the LDLR and megalin display significantly lower levels of endocytosis rates. Ligand degradation analyses strongly support differential endocytosis rates initiated by these receptors. Interestingly apoER2, which has recently been shown to mediate intracellular signal transduction, exhibited the lowest level of ligand degradation efficiency. These results thus suggest that the endocytic functions of members of the LDLR family are distinct and that certain receptors in this family may play their main roles in areas other than receptor-mediated endocytosis.  相似文献   

5.
The human asialoglycoprotein receptor (ASGPR), also called hepatic lectin, is an integral membrane protein and is responsible for the clearance of desialylated, galactose-terminal glycoproteins from the circulation by receptor-mediated endocytosis. It can be subdivided into four functional domains: the cytosolic domain, the transmembrane domain, the stalk and the carbohydrate recognition domain (CRD). The galactose-binding domains belong to the superfamily of C-type (calcium-dependent) lectins, in particular to the long-form subfamily with three conserved intramolecular disulphide bonds. It is able to bind terminal non-reducing galactose residues and N-acetyl-galactosamine residues of desialated tri or tetra-antennary N-linked glycans. The ASGPR is a potential liver-specific receptor for hepatitis B virus and Marburg virus and has been used to target exogenous molecules specifically to hepatocytes for diagnostic and therapeutic purposes.Here, we present the X-ray crystal structure of the carbohydrate recognition domain of the major subunit H1 at 2.3 A resolution. While the overall fold of this and other known C-type lectin structures are well conserved, the positions of the bound calcium ions are not, indicating that the fold is stabilised by alternative mechanisms in different branches of the C-type lectin family. It is the first CRD structure where three calcium ions form an intergral part of the structure. In addition, the structure provides direct confirmation for the conversion of the ligand-binding site of the mannose-binding protein to an asialoglycoprotein receptor-like specificity suggested by Drickamer and colleagues. In agreement with the prediction that the coiled-coil domain of the ASGPR is separated from the CRD and its N-terminal disulphide bridge by several residues, these residues are indeed not alpha-helical, while in tetranectin they form an alpha-helical coiled-coil.  相似文献   

6.
A critical event determining the functional consequences of G protein-coupled receptor (GPCR) endocytosis is the molecular sorting of internalized receptors between divergent recycling and degradative membrane pathways. The D1 dopamine receptor recycles rapidly and efficiently to the plasma membrane after agonist-induced endocytosis and is remarkably resistant to proteolytic down-regulation. Whereas the mechanism mediating agonist-induced endocytosis of D1 receptors has been investigated in some detail, little is known about how receptors are sorted after endocytosis. We have identified a sequence present in the carboxyl-terminal cytoplasmic domain of the human D1 dopamine receptor that is specifically required for the efficient recycling of endocytosed receptors back to the plasma membrane. This sequence is distinct from previously identified membrane trafficking signals and is located in a proximal portion of the carboxyl-terminal cytoplasmic domain, in contrast to previously identified GPCR recycling signals present at the distal tip. Nevertheless, fusion of this sequence to the carboxyl terminus of a chimeric mutant delta opioid neuropeptide receptor is sufficient to re-route internalized receptors from lysosomal to recycling membrane pathways, defining this sequence as a bona fide endocytic recycling signal that can function in both proximal and distal locations. These results identify a novel sorting signal controlling the endocytic trafficking itinerary of a physiologically important dopamine receptor, provide the first example of such a sorting signal functioning in a proximal portion of the carboxyl-terminal cytoplasmic domain, and suggest the existence of a diverse array of sorting signals in the GPCR superfamily that mediate subtype-specific regulation of receptors via endocytic membrane trafficking.  相似文献   

7.
Receptor-mediated endocytosis of specific ligands is mediated through clustering of receptor-ligand complexes in coated pits on the cell surface, followed by internalization of the complex into endocytic vesicles. We show that internalization of asialoglycoprotein by HepG2 hepatoma cells is accompanied by a rapid (t1/2 = 0.5-1 min) depletion of surface asialoglycoprotein receptors. This is followed by a rapid (t1/2 = 2-4 min) reappearance of surface receptors; most of these originate from endocytosed cell-surface receptors. The loss and reappearance of asialoglycoprotein receptors is specific, and depends on prebinding of ligand to its receptor. HepG2 cells also contain abundant receptors for both insulin and transferrin. Endocytosis of asialoglycoprotein and its receptor has no effect on the number of surface binding sites for transferrin or insulin. We conclude that binding of asialoglycoprotein to its surface receptor triggers a rapid and specific endocytosis of the receptor-ligand complex, probably due to a clustering in clathrin-coated pits or vesicles.  相似文献   

