首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human reduced folate carrier (hRFC) mediates the membrane transport of reduced folates and classical anti-folates into mammalian cells. RFC is characterized by 12 transmembrane domains (TMDs), internally oriented N and C termini, and a large central linker connecting TMDs 1-6 and 7-12. By co-expression and N-hydroxysuccinimide methotrexate (Mtx) radioaffinity labeling of hRFC TMD 1-6 and TMD 7-12 half-molecules, combined with endoproteinase GluC digestion, a substrate binding domain was previously localized to within TMDs 8-12 (Witt, T. L., Stapels, S. E., and Matherly, L. H. (2004) J. Biol. Chem. 279, 46755-46763). In this report, this region was further refined to TMDs 11-12 by digestion with 2-nitro-5-thiocyanatobenzoic acid. A transportcompetent cysteine-less hRFC was used as a template to prepare single cysteine-replacement mutant constructs in which each residue from Glu-394 to Asp-420 of TMD 11 and Tyr-435 to His-457 of TMD 12 was replaced individually by a cysteine. The mutant constructs were transfected into hRFC-null HeLa cells. Most of the 50 single cysteine-substituted constructs were expressed at high levels on Western blots. With the exception of G401C hRFC, all mutants were active for Mtx transport. Treatment with sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) had no effect on hRFC activity for all of the cysteine mutants within TMD 12 and for the majority of the cysteine mutants within TMD 11. However, MTSES inhibited Mtx uptake by the T404C, A407C, T408C, T412C, F416C, I417C, V418C, and S419C mutants by 25-65%. Losses of activity by MTSES treatment for T404C, A407C, T412C, and I417C hRFCs were appreciably reversed in the presence of excess leucovorin, a hRFC substrate. Our results strongly suggest that residues within TMD 11 are likely critical structural and/or functional components of the putative hRFC transmembrane channel for anionic folate and anti-folate substrates.  相似文献   

2.
Scientists are interested in understanding the molecular origin of protein thermostability and thermoactivity for possible biotechnological applications. The enzymes from extremophilic organisms have been of particular interest in the last two decades. β-glycosidase, Tkβgly is a hyperthermophilic enzyme from Thermococcus kodakarensis KOD1. Tkβgly contains two conserved cysteine residues, C88 and C376. The protein tertiary structure obtained through homology modeling suggests that the C88 residue is located on the surface whereas C376 is inside the protein. To study the role of these cysteine residues, we substituted C88 and C376 with serine residues through site-directed mutagenesis. The wild-type and C376S protein existed in dimeric form and C88S in monomeric form, in an SDS-PAGE gel under non-reducing conditions. Optimal temperature experiments revealed that the wild-type was active at 100 °C whereas the C88S mutant exhibited optimal activity at 70 °C. The half-life of the enzyme at 70 °C was drastically reduced from 266 h to less than 1 h. Although C88 was not present in the active site region, the k cat/K m of C88S was reduced by 2-fold. Based on the structural model and biochemical properties, we propose that C88 is crucial in maintaining the thermostability and thermoactivity of the Tkβgly enzyme.  相似文献   

3.
In oxidosqualene cyclases (OSCs), an enzyme which has been extensively studied as a target for hypocholesterolemic or antifungal drugs, a lipophilic channel connects the surface of the protein with the active site cavity. Active site and channel are separated by a narrow constriction operating as a mobile gate for the substrate passage. In Saccharomyces cerevisiae OSC, two aminoacidic residues of the channel/constriction apparatus, Ala525 and Glu526, were previously showed as critical for maintaining the enzyme functionality. In this work sixteen novel mutants, each bearing a substitution at or around the channel constrictions, were tested for their enzymatic activity. Modelling studies showed that the most functionality-lowering substitutions deeply alter the H-bond network involving the channel/constriction apparatus. A rotation of Tyr239 is proposed as part of the mechanism permitting the access of the substrate to the active site. The inhibition of OSC by squalene was used as a tool for understanding whether the residues under study are involved in a pre-catalytic selection and docking of the substrate oxidosqualene.  相似文献   

