首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starvation of second sea winter farmed Atlantic salmon through February and March reduced body weight by 0.10% day−1 or 6.0% during the starvation period, whereas fed fish increased body weight by 0.10 day−1 or 5.9%. When fed again during 41 days in April and May, the starved group increased weight by 22.7% (0.55% day−1) compared with a 11.4% (0.28% day−1) gain in the unrestricted control. Ultrasound determination of sex and maturity in late May showed that the incidence of maturation was reduced by 48% among females and 32% among males in the starved group, compared with the unrestricted group.  相似文献   

2.
Rats were exposed to 0.5% halothane in air for 8 h per day during the intervals (1) 5 days postconception to birth, (2) birth to 5 days postnatal age, or (3) birth to 10 days postnatal age. Controls were exposed to an equivalent flow of air. Prenatal exposure had no significant effect on body or brain weight and no subsequent effect on the relative synthesis of brain subcellular membranes. Five days of postnatal exposure caused a 10% reduction in body and brain weight and a 10% relative reduction in the synthesis of brain myelin. The effect persisted throughout the period of rapid postnatal brain myelination. Ten days of postnatal exposure produced equivalent, more severe effects on body and brain weights and a more severe effect on myelin synthesis. Postnatal exposure had no apparent effect on the relative synthesis of non-myelin particulate proteins.  相似文献   

3.
Summary Antisera raised in rabbits against myelin basic proteins (MBP) and Wolfgram W1 protein isolated from rat myelin were used to study the maturation of oligodendrocytes in the developing rat nervous system. Both proteins were localized immunohistochemically at the light and electron microscopical levels in rat brain from the time of their first appearance to the adult stage. Oligodendrocytes were first detected by their positive staining with W1 antiserum two days after birth and at 1–3 days later with MBP antiserum. At 8–10 days, the number of oligodendrocytes labelled with both sera increases and the myelinated fibre pathways were clearly visible. Labelling with W1 antiserum was observed in oligodendrocytes at all stages from 2 days after birth to adulthood and in myelin fibres when they were present. In contrast, staining of oligodendroglial cells with MBP declined during the period of rapid myelination (20–25 days after birth) and finally disappeared, whereas myelin staining was still apparent. The electron microscopical study revealed that the synthesis of Wolfgram proteins occurred mostly at the peripheral cytoplasmic ribosomes of the cells, from where they were probably transported to processes engaged in myelination. The electron micrographs also showed that the sites of MBP synthesis seemed to be more uniformly distributed over the entire cytoplasm.  相似文献   

4.
An immunological approach has been used to assess the effects of starvation and subsequent feeding upon the synthesis of neurosecretory protein in adult male Locusta migratoria. Starvation (for 5 days) did not reduce the incorporation of radioactive cystine into neurosecretory protein. However, the rate of neurosecretory transport in starved insects was approximately half that in normal fed insects.Within 1 hr after the start of feeding the rate of neurosecretory protein synthesis more than doubled and the rate at which newly synthesized protein was transported to the CC increased approximately three-fold. The incorporation of cystine into specific (i.e. neurosecretory) protein was always higher, even in starved insects, than into the non-specific proteins (i.e. proteins other than those from the A-cells) of the brain. This difference was maximal at 4 hr after feeding when the incorporation into specific protein was more than 5 times that into non-specific protein.  相似文献   

5.
6.
Starvation effects for five weeks on energy reserves, oxidative stress and hematological indices in Nile catfish Clarias gariepinus was studied. The low protein level in starved fish may result from the lowering effect of prolonged starvation on protein synthesis rather than due to its degenerating protein. Moreover, the elevated level of serum amino acids may promote gluconeogenesis in liver. In addition, the lipid depletion in starved fish may be related to the preferential uses of lipids as an energy to starve fish. Also, unchanged glycemic level may introduce a potent evidence for the presence of active gluconeogenesis, depending on both amino and fatty acids precursors. Also, kidney and liver showed disturbances in metabolites associated with oxidative damage such as elevations in total peroxide, carbonyl protein and DNA fragmentation; these may cause dysfunction to these organs after five weeks of starvation. Total peroxide, carbonyl protein and DNA fragmentation were significantly increased in gills, liver and kidney by 29.9, 30.9 and 30.5; 83.6, 84.6 and 53.7; 82.4, 43.3 and 75.7%, respectively. Starvation induced severe anemia and loss of body weight in the fish. However, white muscle did not show any oxidative damage after five weeks of starvation.  相似文献   