8.
Asialoglycoprotein receptors on hepatocytes lose endocytic and ligand binding activity when hepatocytes are exposed to iron ions. Here, we report the effects of zinc and copper ions on the endocytic and ligand binding activity of asialoglycoprotein receptors on isolated rat hepatocytes. Treatment of cells at 37 degrees C for 2 h with ZnCl2 (0-220 microM) or CuCl2 (0-225 microM) reversibly blocked sustained endocytosis of 125I-asialoorosomucoid by up to 93% (t1/2 = 62 min) and 99% (t1/2 = 54 min), respectively. Cells remained viable during such treatments. Zinc- and copper-treated cells lost approximately 50% of their surface asialoglycoprotein receptor ligand binding activity; zinc-treated cells accumulated inactive asialoglycoprotein receptors intracellularly, whereas copper-treated cells accumulated inactive receptors on their surfaces. Cells treated at 4 degrees C with metal did not lose surface asialoglycoprotein receptor activity. Exposure of cells to copper ions, but not to zinc ions, blocked internalization of prebound 125I-asialoorosomucoid, but degradation of internalized ligand and pinocytosis of the fluid-phase marker Lucifer Yellow were not blocked by metal treatment. Zinc ions reduced diferric transferrin binding and endocytosis on hepatocytes by approximately 33%; copper ions had no inhibitory effects. These findings are the first demonstration of a specific inhibition of receptor-mediated endocytosis by non-iron transition metals.  相似文献   

9.
The delta-opioid receptor (DOR) can undergo proteolytic down-regulation by endocytosis of receptors followed by sorting of internalized receptors to lysosomes. Although phosphorylation of the receptor is thought to play an important role in controlling receptor down-regulation, previous studies disagree on whether phosphorylation is actually required for the agonist-induced endocytosis of opioid receptors. Furthermore, no previous studies have determined whether phosphorylation is required for subsequent sorting of internalized receptors to lysosomes. We have addressed these questions by examining the endocytic trafficking of a series of mutant versions of DOR expressed in stably transfected HEK 293 cells. Our results confirm that phosphorylation is not required for agonist-induced endocytosis of truncated mutant receptors that lack the distal carboxyl-terminal cytoplasmic domain containing sites of regulatory phosphorylation. However, phosphorylation is required for endocytosis of full-length receptors. Mutation of all serine/threonine residues located in the distal carboxyl-terminal tail domain of the full-length receptor to alanine creates functional mutant receptors that exhibit no detectable agonist-induced endocytosis. Substitution of these residues with aspartate restores the ability of mutant receptors to undergo agonist-induced endocytosis. Studies using green fluorescent protein-tagged versions of arrestin-3 suggest that the distal tail domain, when not phosphorylated, inhibits receptor-mediated recruitment of beta-arrestins to the plasma membrane. Biochemical and radioligand binding studies indicate that, after endocytosis occurs, phosphorylation-defective mutant receptors traffic to lysosomes with similar kinetics as wild type receptors. We conclude that phosphorylation controls endocytic trafficking of opioid receptors primarily by regulating a "brake" mechanism that prevents endocytosis of full-length receptors in the absence of phosphorylation. After endocytosis occurs, subsequent steps of membrane trafficking mediating sorting and transport to lysosomes do not require receptor phosphorylation.  相似文献   