4.
This report describes the cloning and characterization of rat leukocyte common antigen-related protein (rLAR), a receptor-like protein tyrosine phosphatase (PTPase). The recombinant cytoplasmic PTPase domain was expressed at high levels in bacteria and purified to homogeneity. Kinetic properties of the PTPase were examined along with potential modulators of PTPase activity. Several sulfhydryl-directed reagents were effective inhibitors, and a surprising distinction between iodoacetate and iodoacetamide was observed. The latter compound was an extremely poor inhibitor when compared to iodoacetate, suggesting that iodoacetate may interact selectively with a positive charge at or near the active site of the enzyme. Site-directed mutants were made at 4 highly conserved cysteine residues found at positions 1434, 1522, 1723, and 1813 within the protein. The Cys-1522/Ser mutation resulted in a 99% loss of enzymatic activity of the pure protein. This observation is consistent with greater than 99% of the PTPase activity being found in the first domain of the PTPase and demonstrates the critical importance of this cysteine residue in catalysis. The recombinant C1522S mutant phosphatase could also be phosphorylated in vitro by protein kinase C and p43v-abl tyrosine kinase. When pure recombinant PTPase was mixed with 32P-labeled tyrosine substrate and then rapidly denatured, a 32P-labeled enzyme intermediate could be trapped and visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The catalytically inactive C1522S mutant did not form the phosphoenzyme intermediate.  相似文献   

5.
A powerful chemical modification procedure has been developed to define determinants of DNA recognition by the p50 subunit of NF-kappa B. Differential labelling with [14C] iodoacetate has identified a conserved cysteine residue, Cys62, that was protected from modification by the presence of an oligonucleotide containing the specific recognition site of the protein. To determine the importance of this cysteine residue, each of the conserved cysteines in p50 was changed to serine and the DNA binding properties of the mutant proteins determined. Scatchard analysis indicated that the C62S mutant bound to its DNA recognition site with a 10-fold larger dissociation constant than the wild type protein, while the other two mutants bound with an intermediate affinity. Dissociation rate constant measurements correlated well with the dissociation constants for the wild type, C119S, and C273S p50 proteins, whereas the p50 C62S-DNA complex dissociated anomalously quickly. Competition analyses with oligonucleotide variants of the DNA recognition site and nonspecific E. coli DNA revealed that the C62S p50 mutant had an altered DNA binding site specificity and was impaired in its ability to discriminate between specific and non-specific DNA. Thus the sulphydryl group of Cys62 is an important determinant of DNA recognition by the p50 subunit of NF-kappa B.  相似文献   

6.
The activation of cyclic nucleotide-gated (CNG) channels is the final step in olfactory and visual transduction. Previously we have shown that, in addition to their activation by cyclic nucleotides, nitric oxide (NO)-generating compounds can directly open olfactory CNG channels through a redox reaction that results in the S-nitrosylation of a free SH group on a cysteine residue. To identify the target site(s) of NO, we have now mutated the four candidate intracellular cysteine residues Cys-460, Cys-484, Cys-520, and Cys-552 of the rat olfactory rCNG2 (alpha) channel into serine residues. All mutant channels continue to be activated by cyclic nucleotides, but only one of them, the C460S mutant channel, exhibited a total loss of NO sensitivity. This result was further supported by a similar lack of NO sensitivity that we found for a natural mutant of this precise cysteine residue, the Drosophila melanogaster CNG channel. Cys-460 is located in the C-linker region of the channel known to be important in channel gating. Kinetic analyses suggested that at least two of these Cys-460 residues on different channel subunits were involved in the activation by NO. Our results show that one single cysteine residue is responsible for NO sensitivity but that several channel subunits need to be activated for channel opening by NO.  相似文献   

7.
Renin binding protein (RnBP) is a proteinous renin inhibitor firstly isolated from porcine kidney. Recently, the protein was identified as the enzyme, N-acetyl-D-glucosamine (GlcNAc) 2-epimerase. The GlcNAc 2-epimerase activity of recombinant human RnBP was specifically inhibited by SH-reagents such as N-ethylmaleimide, 5, 5'-dithiobis-2-nitrobenzoate, and iodoacetic acid, indicating that the most probable reactive site is a cysteine residue. To identify the active site residue(s), we have constructed ten cysteine residue mutants (C41S, C66S, C104S, C125S, C210S, C239S, C302S, C380S, C386S, and C390S) for human GlcNAc 2-epimerase and expressed them in Escherichia coli cells. The relative specific activities of C41S, C66S, C125S, C210S, C239S, C302S, C386S, and C390S are nearly the same to that of the wild-type enzyme. The specific activity of the C104S mutant is 26% of that of the wild-type enzyme. The expression of the C380S mutant in E. coli cells was detected on Western blotting, whereas GlcNAc 2-epimerase activity was not detected in the extract. These results indicate that Cys380 is essential for the enzymatic activity of human GlcNAc 2-epimerase.  相似文献   

