首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies are modular proteins consisting of domains that exhibit a β-sandwich structure, the so-called immunoglobulin fold. Despite structural similarity, differences in folding and stability exist between different domains. In particular, the variable domain of the light chain VL is unusual as it is associated with misfolding diseases, including the pathologic assembly of the protein into fibrillar structures. Here, we have analysed the folding pathway of a VL domain with a view to determine features that may influence the relationship between productive folding and fibril formation. The VL domain from MAK33 (murine monoclonal antibody of the subtype κ/IgG1) has not previously been associated with fibrillisation but is shown here to be capable of forming fibrils. The folding pathway of this VL domain is complex, involving two intermediates in different pathways. An obligatory early molten globule-like intermediate with secondary structure but only loose tertiary interactions is inferred. The native state can then be formed directly from this intermediate in a phase that can be accelerated by the addition of prolyl isomerases. However, an alternative pathway involving a second, more native-like intermediate is also significantly populated. Thus, the protein can reach the native state via two distinct folding pathways. Comparisons to the folding pathways of other antibody domains reveal similarities in the folding pathways; however, in detail, the folding of the VL domain is striking, with two intermediates populated on different branches of the folding pathway, one of which could provide an entry point for molecules diverted into the amyloid pathway.  相似文献   

2.
The small (87-residue) α-helical protein Im7 (an inhibitor protein for colicin E7 that provides immunity to cells producing colicin E7) folds via a three-state mechanism involving an on-pathway intermediate. This kinetic intermediate contains three of four native helices that are oriented in a non-native manner so as to minimise exposed hydrophobic surface area at this point in folding. The short (6-residue) helix III has been shown to be unstructured in the intermediate ensemble and does not dock onto the developing hydrophobic core until after the rate-limiting transition state has been traversed. After helix III has docked, it adopts an α-helical secondary structure, and the side chains of residues within this region provide contacts that are crucial to native-state stability. In order to probe further the role of helix III in the folding mechanism of Im7, we created a variant that contains an eight-amino-acid polyalanine-like helix stabilised by a Glu-Arg salt bridge and an Asn-Pro-Gly capping motif, juxtaposed C-terminal to the natural 6-residue helix III. The effect of this insertion on the structure of the native protein and its folding mechanism were studied using NMR and ?-value analysis, respectively. The results reveal a robust native structure that is not perturbed by the presence of the extended helix III. Mutational analysis performed to probe the folding mechanism of the redesigned protein revealed a conserved mechanism involving the canonical three-helical intermediate. The results suggest that folding via a three-helical species stabilised by both native and non-native interactions is an essential feature of Im7 folding, independent of the helical propensity of helix III.  相似文献   

3.
The blood coagulation protein factor XI (FXI) consists of a pair of disulfide-linked chains each containing four apple domains and a catalytic domain. The apple 4 domain (A4; F272-E362) mediates non-covalent homodimer formation even when the cysteine involved in an intersubunit disulfide is mutated to serine (C321S). To understand the role of non-covalent interactions stabilizing the FXI dimer, equilibrium unfolding of wild-type A4 and its C321S variant was monitored by circular dichroism, intrinsic tyrosine fluorescence and dynamic light scattering measurements as a function of guanidine hydrochloride concentration. Global analysis of the unimolecular unfolding transition of wild-type A4 revealed a partially unfolded equilibrium intermediate at low to moderate denaturant concentrations. The optically detected equilibrium of C321S A4 also fits best to a three-state model in which the native dimer unfolds via a monomeric intermediate state. Dimer dissociation is characterized by a dissociation constant, K(d), of approximately 90 nM (in terms of monomer), which is in agreement with the dissociation constant measured independently using fluorescence anisotropy. The results imply that FXI folding occurs via a monomeric equilibrium intermediate. This observation sheds light on the effect of certain naturally occurring mutations, such as F283L, which lead to intracellular accumulation of non-native forms of FXI. To investigate the structural and energetic consequences of the F283L mutation, which perturbs a cluster of aromatic side-chains within the core of the A4 monomer, it was introduced into the dissociable dimer, C321S A4. NMR chemical shift analysis confirmed that the mutant can assume a native-like dimeric structure. However, equilibrium unfolding measurements show that the mutation causes a fourfold increase in the K(d) value for dissociation of the native dimer and a 1 kcal/mol stabilization of the monomer, resulting in a highly populated intermediate. Since the F283 side-chain does not directly participate in the dimer interface, we propose that the F283L mutation leads to increased dimer dissociation by stabilizing a monomeric state with altered side-chain packing that is unfavorable for homodimer formation.  相似文献   