10.
The structure of the gene encoding a chicken liver receptor, the chicken hepatic lectin, which mediates endocytosis of glycoproteins has been established. The coding sequence is divided into six exons separated by five introns. The first three exons correspond to separate functional domains of the receptor polypeptide (cytoplasmic tail, transmembrane sequence, and extracellular neck region), while the final three exons encode the Ca(2+)-dependent carbohydrate-recognition domain. These results, as well as computer-assisted multiple sequence comparisons, establish this receptor as the evolutionary homolog of the mammalian asialoglycoprotein receptors. It is interesting that the chicken receptor falls into a subfamily of proteins along with the mammalian asialoglycoprotein receptors, since the saccharide-binding specificity of the chicken receptor resembles more closely that of a different set of calcium-dependent animal lectins, which includes the mannose-binding proteins. The portions of the genes encoding the carbohydrate-recognition domains of these proteins lack introns. The results suggest that divergence of intron-containing and intron-lacking carbohydrate-recognition domains preceded shuffling events in which other functional domains were associated with the carbohydrate-recognition domains. This was followed by further divergence, generating a variety of saccharide-binding specificities.  相似文献   

11.
Dahms NM  Olson LJ  Kim JJ 《Glycobiology》2008,18(9):664-678
The two members of the P-type lectin family, the 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and the 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR), are ubiquitously expressed throughout the animal kingdom and are distinguished from all other lectins by their ability to recognize phosphorylated mannose residues. The best-characterized function of the MPRs is their ability to direct the delivery of approximately 60 different newly synthesized soluble lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) on their N-linked oligosaccharides to the lysosome. In addition to its intracellular role in lysosome biogenesis, the CI-MPR, but not the CD-MPR, participates in a number of other biological processes by interacting with various molecules at the cell surface. The list of extracellular ligands recognized by this multifunctional receptor has grown to include a diverse spectrum of Man-6-P-containing proteins as well as several non-Man-6-P-containing ligands. Recent structural studies have given us a clearer view of how these two receptors use related, but yet distinct, approaches in the recognition of phosphomannosyl residues.  相似文献   

12.
For the first time a sugar receptor (lectin) has been localized by electron microscopy in an invertebrate. The peritrophic membrane of the blowfly larva, Calliphora erythrocephala, is shown here to express lectins with high specificity for mannose. The lectin is restricted to the lumen side of the peritrophic membrane. The surface of the midgut epithelium is devoid of mannose-specific lectins. It is suggested that the midgut epithelium has lost these lectins during the course of evolution in favour of the peritrophic membrane which is secreted by specialized cells only at the beginning of the midgut.Peritrophic membranes and the midgut epithelium lack lectins specific for galactose. The lumen side of the peritrophic membrane of the larvae has mannose and/or glucose residues, and it is densely packed with two species of bacteria, Proteus vulgaris and P. morganii. These also have mannose-specific lectins as well as mannose residues on their pili. The existence of mannose-specific receptors and mannose residues on both, peritrophic membranes and bacteria, leads to the assumption of mutual adherence between the two surfaces.  相似文献   

13.
The decade of the 70’s was remarkable for the insights that rapidly accumulated to provide us with an understanding of one of the fundamental processes of animal cell metabolism, namely, how mammalian cells ingest a host of extracellular substances to satisfy their various metabolic needs. It has long been appreciated that the surfaces of mammalian cells are in a continual state of flux. Surface membranes often fold inward and pinch of in a vesicular form trapping some of the contents of the extracellular material which are thus transported into the cell. This process is called endocytosis (reviewed in Silversteinet al., 1977). When extracellular fluids are taken up in this manner, the process is called fluid-phase endocytosis or pinocytosis. When solids are ingested, the process is called phagocytosis. Although quantitatively important over the long run, these modes of uptake are slow, non-specific and dependent on the concentration of the substance in the extracellular medium. In recent years it has been recognized that animal cells have developed a specialized form of this vesicular transport system to selectively retrieve and assimilate macromolecules from the extracellular milieu with high efficiency. This process is called receptor-mediated endocytosis. In this review an attempt is made to collate and correlate the evidence establishing receptor-mediated endocytosis as a dynamic process that routes cell surface receptors and ligands through multiple intracellular compartments to their ultimate destination.  相似文献   