7.
Effect of Triethyl Tin on Myelination in the Developing Rat   总被引:3,自引:2,他引:1  
Myelinogenesis in developing rats was studied following chronic dosing with triethyl tin (TET), at a level of 1.0 mg TET/kg body wt/day. Experiments included starved controls with body weights depressed by 17 to 40% to equal those of the TET-treated groups. Rats at ages of 16, 21, and 30 days showed decreases relative to well-nourished controls in body weight, forebrain weight, myelin yield, cerebroside level, and specific activity of brain 2',3'-cyclic nucleotide-3'-phosphohydrolase when dosed with TET. At 30 days, myelin and cerebroside yields were reduced by approximately 55%, while CNP activity was reduced by less than 20%. No differences in the forebrain myelin protein composition between control, starved, and TET animals were noted. The rate of myelin protein synthesis relative to brain total protein (assayed by incorporation of intracranially injected [3H]glycine into brain homogenate and myelin proteins) was decreased in the TET rats in proportion to the decreased yield of myelin, but no particular myelin protein was preferentially affected. Matching starved controls exhibited similar body weight decreases, less pronounced forebrain weight decreases, and little or no decrease in myelin concentration. There was a relative increase in the myelin protein synthesis rate in the starved rats, indicating preferential utilization of limited protein precursors for myelin protein synthesis. Spinal cord myelin was also decreased in the TET rats, but less severely than in the forebrain. At all ages optic, but not sciatic, nerves showed decreases in myelin concentration with TET treatment. We conclude that TET inhibits forebrain growth and CNS myelination more severely than can be accounted for by a general metabolic insult.  相似文献   

8.
Autotrophically grown cells of Chlorella pyrenoidosa (211-8b) were starved 3 to 4 days in darkness, flashes of blue light, or flashes of red light. The blue flashes were sufficient to maintain the maximal rate of light-stimulated oxygen uptake during short term experiments. However, after 24 hours, the respiration rate in red flashes was equal to, or greater than, the rate in blue flashes. Starvation in darkness reduced the chlorophyll content by 11%, altered the blue absorbance of the nonsaponifiable material only 1 to 2%, and reduced the dry weight by 13%. Starvation in the presence of blue or red flashes reduced the dry weight by an additional 11 or 12% respectively. Protein per unit cell volume was not changed significantly during 3 to 4 days starvation in darkness or in blue flashes, even though dry weight per unit cell volume decreased 13% in darkness and 23% in blue flashes. In contrast, cells starved under red flashes showed a 20% decrease in protein per unit cell volume and a 24% decrease in dry weight per unit cell volume.  相似文献   

9.
—In continuation of our studies on the association of the galactosyl diglycerides of brain with myelination, we have measured the biosynthesis and concentration of these glyceride glycolipids, in oligodendroglial, astroglial, neuronal, and myelin enriched fractions from brains of rats of postnatal age 16, 19 and 29 days. The relative purity of cell fractions and myelin derived from 50 to 60 brains of each age-group was checked by phase contrast microscopy and 2′,3′-cyclic nucleotide-3′-phosphohydrolase activity. The relative purity was comparable to that reported by other investigators for cell fractions from bovine brain. Of the three cell types, the oligodendroglia had the highest and the neurons had the lowest capacity to enzymatically synthesize and to accumulate monogalactosyl diglyceride. The amount of monogalactosyl diglyceride found in myelin compared to that found in oligodendroglial fraction greatly increased during development between 16 and 29 days of age. The biosynthesis of galactosyl ceramide but not glucosyl ceramide was highest in oligodendroglial enriched cell fraction. However, ceramide glucosyl-transferase activity, which was greatly affected by the method used for cellular separation, was highest in a microsomal fraction derived from grey matter. Our results support the contention that the oligodendroglial cells are the site of synthesis of myelin constituents of the central nervous system, and that there is a temporal relationship between this site of synthesis and the site of deposition (myelin).  相似文献   