4.
Chang JY 《Biochemistry》2004,43(15):4522-4529
The pathways of oxidative folding of disulfide proteins exhibit a high degree of diversity, which is illustrated by the varied extent of (a) the heterogeneity of folding intermediates, (b) the predominance of intermediates containing native disulfide bonds, and (c) the level of accumulation of fully oxidized scrambled isomers as intermediates. BPTI and hirudin exemplify two extreme cases of such divergent folding pathways. We previously proposed that the underlying cause of this diversity is associated with the degree of stability of protein subdomains. Here we present compelling evidence that substantiates this hypothesis by studying the folding pathway of alphaLA-IIA. alphaLA-IIA is a partially folded intermediate of alpha-lactalbumin (alphaLA). It comprises a structured beta-sheet (calcium-binding) domain linked by two native disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) and a disordered alpha-helical domain with four free cysteines (Cys(6), Cys(28), Cys(111), and Cys(120)). Purified alphaLA-IIA was allowed to refold without and with stabilization of its structured beta-sheet domain by calcium. In the absence of calcium, the folding pathway of alphaLA-IIA resembles that of hirudin, displaying a highly heterogeneous population of folding intermediates, including fully oxidized scrambled species. Upon stabilization of its beta-sheet domain by bound calcium, oxidative folding of alphaLA-IIA undergoes a pathway conspicuously similar to that of BPTI, exhibiting limited species of folding intermediates containing mostly native disulfide bonds.  相似文献   

5.
6.
Tick-derived protease inhibitor (TdPI) is a tight-binding Kunitz-related inhibitor of human tryptase β with a unique structure and disulfide-bond pattern. Here we analyzed its oxidative folding and reductive unfolding by chromatographic and disulfide analyses of acid-trapped intermediates. TdPI folds through a stepwise generation of heterogeneous populations of one-disulfide, two-disulfide, and three-disulfide intermediates, with a major accumulation of the nonnative three-disulfide species IIIa. The rate-limiting step of the process is disulfide reshuffling within the three-disulfide population towards a productive intermediate that oxidizes directly into the native four-disulfide protein. TdPI unfolds through a major accumulation of the native three-disulfide species IIIb and the subsequent formation of two-disulfide and one-disulfide intermediates. NMR characterization of the acid-trapped and further isolated IIIa intermediate revealed a highly disordered conformation that is maintained by the presence of the disulfide bonds. Conversely, the NMR structure of IIIb showed a native-like conformation, with three native disulfide bonds and increased flexibility only around the two free cysteines, thus providing a molecular basis for its role as a productive intermediate. Comparison of TdPI with a shortened variant lacking the flexible prehead and posthead segments revealed that these regions do not contribute to the protein conformational stability or the inhibition of trypsin but are important for both the initial steps of the folding reaction and the inhibition of tryptase β. Taken together, the results provide insights into the mechanism of oxidative folding of Kunitz inhibitors and pave the way for the design of TdPI variants with improved properties for biomedical applications.  相似文献   

7.
The immunoglobulin C(H)2 domain is a simple model system suitable for the study of the folding of all-beta-proteins. Its structure consists of two beta-sheets forming a greek-key beta-barrel, which is stabilized by an internal disulfide bridge located in the hydrophobic core. Crystal structures of various antibodies suggest that the C(H)2 domains of the two heavy chains interact with their sugar moieties and form a homodimer. Here, we show that the isolated, unglycosylated C(H)2 domain is a monomeric protein. Equilibrium unfolding was a two-state process, and the conformational stability is remarkably low compared to other antibody domains. Folding kinetics of C(H)2 were found to consist of several phases. The reactions could be mapped to three parallel pathways, two of which are generated by prolyl isomerizations in the unfolded state. The slowest folding reaction, which was observed only after long-term denaturation, could be catalyzed by a prolyl isomerase. The majority of the unfolded molecules, however, folded more rapidly, on a time-scale of minutes. Presumably, these molecules also have to undergo prolyl isomerization before reaching the native state. In addition, we detected a small number of fast-folding molecules in which all proline residues appear to be in the correct conformation. On both prolyl isomerization limited pathways, the formation of partly structured intermediates could be observed.  相似文献   