8.
The cysteine biosynthetic pathway is essential for survival of the protist pathogen Entamoeba histolytica, and functions by producing cysteine for countering oxidative attack during infection in human hosts. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS) are involved in cysteine biosynthesis and are present in three isoforms each. While EhSAT1 and EhSAT2 are feedback inhibited by end product cysteine, EhSAT3 is nearly insensitive to such inhibition. The active site residues of EhSAT1 and of EhSAT3 are identical except for position 208, which is a histidine residue in EhSAT1 and a serine residue in EhSAT3. A combination of comparative modeling, multiple molecular dynamics simulations and free energy calculation studies showed a difference in binding energies of native EhSAT3 and of a S208H-EhSAT3 mutant for cysteine. Mutants have also been generated in vitro, replacing serine with histidine at position 208 in EhSAT3 and replacing histidine 208 with serine in EhSAT1. These mutants showed decreased affinity for substrate serine, as indicated by Km, compared to the native enzymes. Inhibition kinetics in the presence of physiological concentrations of serine show that IC50 of EhSAT1 increases by about 18 folds from 9.59 µM for native to 169.88 µM for H208S-EhSAT1 mutant. Similar measurements with EhSAT3 confirm it to be insensitive to cysteine inhibition while its mutant (S208H-EhSAT3) shows a gain of cysteine inhibition by 36% and the IC50 of 3.5 mM. Histidine 208 appears to be one of the important residues that distinguish the serine substrate from the cysteine inhibitor.  相似文献   

9.
Shuck K  Lamb RA  Pinto LH 《Journal of virology》2000,74(17):7755-7761
The M(2) ion channel of influenza A virus is a small integral membrane protein whose active form is a homotetramer with each polypeptide chain containing 96-amino-acid residues. To identify residues of the transmembrane (TM) domain that line the presumed central ion-conducting pore, a set of mutants was generated in which each residue of the TM domain (residues 25 to 44) was replaced by cysteine. The accessibility of the cysteine mutants to modification by the sulfhydryl-specific reagents methane thiosulfonate ethylammonium (MTSEA) and MTS tetraethylammonium (MTSET) was tested. Extracellular application of MTSEA evoked decreases in the conductances measured from two mutants, M(2)-A30C and M(2)-G34C. The changes observed were not reversible on washout, indicative of a covalent modification. Inhibition by MTSEA, or by the larger reagent MTSET, was not detected for residues closer to the extracellular end of the channel than Ala-30, indicating the pore may be wider near the extracellular opening. To investigate the accessibility of the cysteine mutants to reagents applied intracellularly, oocytes were microinjected directly with reagents during recordings. The conductance of the M(2)-W41C mutant was decreased by intracellular injection of a concentrated MTSET solution. However, intracellular application of MTSET caused no change in the conductance of the M(2)-G34C mutant, a result in contrast to that obtained when the reagent was applied extracellularly. These data suggest that a constriction in the pore exists between residues 34 and 41 which prevents passage of the MTS reagent. These findings are consistent with the proposed role for His-37 as the selectivity filter. Taken together, these data confirm our earlier model that Ala-30, Gly-34, His-37, and Trp-41 line the channel pore (L. H. Pinto, G. R. Dieckmann, C. S. Gandhi, C. G. Papworth, J. Braman, M. A. Shaughnessy, J. D. Lear, R. A. Lamb, and W. F. DeGrado, Proc. Natl. Acad. Sci. USA 94:11301-11306, 1997).  相似文献   

10.
S W Kim  S Joo  G Choi  H S Cho  B H Oh    K Y Choi 《Journal of bacteriology》1997,179(24):7742-7747
In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate.  相似文献   

