首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods are described, one for the quantitative determination of risperidone and the enantiomers of its active metabolite 9-hydroxyrisperidone (paliperidone) in human plasma and the other for the determination of the enantiomers of 9-hydroxyrisperidone in human urine. The plasma method is based on solid-phase extraction of 200 microl of sample on a mixed-mode sorbent, followed by separation on a cellulose-based LC column with a 13.5-min mobile phase gradient of hexane, isopropanol and ethanol. After post-column addition of 10 mM ammonium acetate in ethanol/water, detection takes place by ion-spray tandem mass spectrometry in the positive ion mode. Method validation results show that the method is sufficiently selective towards the enantiomers of 7-hydroxyrisperidone and capable of quantifying the analytes with good precision and accuracy in the concentration range of 0.2-100 ng/ml. An accelerated (run time of 4.3 min) and equally valid method for the enantiomers of 9-hydroxyrisperidone alone in plasma is obtained by increasing the mobile phase flow-rate from 1.0 to 2.0 ml/min and slightly adapting the gradient conditions. The urine method is based on the same solid-phase extraction and chromatographic approach as the accelerated plasma method. Using 100 microl of sample, (+)- and (-)-9-hydroxyrisperidone can be quantified in the concentration range 1-2000 ng/ml. The accelerated method for plasma and the method for urine can be used only when paliperidone is administered instead of risperidone, as there is insufficient separation of the 9-hydroxy enantiomers from the 7-hydroxy enantiomers, the latter ones being present only after risperidone administration.  相似文献   

2.
A robust and validated liquid-liquid extraction LC-MS/MS method was developed for population pharmacokinetic analysis and therapeutic drug monitoring of risperidone and the enantiomers of its major active metabolite (+)-and (-)9-hydroxyrisperidone in pediatric patients. The method was rapid, sensitive and used a low sample amount (200 microL), which is very desirable for the pediatric population. The assay was validated from 0.2 to 50 ng/mL in plasma for all analytes. LLOQ for all analytes was 0.2 ng/mL. The extracts were analyzed by normal phase LC-MS/MS. The sample run time was 8 min. Intra- and interday precision for all analytes was < or =6%; method accuracy was between 89 and 99%. Additional experiments were performed to analyze matrix effects and identify a proper internal standard for each analyte. The validated method was used to study risperidone and its enantiomer metabolites in plasma as part of a population pharmacokinetic study in pediatric patients with pervasive developmental disorder (PDD).  相似文献   

3.
A high-performance liquid chromatographic method has been developed for the simultaneous determination of the new anti-psychotic risperidone and its major metabolite 9-hydroxyrisperidone in plasma, urine and animal tissues. The alkalinized plasma samples were extracted with ethyl acetate and further purified prior to reversed-phase chromatography with ultraviolet detection at 280 nm. The method could also be applied to urine samples and animal tissue homogenates. Quantification limits were 2 ng/ml for plasma and urine and 10 ng/g for animal tissue. The method was applied to pharmacokinetic studies in experimental animals, human volunteers and patients.  相似文献   

4.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantitation of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma, using clozapine as internal standard. After sample alkalinization with 1 ml of NaOH (2 M) the test compounds were extracted from plasma using diisopropyl ether–isoamylalcohol (99:1, v/v). The organic phase was back-extracted with 150 μl potassium phosphate (0.1 M, pH 2.2) and 60 μl of the acid solution was injected into a C18 BDS Hypersil analytical column (3 μm, 100×4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.05 M, pH 3.7 with 25% H3PO4)–acetonitrile (70:30, v/v), and was delivered at a flow-rate of 1.0 ml/min. The peaks were detected using a UV detector set at 278 nm and the total time for a chromatographic separation was about 4 min. The method was validated for the concentration range 5–100 ng/ml. Mean recoveries were 98.0% for risperidone and 83.5% for 9-hydroxyrisperidone. Intra- and inter-day relative standard deviations were less than 11% for both compounds, while accuracy, expressed as percent error, ranged from 1.6 to 25%. The limit of quantitation was 2 ng/ml for both analytes. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it has successfully been applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

5.
Risperidone is currently one of the most frequently prescribed atypical antipsychotic drugs; its main active metabolite 9-hydroxyrisperidone contributes significantly to the therapeutic effects observed. An original analytical method is presented for the simultaneous analysis of risperidone and the metabolite in plasma, urine and saliva by high-performance liquid chromatography coupled to an original sample pre-treatment procedure based on micro-extraction by packed sorbent (MEPS). The assays were carried out using a C8 reversed-phase column and a mobile phase composed of 73% (v/v) acidic phosphate buffer (30 mM, pH 3.0) containing 0.23% triethylamine and 27% (v/v) acetonitrile. The UV detector was set at 238 nm and diphenhydramine was used as the internal standard. The sample pre-treatment by MEPS was carried out on a C8 sorbent. The extraction yields values were higher than 92% for risperidone and 90% for 9-hydroxyrisperidone, with RSD for precision always lower than 7.9% for both analytes. Limit of quantification values in the different matrices were 4 ng/mL or lower for risperidone and 6 ng/mL or lower for the metabolite. The method was successfully applied to plasma, urine and saliva samples from psychotic patients undergoing therapy with risperidone, with satisfactory accuracy results (recovery>89%) and no interference from other drugs. Thus, the method seems to be suitable for the therapeutic drug monitoring of schizophrenic patients using the three different biological matrices plasma, urine and saliva.  相似文献   