14.
1. Pretreatment of cultured human skin fibroblasts with convanavalin A and wheat germ agglutinin inhibited endocytosis of alpha-N-acetylglucosaminidase and increased extracellular accumulation of beta-N-acetylglucosaminidase. 2. These effects were dose-dependent, reversible and could be prevented by haptenic carbohydrates, such as methyl alpha-D-mannoside or N-acetylglucosamine. 3. Pretreatment of fibroblasts with di- and monovalent succinylated concanavalin A inhibited alpha-N-acetylglucosaminidase endocytosis, but had no effect on extracellular beta-N-acetylglucosaminidase accumulation. 4. Concanavalin A-alpha-N-acetylglucosaminidase complexes become internalized via the recognition of the lectin. Complex formation prevents recognition of the phosphorylated carbohydrate on lysosomal enzymes that interacts with cell surface receptors specific for lysosomal enzymes. The inhibitory effect of all lectins tested on lysosomal enzyme endocytosis suggests that the cell surface receptors for lysosomal enzymes interact either directly with lectins or are closely linked to lectin receptors. The effect of polyvalent lectins on extracellular lysosomal enzyme accumulation is ascribed to their alteration of membrane fluidity.  相似文献   

15.
We have used a variety of methods, including lactoperoxidase-catalyzed iodination, proteolysis, and photolabel incorporation, to determine whether exposure to the acidic pH encountered during receptor-mediated endocytosis causes observable conformational changes in receptor proteins. Two receptor systems were chosen for this study: the asialoglycoprotein receptor and the epidermal growth factor (EGF) receptor. The purified asialoglycoprotein receptor protein was reconstituted into lipid membranes by spontaneous incorporation into phosphatidylcholine liposomes with the binding site facing outward. The EGF receptor was studied in living A-431 cells and was identified by immunoprecipitation using monoclonal antibodies. Lactoperoxidase-catalyzed iodination of both receptor systems, carried out with the external pH equal to 7.4 or 5.6, showed that the extent of receptor protein iodination was less at the lower pH even though lactoperoxidase has an acidic pH optimum. Using the nonspecific hydrophilic photolabeling agent [35S]N-(4-azido-3-nitrophenyl)-2-aminoethylsulfonic acid-taurine, we observed less incorporation into both the asialoglycoprotein receptor in liposomes and the EGF-receptor in A-431 cells when the external pH was reduced to 5.6. Also, using the enzyme papain, we have found that both receptors become resistant to proteolysis when the external pH is lowered from 7.0 to 5.6. These results suggest a conformational change in both of these receptors in which they become less exposed to the external aqueous environment at low pH. Such a conformational change may be responsible for the pH dependence of binding for both of these ligands. Also, this conformational change may serve to protect receptors from enzymatic degradation within endocytic or lysosomal compartments.  相似文献   

16.
Several hormones, serum proteins, toxins, and viruses are brought into the cell by receptor-mediated endocytosis. Initially, many of these molecules and particles are internalized into a common endocytic compartment via the clathrin-coated pit pathway. Subsequently, the ligands and receptors are routed to several destinations, including lysosomes, the cytosol, or the plasma membrane. We have examined the mechanism by which sorting of internalized molecules occurs. A key step in the process is the rapid acidification of endocytic vesicles to a pH of 5.0-5.5 This acidification allows dissociation of several ligands from their receptors, the release of iron from transferrin, and the penetration of diphtheria toxin and some viral nucleocapsids into the cytoplasm. Transferrin, a ligand that cycles through the cell with its receptor, has been used as a marker for the recycling receptor pathway. We have found that in Chinese hamster ovary (CHO) cells transferrin is rapidly segregated from other ligands and is routed to a complex of small vesicles and/or tubules near the Golgi apparatus. The pH of the transferrin-containing compartment is approximately 6.4, indicating that it is not in continuity with the more acidic endocytic vesicles which contain ligands destined to be degraded in lysosomes.  相似文献   