11.
The multifunctional type II transmembrane glycoprotein, dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5), is expressed by almost all mammalian cells and is identical to the adenosine deaminase binding protein CD26 on lymphocytes. The extracellular part of rat DPPIV can be divided into three domains the middle part of which harbors 10 of the 12 highly conserved cysteine residues. The cysteine-rich domain is responsible for DPPIV-binding to collagen I and to extracellular ADA. The participation of distinct cysteines in disulfide bridges is not yet known. Titration experiments have shown the presence of six free cysteines and three disulfide bridges in native rat DPPIV. To investigate the role of distinct cysteines in the structure-function relationships of rat DPPIV we constructed 12 different cysteine point mutations (C299, C326, C383, C455, C650 mutated to G; C337, C395, C445, C448, C473, C552, C763 mutated to S). Intracellular translocation to the cell surface of stable transfected Chinese hamster ovary cells was examined with antibodies against different epitopes of DPPIV. Surface expression of mutants C326G, C445S and C448S is inhibited totally; mutants C337S, C455G, C473S and C552S show weak expression only. In parallel, the half-life of these mutants is reduced to < 10% compared with wild-type enzyme. We were able to show that the specific peptidase activity of the mutant protein depends on cell-surface expression, dimerization and the existence of a 150-kDa form demonstrable by nondenaturing SDS/PAGE. We conclude that cysteine residues 326, 337, 445, 448, 455, 473 and 552 in rat DPPIV are essential for the correct folding and intracellular trafficking of this glycoprotein, and therefore for its normal biological properties.  相似文献   

12.
Lacombe T  Gabriel JM 《FEBS letters》2002,531(3):469-474
The human isopeptidase T (isoT) is a zinc-binding deubiquitinating enzyme involved in the disassembly of free K48-linked polyubiquitin chains into ubiquitin monomers. The catalytic site of this enzyme is thought to be composed of Cys335, Asp435, His786 and His795. These four residues were site-directed mutagenized. None of the mutants were able to cleave a peptide-linked ubiquitin dimer. Similarly, C335S, D435N and H795N mutants had virtually no activity against a K48-linked isopeptide ubiquitin dimer, which is an isoT-specific substrate that mimics the K48-linked polyubiquitin chains. On the other hand, the H786N mutant retained a partial activity toward the K48-linked substrate, suggesting that the His786 residue might not be part of the catalytic site. None of the mutations significantly affected the capacity of isoT to bind ubiquitin and zinc. Thus, the catalytic site of UBPs could resemble that of other cysteine proteases, which contain one Cys, one Asp and one His.  相似文献   

13.
Each of the four identical subunits of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase contains two cysteine residues, Cys156 and Cys296 (Beach, M. J., and Rodwell, V. W. (1989) J. Bacteriol. 171, 2994-3001). Both are accessible to modification by sulfhydryl reagents under nondenaturing conditions (Jordan-Starck, T. C., and Rodwell, V. W. (1989) J. Biol. Chem. 264, 17913-17918). We used site-directed mutagenesis to construct three mutant enzymes in which alanine replaced either or both cysteine residues. Mutant enzymes C156A, C296A, and C156/296A were over-expressed in Escherichia coli and were found to be fully active. Following their purification, all four forms of the enzyme were compared with respect to their catalytic efficiency, their affinities for the substrates of all four catalyzed reactions, and for their sensitivity to inactivation by sulfhydryl reagents. Replacement of cysteine residues with alanine residues had no major effect on either the specific activity or the affinity of the enzymes for any substrate. The mutants catalyzed all four HMG-CoA reductase reactions as efficiently as did the wild-type enzyme, and coenzyme A stimulated mevaldehyde reduction to the same extent as for wild-type HMG-CoA reductase. Mutant C156A and the cysteine-free mutant C156/296A were not inactivated by 5,5'-dithiobis(2-nitrobenzoate). By contrast, mutant C296A was inactivated to the same extent as was the wild-type enzyme. Following treatment of the mutant enzymes with N-ethylmaleimide, the four reductase reactions catalyzed by mutant C296A were inactivated to the same extent as for the wild-type enzyme. Neither mutant C156A nor C156/296A was affected by this reagent. We conclude that the sulfhydryl reagent-reactive group whose derivatization leads to loss of enzymatic activity is Cys156. However, this residue is not an essential active site residue since neither substrate binding nor catalysis was affected when it was replaced by alanine. Possible roles of cysteine in maintaining structural stability are discussed.  相似文献   

