共查询到20条相似文献,搜索用时 0 毫秒
1.
Single replication origin of the archaeon Methanosarcina mazei revealed by the Z curve method 总被引:5,自引:0,他引:5
The genomic sequence of the archaeon Methanosarcina mazei has been analyzed by the Z curve method. The Z curve is a three-dimensional curve that uniquely represents the given DNA sequence. The three-dimensional Z curve and its x and y components for the genome of M. mazei show a sharp peak and relatively broad peak, respectively. The cdc6 gene is located exactly at the position of the sharp peak. Based on the known behavior of the Z curves for the archaea whose replication origins have been identified, we hypothesize that the replication origin and termination sites correspond to the positions of the sharp peak and broad peak, respectively. We have located an intergenic region that is between the cdc6 gene (MM1314) and the gene for an adjacent protein (MM1315), which shows strong characteristics of the known replication origins. This region is highly rich in AT and contains multiple copies of consecutive repeats. Our results strongly suggest that the single replication origin of M. mazei is situated at the intergenic region between the cdc6 gene and the gene for the adjacent protein, from 1,564,657 to 1,566,241 bp of the genome. 相似文献
2.
Methanocaldococcus jannaschii has been notorious as an archaeon in which the replication origins are difficult to identify. Although extensive efforts have been exerted on this issue, the locations of replication origins still remain elusive 7 years after the publication of its complete genome sequence in 1996. Ambiguous results were obtained in identifying the replication origins of M. jannaschii based on all theoretical and experimental approaches. In the genome of M. jannaschii, we found that an ORF (MJ0774), annotated as a hypothetical protein, is a homologue of the Cdc6 protein. The position of the gene is at a global minimum of the x component of the Z curve, i.e., RY disparity curve, which has been used to identify replication origins in other Archaea. In addition, an intergenic region (694,540–695,226 bp) that is between the cdc6 gene and an adjacent ORF shows almost all the characteristics of known replication origins, i.e., it is highly rich in AT composition (80%) and contains multiple copies of repeat elements and AT stretches. Therefore, these lines of evidence strongly suggest that the identified region is a replication origin, which is designated as oriC1. The analysis of the y component of the Z curve, i.e., MK disparity curve, suggests the presence of another replication origin corresponding to one of the peaks in the MK disparity curve at around 1,388 kb of the genome.Communicated by G. Antranikian 相似文献
3.
Zhang K Lott ST Jin L Killary AM 《Biochemical and biophysical research communications》2007,360(3):531-538
Identification of tumor suppressor genes based on physical mapping exercises has proven to be a challenging endeavor, due to the difficulty of narrowing regions of loss of heterozygosity (LOH), infrequency of homozygous deletions, and the labor-intensive characterization process for screening candidates in a given genomic interval. We previously defined a chromosome 3p12 tumor suppressor locus NRC-1 (Nonpapillary Renal Carcinoma-1) by functional complementation experiments in which renal cell carcinoma microcell hybrids containing introduced normal chromosome 3p fragments were either suppressed or unsuppressed for tumorigenicity following injection into athymic nude mice. We now present the fine-scale physical mapping of NRC-1 using a QPCR-based approach for measuring copy number at sequence tagged sites (STS) which allowed a sub-exon mapping resolution. Using STS-QPCR and a novel statistical algorithm, the NRC-1 locus was narrowed to 4.615-Mb with the distal boundary mapping within a 38-Kb interval between exon 3 and exon 4 of the DUTT1/Robo1 gene, currently the only candidate tumor suppressor gene in the interval. Further mutational screening and gene expression analyses indicate that DUTT1/ROBO1 is not involved in the tumor suppressor activity of NRC-1, suggesting that there are at least two important tumor suppressor genes within the chromosome 3p12 interval. 相似文献
4.