10.
Starvation during early development can have lasting effects that influence organismal fitness and disease risk. We characterized the long-term phenotypic consequences of starvation during early larval development in Caenorhabditis elegans to determine potential fitness effects and develop it as a model for mechanistic studies. We varied the amount of time that larvae were developmentally arrested by starvation after hatching (“L1 arrest”). Worms recovering from extended starvation grew slowly, taking longer to become reproductive, and were smaller as adults. Fecundity was also reduced, with the smallest individuals most severely affected. Feeding behavior was impaired, possibly contributing to deficits in growth and reproduction. Previously starved larvae were more sensitive to subsequent starvation, suggesting decreased fitness even in poor conditions. We discovered that smaller larvae are more resistant to heat, but this correlation does not require passage through L1 arrest. The progeny of starved animals were also adversely affected: Embryo quality was diminished, incidence of males was increased, progeny were smaller, and their brood size was reduced. However, the progeny and grandprogeny of starved larvae were more resistant to starvation. In addition, the progeny, grandprogeny, and great-grandprogeny were more resistant to heat, suggesting epigenetic inheritance of acquired resistance to starvation and heat. Notably, such resistance was inherited exclusively from individuals most severely affected by starvation in the first generation, suggesting an evolutionary bet-hedging strategy. In summary, our results demonstrate that starvation affects a variety of life-history traits in the exposed animals and their descendants, some presumably reflecting fitness costs but others potentially adaptive.  相似文献   

11.
Synopsis In adultPhoxinus phoxinus (Cyprinidae), starvation for 4 or 16 days had no significant effect on the rate of foregut evacuation of the first satiation meal consumed after the starvation period. Starvation for 4 and 16 days had no significant effect on the rate of return of appetite after that first meal. A model based on the rates of foregut evacuation and return of appetite predicted that in the presence of excess food, the foregut contents would represent about 4% of total body weight. This prediction was corroborated experimentally. The effect of the length of starvation on the size of the first meal was not consistent. The results suggest that the hyperphagia noted in minnows starved for 16 days is a consequence of the persistence on succeeding days of the rates of evacuation and return of appetite achieved on the first day of realimentation.  相似文献   

12.
A double label design was used to study the in vivo incorporation of [U-14C] and [2-3H]glycerol into total and individual phospholipids of various brain subcellular fractions isolated from 20-day old normal and undernourished rats. In control animals, synthesis of glycerophospholipids of microsomes, mitochondria and nerve endings seems to occur through the glycerol-3-phosphate (G-3-P) pathway while a large part of the synthesis of myelin glycerophospholipids appears to proceed through the dihydroxyacetone phosphate (DHAP) pathway. In starved animals, on the other hand the incorporation of phospholipid precursors through the DHAP pathway was found to be lower than in controls while synthesis of phospholipids in the other subcellular fractions was unaffected.The possible relationship between the synthesis of glycerophospholipids and especially plasmalogens of the myelin membrane and microperoxisomes of oligodendroglial cells, where the enzymes of the DHAP pathway are located, is discussed.  相似文献   

13.
The development of hepatic glucokinase in the neonatal rat   总被引:18,自引:17,他引:1       下载免费PDF全文
1. Glucokinase and hexokinase activities have been determined in the livers of newborn rats and attempts made to influence in vivo the development of the glucokinase. 2. Glucokinase first appears in rat liver about 16 days after birth and adult activities are reached 10–12 days later. Evidence is presented which indicates that this represents synthesis of new protein. Hexokinase activities remain constant throughout the period of glucokinase development. 3. Both exogenous glucose and insulin are necessary for the natural development of glucokinase, for this is retarded in starved and alloxan-diabetic neonatal rats. 4. The absence of glucokinase during the first 2 weeks of extrauterine life in the rat is not due to lack of insulin. 5. Attempts to advance the time at which glucokinase first appears by infusions of glucose, insulin and chlorpropamide alone and in various combinations have resulted in marginal effects only. 6. When rats are starved for 3 days during the period of glucokinase development and then re-fed, glucokinase is more rapidly synthesized, indicating that the potential ability to synthesize glucokinase continues to develop throughout the period of starvation. 7. Some possible reasons for the comparatively late development of glucokinase are discussed.  相似文献   