8.
Glycosylation is a common posttranslational modification that generally increases protein solubility and thermodynamic stability. Less is known about how this modification influences protein folding, particularly folding processes involving intermediate species. In the present report, folding comparisons of a nonglycosylated erythropoietin (EPO) mutant are made with the fully glycosylated EPO, which was recently shown to fold by a three-state on-pathway mechanism. The absence of glycosylation did not alter the folding mechanism of EPO but did greatly decrease the stability of the intermediate species, change the rate-limiting step of the folding reaction, and accelerate the folding kinetics to both the intermediate state and the native state. Surprisingly, glycosylation stabilized the intermediate species to a greater extent than it increased the EPO equilibrium stability. These results suggest that glycosylation impedes the latter EPO folding steps rather than accelerating them by biasing particular folding pathways, as previously proposed for folding reactions initiated from unfolded ensembles with minimal residual structure. Due to the specific biological processes modulated by EPO glycosylation, however, there may be little evolutionary pressure to fold on a faster, more direct pathway at the expense of biological function, particularly given the protective role glycosylation has at preventing EPO aggregation. Lastly, evidence that is consistent with glycosylation destabilizing the unfolded state to some degree and contributing to the greater equilibrium stability of the glycosylated EPO is presented.  相似文献   

9.
ScFv‐h3D6 is a single chain variable fragment that precludes Aβ peptide‐induced cytotoxicity by withdrawing Aβ oligomers from the amyloid pathway to the worm‐like pathway. Production of scFv molecules is not a straightforward procedure because of the occurrence of disulfide scrambled conformations generated in the refolding process. Here, we separately removed the disulfide bond of each domain and solved the scrambling problem; and then, we intended to compensate the loss of thermodynamic stability by adding three C‐terminal elongation mutations, previously described to stabilize the native fold of scFv‐h3D6. Such stabilization occurred through stabilization of the intermediate state in the folding pathway and destabilization of a different, β‐rich, intermediate state driving to worm‐like fibrils. Elimination of the disulfide bridge of the less stable domain, VL, deeply compromised the yield and increased the aggregation tendency, but elimination of the disulfide bridge of the more stable domain, VH, solved the scrambling problem and doubled the production yield. Notably, it also changed the aggregation pathway from the protective worm‐like morphology to an amyloid one. This was so because a partially unfolded intermediate driving to amyloid aggregation was present, instead of the β‐rich intermediate driving to worm‐like fibrils. When combining with the elongation mutants, stabilization of the partially unfolded intermediate driving to amyloid fibrils was the only effect observed. Therefore, the same mutations drove to completely different scenarios depending on the presence of disulfide bridges and this illustrates the relevance of such linkages in the stability of different intermediate states for folding and misfolding.  相似文献   

10.
The folding of group II intron ribozymes has been studied extensively under optimal conditions for self-splicing in vitro (42 degrees C and high magnesium ion concentrations). In these cases, the ribozymes fold directly to the native state by an apparent two-state mechanism involving the formation of an obligate intermediate within intron domain 1. We have now characterized the folding pathway under near-physiological conditions. We observe that compaction of the RNA proceeds slowly to completion, even at low magnesium concentration (3 mM). Kinetic analysis shows that this compact species is a "near-native" intermediate state that is readily chased into the native state by the addition of high salt. Structural probing reveals that the near-native state represents a compact domain 1 scaffold that is not yet docked with the catalytic domains (D3 and D5). Interestingly, native ribozyme reverts to the near-native state upon reduction in magnesium concentration. Therefore, while the intron can sustain the intermediate state under physiological conditions, the native structure is not maintained and is likely to require stabilization by protein cofactors in vivo.  相似文献   

11.
The B domain of protein A (BdpA) is a popular paradigm for simulating protein folding pathways. The discrepancies between so many simulations and subsequent experimental testing may be attributable to the protein being highly symmetrical: changing experimental conditions could perturb the subtle interplay between the effects of symmetry in the native structure and the effects of asymmetry from specific interactions in a given sequence. If the protein folds via multiple pathways, perturbations, such as temperature, denaturant concentration, and mutation, should change the flux of micro pathways, leading to changes in the bulk properties of the transition state. We tested this hypothesis by conducting a Phi-analysis of BdpA as a function of temperature from 25.0 degrees C to 60.0 degrees C. The Phi-values had no significant dependence on temperature and the values at 55.0 degrees C (denaturing conditions) are very similar to those at 25.0 degrees C (folding conditions), indicating the structure of the transition state does not significantly change although the experimental conditions are considerably altered. The results suggest that BdpA folds via a single dominant folding pathway.  相似文献   