Jiang PX Wang J Feng Y He ZG 《Biochemical and biophysical research communications》2007,361(3):651-658
The Cdc6 protein has been suggested as a loader for the eukaryotic MCM helicase. Archaeal replication machinery represents a core version of that in eukaryotes. In the current work, three eukaryotic Orc1/Cdc6 homologs (SsoCdc6-1, -2, and -3) from crenarchaeon Sulfolobus solfataricus were shown to have totally different effects on the interactions with SsoMCM helicase. SsoCdc6-2 stimulates the binding of the SsoMCM onto the origin DNA, but SsoCdc6-1 and SsoCdc6-3 significantly inhibit the loading activities, and these inhibitive effects can not be reversed by the stimulation of SsoCdc6-2. Using pull-down assays, we showed that three SsoCdc6 proteins interacted physically with the SsoMCM. Furthermore, the C-terminal domains of SsoCdc6 proteins were shown to physically and functionally affect the interactions with SsoMCM. This is the first report on the divergent functions of multiple eukaryote-like Orc1/Cdc6 proteins on regulating the loading of the MCM helicase onto the origins in the archaeon. 相似文献
5.
6.
He ZG Feng Y Jiang PX Wang J 《Biochemical and biophysical research communications》2008,366(4):1089-1095
The crenarchaeon Sulfolobus solfataricus contains three active origins of replication and three eukaryote-like Cdc6/Orc1 proteins known as SsoCdc6 proteins. It has the potential to become a powerful model system in understanding the central mechanism of the eukaryotic DNA replication. In this research, we designed a group of duplex DNA substrates containing specific origin recognition boxes (ORBs) of the archaeon and identified the DNA-binding activities of different SsoCdc6 proteins. Furthermore, we showed that the DNA-protein interaction between the DNA substrate and the SsoCdc6-1 or SsoCdc6-3 strikingly regulated their DNA-binding activities of each other on the origin. On the other hand, the protein-protein interactions between SsoCdc6-1 and SsoCdc6-2 were observed to mutually modulate the stimulating or inhibitive effects on the DNA-binding activities of each other. Thus, two different mechanisms were demonstrated to be involved in the regulations of the functions of the SsoCdc6 proteins on the replication origins. The results of this study imply that the interactions between multiple SsoCdc6 proteins and origin DNA collectively contribute to the positive or negative regulation of DNA replication initiation in the archaeon species. 相似文献
7.
Genome replication is a crucial and essential process for the continuity of life.In all organisms it starts at a specific region of the genome known as origin of replication (Ori) site. The number of Ori sites varies in prokaryotes and eukaryotes. Replication starts at a single Ori site in bacteria, but in eukaryotes multiple Ori sites are used for fast copying across all chromosomes. The situation becomes complex in archaea, where some groups have single and others have multiple origins of replication. Themococcales, are a hyperthermophilic order of archaea. They are anaerobes and heterotrophs-peptide fermenters, sulphate reducers, methanogens being some of the examples of metabolic types. In this paper we have applied a combination of multiple in silico approaches - Z curve, the cell division cycle (cdc6) gene location and location of consensus origin recognition box (ORB) sequences for location of origin of replication in Thermococcus onnurineus, Thermococcus gammatolerans and other Themococcales and compared the results to that of the well-documented case of Pyrococcus abyssi. The motivation behind this study is to find the number of Ori sites based on the data available for members of this order. Results from this in silico analysis show that the Themococcales have a single origin of replication. 相似文献
8.
Archaeal replication machinery represents a core version of this in eukaryotes. The crenarchaeon Sulfolobus solfataricus has the potential to be a powerful model system to understand the central mechanism of eukaryotic DNA replication because it contains three active origins of replication and three eukaryote-like Orc1/Cdc6 proteins (SsoCdc6-1, SsoCdc6-2, and SsoCdc6-3). In this study, we investigate the DNA-binding activities of the N-terminal AAA+ ATPase domains of these Orc1/Cdc6 proteins, including their functional interactions with the other SsoCdc6 proteins, on duplex DNA substrates derived from the origins of S. solfataricus. We showed that the ATPase domain of SsoCdc6-2 retained to a great extent the origin DNA-binding activity, and likewise maintained its stimulating effect on SsoCdc6-3. Second, the ATPase domain of SsoCdc6-1, which also stimulated the DNA-binding ability of SsoCdc6-3, demonstrated a significantly improved DNA-binding activity at the forked substrate, but only showed a very weak ability towards the blunt DNA. Third, the ATPase domain of SsoCdc6-3, although having lost much of its DNA-binding activity from the origin, inhibited both SsoCdc6-1 and SsoCdc6-2. These imply that the N-terminal AAA+ ATPase domain of archaeal Orc1/Cdc6 protein could be differentially involved in origin recognition during DNA replication initiation even if lacking conventional C-terminal winged helix DNA-binding elements. Our findings further propose that conserved AAA+ ATPase domains of Orc1/Cdc6 proteins determine their defined and coordinated functions not only in the archaeon species but also in eukaryotes during the early events of DNA replication. 相似文献
9.