14.
CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this study, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Delta ura8Delta double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr(455) was a substrate for protein kinase A. A Thr(455) to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Delta ura8Delta mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine.  相似文献   

15.
Tammam SD  Rochet JC  Fraser ME 《Biochemistry》2007,46(38):10852-10863
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) transfers CoA from succinyl-CoA to acetoacetate via a thioester intermediate with its active site glutamate residue, Glu 305. When CoA is linked to the enzyme, a cysteine residue can now be rapidly modified by 5,5'-dithiobis(2-nitrobenzoic acid), reflecting a conformational change of SCOT upon formation of the thioester. Since either Cys 28 or Cys 196 could be the target, each was mutated to Ser to distinguish between them. Like wild-type SCOT, the C196S mutant protein was modified rapidly in the presence of acyl-CoA substrates. In contrast, the C28S mutant protein was modified much more slowly under identical conditions, indicating that Cys 28 is the residue exposed on binding CoA. The specific activity of the C28S mutant protein was unexpectedly lower than that of wild-type SCOT. X-ray crystallography revealed that Ser adopts a different conformation than the native Cys. A chloride ion is bound to one of four active sites in the crystal structure of the C28S mutant protein, mimicking substrate, interacting with Lys 329, Asn 51, and Asn 52. On the basis of these results and the studies of the structurally similar CoA transferase from Escherichia coli, YdiF, bound to CoA, the conformational change in SCOT was deduced to be a domain rotation of 17 degrees coupled with movement of two loops: residues 321-329 that bury Cys 28 and interact with succinate or acetoacetate and residues 374-386 that interact with CoA. Modeling this conformational change has led to the proposal of a new mechanism for catalysis by SCOT.  相似文献   

16.
Cysteine 319 in the large subunit of Klebsiella aerogenes urease was identified as an essential catalytic residue based on chemical modification studies (Todd, M.J., and Hausinger, R.P. (1991) J. Biol. Chem. 266, 24327-24331). Through site-directed mutagenesis, this cysteine has been changed independently to alanine, serine, aspartate, and tyrosine. None of these mutations (C319A, C319S, C319D, and C319Y, respectively) affected the size or level of synthesis of the urease subunits as monitored by polyacrylamide gel electrophoresis. The wild type enzyme and each of the mutant proteins was purified and their properties were compared. The C319Y protein possessed no detectable activity, while activity was reduced in C319A, C319S, and C319D to 48, 4.5, and 0.03% of wild type levels under normal assay conditions. All of the active mutants had a small increase in Km when compared to the wild type value. The active mutants displayed a greatly reduced sensitivity to inactivation by iodoacetamide in comparison to the wild type enzyme, confirming our previous assignment of the essential cysteine to this residue based on active site peptide mapping. In contrast to the wild type enzyme, inactivation of the mutant proteins was not affected by the presence of the competitive inhibitor phosphate, suggesting that the remaining slow rate of iodoacetamide inactivation is due to modification away from the active site. The pH dependence of urease activity was substantially altered in the active mutants with C319S and C319D showing a pH optimum near 5.2, and C319A near 6.7, compared to the pH 7.75 optimum of wild type urease. These data are consistent with Cys-319 facilitating catalysis at neutral and basic pH values by participating as a general acid.  相似文献   

17.
Fatty acid amide hydrolase is an integral membrane protein that hydrolyzes a novel and growing class of neuromodulatory fatty acid molecules, including anandamide, 2-arachidonyl glycerol, and oleamide. This activity is inhibited by serine and cysteine reactive agents, suggesting that the active site contains a serine or cysteine residue. Therefore serine and cysteine residues were mutated to alanine and the effects on activity were determined. Mutants were prepared using site-directed mutagenesis methods and expressed in COS-7 cells. Serine mutations S217A and S241A completely abolished enzymatic activity. Mutants S152A and C249A had no effect on activity, while S218A showed a slight decrease in activity. To confirm these results biochemically, the mutant enzymes were reacted with the irreversible inhibitor [(14)C]-diisopropyl fluorophosphate. All of the mutants except S217A and S241A were labeled. We therefore confirm that fatty acid amide hydrolase is a serine hydrolase and propose that both Ser-217 and Ser-241 are essential for enzyme activity.  相似文献   