14.
Starvation induced changes in citrate synthase (CS), glucose-6-phosphate dehydrogenase (G6-PDH), lactate dehydrogenase (LDH), DNA, RNA, RNA/DNA ratio and protein were studied in the freshwater catfish Clarias batrachus. Starvation gradually decreased the activity of CS, G6-PDH and LDH in brain, liver and skeletal muscle of the freshwater catfish. The maximum reduction in these enzyme activities upto 35-45% was observed after 35 days of fasting. This shows substantial decline in aerobic and biosynthetic capacity during starvation period. DNA, RNA, RNA/DNA ratio and protein contents were also reduced from 40-67% which reflects reduction in an overall capacity of the protein synthesis. Starvation-induced macromolecular changes indicate impairment of metabolism in fish.  相似文献   

15.
Starvation stimulated vitellogenic arrest occurs in the cockroach Blatta orientalis after 5 days. This is characterized by cessation of yolk uptake and oöcyte growth.After 5 days of starvation, protein and RNA synthesis decrease, but some macromolecular synthesis continues during the entire starvation period. No oöcyte resorption occurs for up to 15 days of starvation. In contrast to starvation, injection of actinomycin-D results in resorption within 8 hr. The results suggest that B. orientalis copes with starvation by maintaining arrested oöcytes as an alternative to immediate resorption.  相似文献   

16.
饥饿是鱼类无法有效获取食物从而使机体呈现能量匮乏的特殊时期, DHA (Docosahexaenoic acid)作为大多数鱼饥饿后得以特别保留的高不饱和脂肪酸, 它对饥饿鱼体可能具有特殊的能量调控作用。为进一步探讨这一问题, 研究设计了以下饲养试验: 先在6%与12%两个油脂水平下分别添加3%DHA制品, 形成基础组、基础-DHA组、高脂组和高脂-DHA组共4组试验饲料。将尾均重为(14.81±0.13) g的鲤360尾随机分为4组, 每组3个重复, 每个重复30尾鱼, 分别用以上4组饲料对进行饲喂, 饲养74d后, 每个养殖缸随机余留6尾鲤(Cyprinus carpio L.)进行饥饿, 36d后检测饥饿鲤体重、生物学性状、体成分、血清生化指标等。结果显示: ①在同一脂肪水平下, DHA添加组饥饿鲤体重减重率均分别显著高于无DHA组(P<0.05); ②在2个油脂水平下DHA添加组饥饿鲤肝细胞直径均分别显著低于无DHA组(P<0.05); 鱼体肥满度、空壳比率等生物学性状在各组饥饿鲤间均无显著差异(P>0.05); ③在2个油脂水平下, DHA添加组饥饿鲤肌肉及肠脂肪含量均分别显著低于无DHA组(P<0.05), 而饥饿鲤肝胰脏脂肪含量在各组间均无显著差异(P>0.05); ④饥饿鲤血清生化指标在各组间均无显著差异(P>0.05)。结果表明, DHA添加组饥饿鲤体重、肝细胞直径以及肌肉及肠脂肪含量均呈显著下降趋势, 显示出DHA的添加未能协助鲤有效抵御饥饿等不良环境的胁迫。  相似文献   

17.
Leptin is produced by white adipose tissue and other cell types and is involved in both short- and long-term appetite control. Here we studied effects of starvation on serum, pituitary and hypothalamic levels of leptin during 72 h period. Each of the starved groups was sacrificed simultaneously with the group of ad libitum fed animals. The progression of the discrete starvation response phases was monitored by testing the blood glucose, free fatty acid, urea and corticosterone levels. Starvation caused biphasic increase in corticosterone and free fatty acid levels, and significant but transient decrease in urea and glucose levels. Starvation also abolished diurnal rhythm of changes in leptin concentrations in serum and hypothalamic and pituitary tissues. Only 6 h starving period was sufficient to lock serum leptin at low levels, whereas 12 h were needed to silence leptin production/secretion in hypothalamus for the whole examined period. In contrast, leptin production by pituitary tissues of starved animals required 24 h to reach minimum, followed by full recovery by the end of starvation period. These results indicate the tissue specific pattern of leptin release and suggest that the locally produced leptin could activate its receptor in pituitary cells independently of serum levels of this hormone.  相似文献   