S.V. Reshma Nitish Sathyanarayanan 《Journal of biomolecular structure & dynamics》2013,31(8):1743-1755
VNG0128C, a hypothetical protein from Halobacterium NRC-1, was chosen for detailed insilico and experimental investigations. Computational exercises revealed that VNG0128C functions as NAD+ binding protein. The phylogenetic analysis with the homolog sequences of VNG0128C suggested that it could act as UDP-galactose 4-epimerase. Hence, the VNG0128C sequence was modeled using a suitable template and docking studies were performed with NAD and UDP-galactose as ligands. The binding interactions strongly indicate that VNG0128C could plausibly act as UDP-galactose 4-epimerase. In order to validate these insilico results, VNG0128C was cloned in pUC57, subcloned in pET22b+, expressed in BL21 cells and purified using nickel affinity chromatography. An assay using blue dextran was performed to confirm the presence of NAD binding domain. To corroborate the epimerase like enzymatic role of the hypothetical protein, i.e. the ability of the enzyme to convert UDP-galactose to UDP-glucose, the conversion of NAD to NADH was measured. The experimental assay significantly correlated with the insilico predictions, indicating that VNG0128C has a NAD+ binding domain with epimerase activity. Consequently, its key role in nucleotide-sugar metabolism was thus established. Additionally, the work highlights the need for a methodical characterization of hypothetical proteins (less studied class of biopolymers) to exploit them for relevant applications in the field of biology. 相似文献
10.
The DNA replication apparatus of archaea represents a core version of that in eukaryotes. Archaeal Orc1/Cdc6s can be an integral component in the replication machineries cooperatively regulating DNA replication. We investigated the DNA-binding activities of two eukaryote-like Orc1/Cdc6 proteins (SsoCdc6-1 and -2) and interactions between them on the different structural duplex DNA substrates derived from oriC1 of Sulfolobus solfataricus. The results showed that two Orc1/Cdc6 proteins stimulated mutual DNA-binding activities at lower concentrations and formed bigger SsoCdc6-1/SsoCdc6-2/DNA complex at higher concentrations. Furthermore, SsoCdc6-2 stimulated the DNA-binding activity of SsoMCM and demonstrated a high affinity to the 5-forked DNA. In contrast, SsoCdc6-1 inhibited the binding of SsoMCM and demonstrated better affinity to the sequence-specific blunt DNA substrate. Finally, we found that the two proteins physically interacted with each other and with SsoMCM. Thus, the two Orc1/Cdc6 proteins were functionally different, but they may keep the coordinated interaction on the replication origin. 相似文献
11.
The replication period of Escherichia coli cells grown in rich medium lasts longer than one generation. Initiation thus occurs in the 'mother-' or 'grandmother generation'. Sister origins in such cells were found to be colocalized for an entire generation or more, whereas sister origins in slow-growing cells were colocalized for about 0.1-0.2 generations. The role of origin inactivation (sequestration) by the SeqA protein in origin colocalization was studied by comparing sequestration-deficient mutants with wild-type cells. Cells with mutant, non-sequesterable origins showed wild-type colocalization of sister origins. In contrast, cells unable to sequester new origins due to loss of SeqA, showed aberrant localization of origins indicating a lack of organization of new origins. In these cells, aberrant replisome organization was also found. These results suggest that correct organization of sister origins and sister replisomes is dependent on the binding of SeqA protein to newly formed DNA at the replication forks, but independent of origin sequestration. In agreement, in vitro experiments indicate that SeqA is capable of pairing newly replicated DNA molecules. 相似文献
12.
Contursi P Pisani FM Grigoriev A Cannio R Bartolucci S Rossi M 《Extremophiles : life under extreme conditions》2004,8(5):385-391
Here, we describe the identification of a chromosomal DNA replication origin (oriC) from the hyperthermophilic archaeon Sulfolobus solfataricus (subdomain of Crenarchaeota). By means of a cumulative GC-skew analysis of the Sulfolobus genome sequence, a candidate oriC was mapped within a 1.12-kb region located between the two divergently transcribed MCM- and cdc6-like genes. We demonstrated that plasmids containing the Sulfolobus oriC sequence and a hygromycin-resistance selectable marker were maintained in an episomal state in transformed S. solfataricus cells under selective pressure. The proposed location of the origin was confirmed by 2-D gel electrophoresis experiments. This is the first report on the functional cloning of a chromosomal oriC from an archaeon and represents an important step toward the reconstitution of an archaeal in vitro DNA replication system. 相似文献
13.