17.
A Dautry-Varsat 《Biochimie》1986,68(3):375-381
A variety of ligands and macromolecules enter cells by receptor-mediated endocytosis. Ligands bind to their receptors on the cell surface and ligand-receptor complexes are localized in specialized regions of the plasma membrane called coated pits. Coated pits invaginate and give rise to intracellular coated vesicles containing ligand-receptor complexes which are thus internalized. Transferrin, a major serum glycoprotein which transports iron into cells, enters cells by this pathway. It binds to its receptor on the cell surface, transferrin-receptor complexes cluster in coated pits and are internalized in coated vesicles. Coated vesicles then lose their clathrin coat and fuse with endosomes, an organelle with an internal pH of about 5-5.5. Most ligands dissociate from their receptors in endosomes and they finally end up in lysosomes where they are degraded, while their receptors remain bound to membrane structures and recycle to the cell surface. Transferrin has a different fate: in endosomes iron dissociates from transferrin but apotransferrin remains bound to its receptor because of its high affinity for the receptor at acid pH. Apotransferrin thus recycles back to the plasma membrane still bound to its receptor. When the ligand-receptor complex reaches the plasma membrane or a compartment at neutral pH, apotransferrin dissociates from its receptor with a half-life of 18 s because of its low affinity for its receptor at neutral pH. The receptor is then ready for a new cycle of internalization, while apotransferrin enters the circulation, reloads iron in the appropriate organs and is ready for a new cycle of iron transport.  相似文献   

18.
Cholesterol-dependent retention of GPI-anchored proteins in endosomes.   总被引:24,自引:1,他引:23       下载免费PDF全文
S Mayor  S Sabharanjak    F R Maxfield 《The EMBO journal》1998,17(16):4626-4638
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated uptake (e.g. transferrin) and fluid phase endocytosis (e.g. dextrans). This was confirmed by immunogold electron microscopy and the observation that a fluorescent folate derivative bound to the GPI-anchored folate receptor is internalized into the same compartment as co-internalized horseradish peroxidase-transferrin; the folate fluorescence was quenched when cells subsequently were incubated with diaminobenzidine and H2O2. Most of the GPI-anchored proteins are recycled back to the plasma membrane but at a rate that is at least 3-fold slower than C6-NBD-sphingomyelin or recycling receptors. This endocytic retention is regulated by the level of cholesterol in cell membranes; GPI-anchored proteins are recycled back to the cell surface at the same rate as recycling transferrin receptors and C6-NBD-sphingomyelin in cholesterol-depleted cells. Cholesterol-dependent endocytic sorting of GPI-anchored proteins is consistent with the involvement of specialized lipid domains or 'rafts' in endocytic sorting. These results provide an alternative explanation for GPI-requiring functions of some GPI-anchored proteins.  相似文献   

19.
In all transmembrane receptor systems the kinetics of receptor trafficking upon ligand stimulation is maintained in a balance between degradative and recycling pathways in order to keep homeostasis and to strictly control receptor-mediated signaling. Endocytosis is commonly considered as an efficient mechanism of uptake and transport of membrane-associated signaling molecules leading to attenuation of ligand-induced responses. Accumulating evidence, however, shows that signaling from internalized receptors not only continues in endosomal compartments, but that there are also distinct signaling events that require endocytosis. Endocytic organelles form a dynamic network of subcellular compartments, which actively control the timing, amplitude, and specificity of signaling. In this review we provide examples in which signal transduction either requires an active endocytic machinery, or directly originates from various types of endosomes. Based on recent discoveries, we emphasize the close interdependence between signaling and endocytosis, and the physiological relevance of endocytic transport in health and disease.  相似文献   

20.
The beta(2)-adrenergic receptor and delta opioid receptor represent distinct G protein-coupled receptors that undergo agonist-induced endocytosis via clathrin-coated pits but differ significantly in their postendocytic sorting between recycling and degradative membrane pathways, respectively. Previous results indicate that a distal portion of the carboxyl-terminal cytoplasmic domain of the beta(2)-adrenergic receptor, which engages in PDZ domain-mediated protein interaction, is required for efficient recycling of receptors after agonist-induced endocytosis. Here we demonstrate that a four-residue sequence (DSLL) comprising the core of this protein interaction domain functions as a transplantable endocytic sorting signal that is sufficient to re-route endocytosed delta opioid receptor into a rapid recycling pathway, to inhibit proteolytic down-regulation of receptors, and to mediate receptor-autonomous sorting of mutant receptors from the wild type allele when co-expressed in the same cells. These observations define a transplantable signal mediating rapid recycling of a heterologous G protein-coupled receptor, and they suggest that rapid recycling of certain membrane proteins does not occur by bulk membrane flow but is instead mediated by a specific endocytic sorting mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号