18.
Abstract: Malnutrition in mice from birth resulted in myelin of brain having higher than normal molar proportions of cholesterol and phospholipids relative to a molar unit of cerebroside + sulphatide. This was found at all ages between 20 and 60 days, and the molar ratio of these lipids in older animals was comparable to that in the younger controls. The phospholipid and the ganglioside patterns were also immature for age. The phospholipid composition was characterized by lower molar proportions of ethanolamine phosphoglyceride (EPG) and sphingomyelin (SPh) and higher proportion of choline phosphoglyceride (CPG), and the ganglioside pattern was characterized by higher molar proportions of the disialogangliosides GDla and GDlb and markedly lower proportion of the monosialoganglioside GM1. Malnutrition imposed from 30 days of age did not affect the contents of the major lipids (and so their molar ratio), but within the phospholipids there was a small but significant deficit of SPh, which was compensated by a higher content of CPG. The ganglioside pattern was as if the animals were malnourished from birth. Nutritional rehabilitation up to 60 days of age subsequent to malnutrition for the first 30 days fully corrected the ganglioside pattern, but not the molar ratio, of the major lipids (because of persistent deficit in cerebroside + sulphatide) and the composition of the phospholipids (because of small but significant deficit of SPh). The results indicate that malnutrition instituted at any time during the entire programme of myelination can affect one or other aspect of myelin development, and nutritional rehabilitation of animals malnourished in early life cannot fully correct this developmental gap.  相似文献   

19.
Neuraminidase activities in oligodendroglial cells were characterized using rats of different ages. Rat oligodendroglial cells had intrinsic neuraminidase activities directed toward GM3 and N-acetylneuramin(2-3)lactitol (NL). Developmental profiles of the neuraminidase activities toward the two substrates in oligodendroglial cells were different from each other. The neuraminidase activity toward GM3 increased rapidly with the onset of active myelination and, after 26 days of development, reached the adult level which was about 18 times higher than that in myelin. At the adult age, oligodendroglial cells had the highest neuraminidase activity toward GM3 among the individual brain cell types examined. The activity of NL-neuraminidase showed a less remarkable developmental profile, with a peak value at 26 days. The UDP-galactose:ceramide galactosyltransferase activity in oligodendroglial cells increased during the period of active myelination and, afterward, returned to the basal level. The enrichment and unique developmental profile in oligodendroglial cells of the neuraminidase activity toward GM3 suggest that this enzyme may play an important role in the formation and maintenance of the myelin sheath.  相似文献   

20.
The effect of starvation on the synthesis of C16 juvenile hormone (JH) and the growth of terminal oöcytes was assessed in Schistocerca americana gregaria at two times during adult life: before activation of the corpora allata and during the first gonotrophic cycle. In both groups, starvation resulted in a decline in JH synthesis within 2–3 days and rates of synthesis remained low throughout the experimental period. The growth rate of oöcytes which were not vitellogenic at the time of starvation was depressed whereas the percentage of resorption of vitellogenic oöcytes increased dramatically with starvation. Although the percentage of resorption increased in animals with vitellogenic oöcytes, some mature oöcytes were produced, particularly in animals in which the oöcytes were greater than 5 mm in length at the time of starvation. This suggests that oöcyte maturation can be divided into two distinct phases—an early phase of vitellogenesis associated with high rates of JH synthesis and a late phase, in oöcytes greater than 5 mm, associated with much lower rates of JH synthesis.Stimulation of JH synthesis by farnesenic acid in 5-day starved animals resulted in high rates of JH synthesis, indicating that starvation did not appreciably alter the enzymic activities of the final two stages in JH synthesis. Thus rate limitation did not occur at these stages.Feeding of 5-day starved animals resulted in a transient increase in the rate of JH synthesis. However, rates of JH synthesis and oöcyte growth remained subnormal throughout the observation period, suggesting that the effects of starvation cannot be entirely reversed by feeding. Thus starvation may decrease the reproductive potential of the females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号