Cordey S Gerlach D Junier T Zdobnov EM Kaiser L Tapparel C 《RNA (New York, N.Y.)》2008,14(8):1568-1578
Replication of picornaviruses is dependent on VPg uridylylation, which is linked to the presence of the internal cis-acting replication element (cre). Cre are located within the sequence encoding polyprotein, yet at distinct positions as demonstrated for poliovirus and coxsackievirus-B3, cardiovirus, and human rhinovirus (HRV-A and HRV-B), overlapping proteins 2C, VP2, 2A, and VP1, respectively. Here we report a novel distinct cre element located in the VP2 region of the recently reported HRV-A2 species and provide evolutionary evidence of its functionality. We also experimentally interrogated functionality of recently identified HRV-B cre in the 2C region that is orthologous to the human enterovirus (HEV) cre and show that it is dispensable for replication and appears to be a nonfunctional evolutionary relic. In addition, our mutational analysis highlights two amino acids in the 2C protein that are crucial for replication. Remarkably, we conclude that each genetic clade of HRV and HEV is characterized by a unique functional cre element, where evolutionary success of a new genetic lineage seems to be associated with an invention of a novel cre motif and decay of the ancestral one. Therefore, we propose that cre element could be considered as an additional criterion for human rhinovirus and enterovirus classification. 相似文献
14.
Carole Jaubert Chlo? Danioux Jacques Oberto Diego Cortez Ariane Bize Mart Krupovic Qunxin She Patrick Forterre David Prangishvili Guennadi Sezonov 《Open biology》2013,3(4)
The 2 465 177 bp genome of Sulfolobus islandicus LAL14/1, host of the model rudivirus SIRV2, was sequenced. Exhaustive comparative genomic analysis of S. islandicus LAL14/1 and the nine other completely sequenced S. islandicus strains isolated from Iceland, Russia and USA revealed a highly syntenic common core genome of approximately 2 Mb and a long hyperplastic region containing most of the strain-specific genes. In LAL14/1, the latter region is enriched in insertion sequences, CRISPR (clustered regularly interspaced short palindromic repeats), glycosyl transferase genes, toxin–antitoxin genes and MITE (miniature inverted-repeat transposable elements). The tRNA genes of LAL14/1 are preferential targets for the integration of mobile elements but clusters of atypical genes (CAG) are also integrated elsewhere in the genome. LAL14/1 carries five CRISPR loci with 10 per cent of spacers matching perfectly or imperfectly the genomes of archaeal viruses and plasmids found in the Icelandic hot springs. Strikingly, the CRISPR_2 region of LAL14/1 carries an unusually long 1.9 kb spacer interspersed between two repeat regions and displays a high similarity to pING1-like conjugative plasmids. Finally, we have developed a genetic system for S. islandicus LAL14/1 and created ΔpyrEF and ΔCRISPR_1 mutants using double cross-over and pop-in/pop-out approaches, respectively. Thus, LAL14/1 is a promising model to study virus–host interactions and the CRISPR/Cas defence mechanism in Archaea. 相似文献
15.
16.
Yamashiro K Yokobori S Oshima T Yamagishi A 《Extremophiles : life under extreme conditions》2006,10(4):327-335
Thermoplasma acidophilum is a thermoacidophilic archaeon that grows optimally at pH1.8 and 56°C and has no cell wall. Plasmid pTA1 was found in some strains of the species. We sequenced plasmid pTA1 and analyzed the open reading frames (ORFs). pTA1 was found to be a circular DNA molecule of 15,723 bp. Eighteen ORFs were found; none of the gene products except ORF1 had sequence similarity to known proteins. ORF1 showed similarity to Cdc6, which is involved in genome-replication initiation in Eukarya and Archaea. T. acidophilum has two Cdc6 homologues in the genome. The homologue found in pTA1 is most similar to Tvo3, one of the three Cdc6 homologues found in the genome of Thermoplasma volcanium, among all of the Cdc6 family proteins. The phylogenetic analysis suggested that plasmid pTA1 is possibly originated from the chromosomal DNA of Thermoplasma. 相似文献
17.