18.
S K Goda  N P Minton  N P Botting  D Gani 《Biochemistry》1992,31(44):10747-10756
The gene encoding methylaspartase (EC 4.3.1.2) from Clostridium tetranomorphum has been cloned, sequenced, and expressed in Escherichia coli. The open reading frame (ORF) codes for a polypeptide of 413 amino acid residues (M(r) 45,539) of which seven are cysteine residues. The size of the ORF indicates that methylaspartase is a homodimer rather than an (AB)2 tetramer. The deduced primary structure of the protein shows no homology to enzymes that catalyze similar reactions or, indeed, any convincing homology with any other characterized protein. The recombinant protein is identical to the enzyme isolated directly from C. tetanomorphum as determined by several criteria. The enzyme is obtained in a highly active form (approximately 70% of the activity of the natural enzyme) and migrates as a single band (M(r) 49,000) in SDS-polyacrylamide gels. The kinetic parameters for the deamination of (2S,3S)-3-methylaspartic acid by the natural and recombinant proteins are very similar, and the proteins display identical potassium ion-dependent primary deuterium isotope effects for V and V/K when (2S,3S)-3-methylaspartic acid is employed as the substrate. In accord with the activity of the natural enzyme, the recombinant protein is able to catalyze the slow formation of (2S,3R)-3-methylaspartic acid, the L-erythro-epimer of the natural substrate, from mesaconic acid and ammonia. Earlier work in which the cysteine residues in the protein were labeled with N-ethylmaleimide had indicated that there were eight cysteine residues per protein monomer. One cysteine residue was protected by substrate. Here evidence is forwarded to suggest that the residue that was protected by the substrate is not a cysteine residue but the translation product of a serine codon. Kinetic data indicate that this serine residue may be modified in the active enzyme. The implications of these findings on the mechanism of catalysis are discussed within the context of a few emerging mode of action for methylaspartate ammonia-lyase.  相似文献   

19.
The mechanism of CYP3A4-substrate interactions has been investigated using a battery of techniques including cysteine scanning mutagenesis, photoaffinity labeling, and structural modeling. In this study, cysteine scanning mutagenesis was performed at seven sites within CYP3A4 proposed to be involved in substrate interaction and/or cooperativity. Photolabeled CYP3A4 peptide adducts were further characterized by mass spectrometric analysis for each mutant after proteolytic digestion and isolation of fluorescent photolabeled peptides. Among the tryptic peptides of seven tested mutants, three photolabeled peptides of the F108C mutant, ECYSVFTNR (positions 97-105), VLQNFSFKPCK (positions 459-469), and RPCGPVGFMK (positions 106-115) were identified by MALDI-TOF-MS and nano-LC/ESI QTOF MS. The site of modification was further localized to the substituted Cys-108 residue in the mutant peptide adduct RPCGPVGFMK (positions 106-115) by nano-LC/ESI QTOF MS/MS. In summary, we described a potentially useful method to study P450 active sites using a combination of cysteine scanning mutagenesis and photoaffinity labeling.  相似文献   

20.
Guha S  Sahu K  Roy D  Mondal SK  Roy S  Bhattacharyya K 《Biochemistry》2005,44(25):8940-8947
Solvation dynamics at the active site of an enzyme, glutaminyl-tRNA synthetase (GlnRS), was studied using a fluorescence probe, acrylodan, site-specifically attached at cysteine residue C229, near the active site. The picosecond time-dependent fluorescence Stokes shift indicates slow solvation dynamics at the active site of the enzyme, in the absence of any substrate. The solvation dynamics becomes still slower when the substrate (glutamine or tRNA(Gln)) binds to the enzyme. A mutant Y211H-GlnRS was constructed in which the glutamine binding site is disrupted. The mutant Y211H-GlnRS labeled at C229 with acrylodan exhibited significantly different solvent relaxation, thus demonstrating that the slow dynamics is indeed associated with the active site. Implications for catalysis and specificity have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号