12.
Recombinant human monoclonal antibodies have become important protein-based therapeutics for the treatment of various diseases. The antibody structure is complex, consisting of beta-sheet rich domains stabilized by multiple disulfide bridges. The dimerization of the C(H)3 domain in the constant region of the heavy chain plays a pivotal role in the assembly of an antibody. This domain contains a single buried, highly conserved disulfide bond. This disulfide bond was not required for dimerization, since a recombinant human C(H)3 domain, even in the reduced state, existed as a dimer. Spectroscopic analyses showed that the secondary and tertiary structures of reduced and oxidized C(H)3 dimer were similar, but differences were observed. The reduced C(H)3 dimer was less stable than the oxidized form to denaturation by guanidinium chloride (GdmCl), pH, or heat. Equilibrium sedimentation revealed that the reduced dimer dissociated at lower GdmCl concentration than the oxidized form. This implies that the disulfide bond shifts the monomer-dimer equilibrium. Interestingly, the dimer-monomer dissociation transition occurred at lower GdmCl concentration than the unfolding transition. Thus, disulfide bond formation in the human C(H)3 domain is important for stability and dimerization. Here we show the importance of the role played by the disulfide bond and how it affects the stability and monomer-dimer equilibrium of the human C(H)3 domain. Hence, these results may have implications for the stability of the intact antibody.  相似文献   

13.
Human age‐onset cataracts are believed to be caused by the aggregation of partially unfolded or covalently damaged lens crystallin proteins; however, the exact molecular mechanism remains largely unknown. We have used microseconds of molecular dynamics simulations with explicit solvent to investigate the unfolding process of human lens γD‐crystallin protein and its isolated domains. A partially unfolded folding intermediate of γD‐crystallin is detected in simulations with its C‐terminal domain (C‐td) folded and N‐terminal domain (N‐td) unstructured, in excellent agreement with biochemical experiments. Our simulations strongly indicate that the stability and the folding mechanism of the N‐td are regulated by the interdomain interactions, consistent with experimental observations. A hydrophobic folding core was identified within the C‐td that is comprised of a and b strands from the Greek key motif 4, the one near the domain interface. Detailed analyses reveal a surprising non‐native surface salt‐bridge between Glu135 and Arg142 located at the end of the ab folded hairpin turn playing a critical role in stabilizing the folding core. On the other hand, an in silico single E135A substitution that disrupts this non‐native Glu135‐Arg142 salt‐bridge causes significant destabilization to the folding core of the isolated C‐td, which, in turn, induces unfolding of the N‐td interface. These findings indicate that certain highly conserved charged residues, that is, Glu135 and Arg142, of γD‐crystallin are crucial for stabilizing its hydrophobic domain interface in native conformation, and disruption of charges on the γD‐crystallin surface might lead to unfolding and subsequent aggregation.  相似文献   

14.
Pathways of oxidative folding of disulfide proteins display a high degree of diversity and vary among two extreme models. The BPTI model is defined by limited species of folding intermediates adopting mainly native disulfide bonds. The hirudin model is characterized by highly heterogeneous folding intermediates containing mostly non-native disulfide bonds. αLA-IIIA is a 3-disulfide variant of α-lactalbumin (αLA) with a 3-D conformation essentially identical to that of intact αLA. αLA-IIIA contains 3 native disulfide bonds of αLA, two of them are located at the calcium binding β-subdomain (Cys61–Cys77 and Cys73–Cys91) and the third bridge is located within the α-helical domain of the molecule (Cys28–Cys111). We investigate here the pathway of oxidative folding of fully reduced αLA-IIIA with and without stabilization of its β-subdomain by calcium binding. In the absence of calcium, the folding pathway of αLA-IIIA was shown to resemble that of hirudin model. Upon stabilization of β-sheet domain by calcium binding, the folding pathway of αLA-IIIA exhibits a striking similarity to that of BPTI model. Three predominant folding intermediates of αLA-IIIA containing exclusively native disulfide bonds were isolated and structurally characterized. Our results further demonstrate that stabilization of subdomains in a protein may dictate its folding pathway and represent a major cause for the existing diversity in the folding pathways of the disulfide-containing proteins.  相似文献   