Wang J Jiang PX Feng H Feng Y He ZG 《Biochemical and biophysical research communications》2007,363(1):63-70
The crenarchaeon Sulfolobus solfataricus has the potential to be a powerful model system to understand the central mechanism of eukaryotic DNA replication because it contains three active origins of replication and three eukaryote-like Orc1/Cdc6 proteins. However, it is not known whether these SsoCdc6 proteins can functionally interact and collectively contribute to DNA replication initiation. In the current work, we found that SsoCdc6-1 stimulates DNA-binding activities of SsoCdc6-3. In contrast, SsoCdc6-3 inhibits those of both SsoCdc6-1 and SsoCdc6-2. These regulatory functions are differentially affected by the C-terminal domains of these SsoCdc6 proteins. These data, in conjunction with studies on physical interactions between these replication initiators by bacterial two-hybrid and pull-down/Western blot assays, lead us to propose the possibility that multiple SsoCdc6 proteins might coordinately regulate DNA replication in the archaeon species. This is the first report on the functional interaction among the archaeal multiple Cdc6 proteins to regulate DNA replication. 相似文献
18.
Corcelli A Lobasso S Palese LL Saponetti MS Papa S 《Biochemical and biophysical research communications》2007,354(3):795-801
Membranes having an a high content of cardiolipin were isolated from an extremely halophilic archaeon Halorubrum sp. Absorbance difference spectra of detergent-solubilized plasma membranes reduced by dithionite suggested the presence of b-type cytochromes. Non-denaturing gel electrophoresis revealed only one fraction having TMPD-oxidase activity in which cardiolipin was the major lipid component. The electroeluted fraction showed a cytochrome c oxidase activity characterized by the reduced minus oxidized difference spectra as a terminal heme-copper oxidase. The cytochrome c oxidase activity of the archaeal cardiolipin-rich membranes was inhibited by the cardiolipin-specific fluorescent marker 10-N-nonyl acridine orange (NAO) in a dose-dependent manner. The results indicate that an archaeal analogue of cardiolipin is tightly associated to archaeal terminal oxidases and is required for its optimal functioning. 相似文献
19.
We have analyzed the subnuclear position of early- and late-firing origins of DNA replication in intact yeast cells using fluorescence in situ hybridization and green fluorescent protein (GFP)-tagged chromosomal domains. In both cases, origin position was determined with respect to the nuclear envelope, as identified by nuclear pore staining or a NUP49-GFP fusion protein. We find that in G1 phase nontelomeric late-firing origins are enriched in a zone immediately adjacent to the nuclear envelope, although this localization does not necessarily persist in S phase. In contrast, early firing origins are randomly localized within the nucleus throughout the cell cycle. If a late-firing telomere-proximal origin is excised from its chromosomal context in G1 phase, it remains late-firing but moves rapidly away from the telomere with which it was associated, suggesting that the positioning of yeast chromosomal domains is highly dynamic. This is confirmed by time-lapse microscopy of GFP-tagged origins in vivo. We propose that sequences flanking late-firing origins help target them to the periphery of the G1-phase nucleus, where a modified chromatin structure can be established. The modified chromatin structure, which would in turn retard origin firing, is both autonomous and mobile within the nucleus. 相似文献
20.
Young-Jun Park Soo Young Choi Hee-Bong Lee 《Biochimica et Biophysica Acta (BBA)/General Subjects》2006
The carboxylesterase, a 34 kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 85 °C and 8.0, respectively. The enzyme showed remarkable thermostability: 41% of its activity remained after 5 days of incubation at 80 °C. In addition, the purified enzyme exhibited stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity towards various PNP esters and short acyl chain triacylglycerols such as tributyrin (C4:0). Among the PNP esters tested, the best substrate was PNP-caprylate (C8) with Km and kcat values of 71 μM and 14,700 s−1, respectively. The carboxylesterase gene consisted of 915 bp corresponding to 305 amino acid residues. We demonstrated that active recombinant S. solfataricus carboxylesterase could be expressed in Escherichia coli. The enzyme was identified as a serine esterase belonging to mammalian hormone-sensitive lipases (HSL) family and contained a catalytic triad composed of serine, histidine, and aspartic acid in the active site. 相似文献