15.
Narayan M  Welker E  Wanjalla C  Xu G  Scheraga HA 《Biochemistry》2003,42(36):10783-10789
The oxidative folding pathway(s) of single-domain proteins can be characterized by the existence, stability, and structural nature of the intermediates that populate the regeneration pathway. Structured intermediates can be disulfide-secure in that they are able to protect their existing (native) disulfide bonds from SH/SS reshuffling and reduction reactions, and thereby form the native protein directly, i.e., by oxidation of their exposed (or locally exposable) thiols. Alternatively, they can be disulfide-insecure, usually requiring global unfolding to expose their free thiols. However, such an unfolding event also exposes the existing native disulfide bonds. Thus, the subsequent oxidation reaction to form the native protein in a disulfide-insecure intermediate competes with the intramolecular attack by the thiols of the macromolecule on its own native disulfide bonds, resulting in a large population of intermediates that are reshuffled instead of being oxidized. Under stabilizing conditions, disulfide-insecure species become long-lived kinetically trapped intermediates that slowly and only indirectly convert to the native protein through reshuffling reactions. In this study, trans-[Pt(en)(2)Cl(2)](2+), a strong oxidizing agent which has not traditionally been used in oxidative folding, was applied to shift the competition between reshuffling and oxidation reactions in des [58-110] and des [26-84], two long-lived disulfide-insecure intermediates of RNase A, and oxidize them directly under stable conditions to form the native protein. Such a successful direct conversion of kinetically trapped intermediates to the native molecule by trans-[Pt(en)(2)Cl(2)](2+) may be helpful in facilitating the oxidative folding processes of multi-disulfide-containing proteins in general.  相似文献   

16.
Cytochrome c6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c6A and c6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role.  相似文献   

17.
The non-covalent homodimer formed by the C-terminal domains of the IgG1 heavy chains (C(H)3) is the simplest naturally occurring model system for studying immunoglobulin folding and assembly. In the native state, the intrachain disulfide bridge, which connects a three-stranded and a four-stranded beta-sheet is buried in the hydrophobic core of the protein. Here, we show that the disulfide bridge is not required for folding and association, since the reduced C(H)3 domain folds to a dimer with defined secondary and tertiary structure. However, the thermodynamic stability of the reduced C(H)3 dimer is much lower than that of the oxidized state. This allows the formation of disulfide bonds either concomitant with folding (starting from the reduced, denatured state) or after folding (starting from the reduced dimer). The analysis of the two processes revealed that, under all conditions investigated, one of the cysteine residues, Cys 86, reacts preferentially with oxidized glutathione to a mixed disulfide that subsequently interacts with the less-reactive second thiol group of the intra-molecular disulfide bond. For folded C(H)3, the second step in the oxidation process is slow. In contrast, starting from the unfolded and reduced protein, the oxidation reaction is faster. However, the overall folding reaction of C(H)3 during oxidative folding is a slow process. Especially, dimerization is slow, compared to the association starting from the denatured oxidized state. This deceleration may be due to misfolded conformations trapped by the disulfide bridge.  相似文献   

18.
We have determined the three-dimensional structure of a two-disulfide intermediate (Cys(8)-Cys(20), Cys(14)-Cys(26)) on the oxidative folding pathway of the cyclotide MCoTI-II. Cyclotides have a range of bioactivities and, because of their exceptional stability, have been proposed as potential molecular scaffolds for drug design applications. The three-dimensional structure of the stable two-disulfide intermediate shows for the most part identical secondary and tertiary structure to the native state. The only exception is a flexible loop, which is collapsed onto the protein core in the native state, whereas in the intermediate it is more loosely associated with the remainder of the protein. The results suggest that the native fold of the peptide does not represent the free energy minimum in the absence of the Cys(1)-Cys(18) disulfide bridge and that although there is not a large energy barrier, the peptide must transiently adopt an energetically unfavorable state before the final disulfide can form.  相似文献   

19.
The role of tumor suppressor protein p53 in cell cycle control depends on its flexible and partially unstructured conformation, which makes it crucial to understand its folding landscape. Here we report an intermediate structure of the core domain of the tumor suppressor protein p53 (p53C) during equilibrium and kinetic folding/unfolding transitions induced by guanidinium chloride. This partially folded structure was undetectable when investigated by intrinsic fluorescence. Indeed, the fluorescence data showed a simple two-state transition. On the other hand, analysis of far ultraviolet circular dichroism in 1.0 M guanidinium chloride demonstrated a high content of secondary structure, and the use of an extrinsic fluorescent probe, 4,4'-dianilino-1,1' binaphthyl-5,5'-disulfonic acid, indicated an increase in exposure of the hydrophobic core at 1 M guanidinium chloride. This partially folded conformation of p53C was plagued by aggregation, as suggested by one-dimensional NMR and demonstrated by light-scattering and gel-filtration chromatography. Dissociation by high pressure of these aggregates reveals the reversibility of the process and that the aggregates have water-excluded cavities. Kinetic measurements show that the intermediate formed in a parallel reaction between unfolded and folded structures and that it is under fine energetic control. They are not only crucial to the folding pathway of p53C but may explain as well the vulnerability of p53C to undergo departure of the native to an inactive state, which makes the cell susceptible to malignant transformation.  相似文献   

20.
《朊病毒》2013,7(2):119-124
Abstract

Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号