6.
A liquid chromatography-tandem mass spectrometric (LC-MS-MS) method with a rapid and simple sample preparation was developed and validated for the determination of Tirofiban in biological fluids. Tirofiban in serum samples was extracted and cleaned up by using an automated solid phase extraction method. An external calibration was used. The mass spectrometer was operated in the multiple reaction monitoring mode (MRM). A good linear response over the range of 2-200ng/ml was demonstrated. The accuracy for Tirofiban ranged from 94.8 to 110.8% within-day and from 103.0 to 104.7% between-day. The lower limit of quantification was 2ng/ml. This method is suitable for pharmacokinetic studies.  相似文献   

7.
A fast and robust liquid chromatography-mass spectrometry (LC-MS-MS) method has been developed for simultaneous quantitation of the angiotensin-converting enzyme (ACE) inhibitor, ramipril and its metabolite ramiprilat in human plasma. The method involves a solid-phase extraction from plasma, simple isocratic chromatography conditions and mass spectrometric detection that enables a detection limit at sub-nanogram levels. The proposed method has been validated with a linear range of 0.5-250 ng/ml for both ramipril and ramiprilat. The overall recoveries for ramipril and ramiprilat were 88.7 and 101.8%, respectively.  相似文献   

8.
A pre-column dansylated ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-MS/MS) method for simultaneous determination of risperidone (RIP), 9-hydroxyrisperidone (9-OH-RIP), monoamine and amino acid neurotransmitters in human urine was developed with the aim of providing data on how neurotransmitters may influence each other or change simultaneously in response to risperidone treatment. MultiSimplex based on the simplex algorithm and the fuzzy set theory was applied to the optimization of chromatographic separation and dansyl derivatization conditions during method development. This method exhibited excellent linearity for all the analytes with regression coefficients higher than 0.997. The lower limit of quantification (LLOQ) values for 9-OH-RIP and RIP were 0.11 and 0.06 ng/ml, respectively, and for neurotrasmitters ranged from 0.31 to 12.8 nM. The mean accuracy ranged from 94.7% to 108.5%. The mean recovery varied between 81.6% and 97.5%. All the RSD of precision and stability were below 9.7%. Finally, the optimized method was applied to analyze the first morning urine samples of schizophrenic patients treated with risperidone and healthy volunteers.  相似文献   

9.
The validation of a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for the determination of the selective cyclooxygenase-2 inhibitor etoricoxib in human plasma with phenazone as internal standard is described. The plasma samples were extracted by solid-phase extraction using polymer-based cartridges. Chromatography was carried out on a short, narrow bore RP C(18) column (30x2 mm). Detection was achieved by a Sciex API 3000 triple quadrupole mass spectrometer equipped with a turbo ion spray source working in positive ion mode. The respective mass transitions used for quantification of etoricoxib and phenazone were m/z 359.2-->280.2 and m/z 189.0-->104.1. The analytical method was validated over the concentration range 0.2-200 ng/ml. The limit of quantification was 0.2 ng/ml. The method is applicable to pharmacokinetic studies in humans.  相似文献   

10.
A sensitive and specific liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method has been validated for the measurement of YF476 in human plasma. The method involves a simple liquid-liquid extraction procedure, chromatography of the extracts on a C(18) column, atmospheric pressure chemical ionisation and detection in the multiple reaction monitoring mode. The calibration line was linear over the concentration range 0.1 ng/ml (the limit of quantification) to 25.0 ng/ml. Intra- and inter-batch precision was <14% and intra- and inter-batch accuracy was <11% over the entire calibration range. The bioanalytical method is robust and has been used for the analysis of many samples from human subjects involved in early clinical studies (Phase I).  相似文献   

11.
A sensitive and highly selective liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed to determine nimodipine in human plasma. The analyte and internal standard nitrendipine were extracted from plasma samples by n-hexane-dichloromethane-isopropanol (300:150:4, v/v/v), and chromatographed on a C(18) column. The mobile phase consisted of methanol-water-formic acid (80:20:1, v/v/v). Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI) source. The method has a limit of quantification of 0.24 ng/ml. The linear calibration curves were obtained in the concentration range of 0.24-80 ng/ml. The intra- and inter-day precisions were lower than 4.4% in terms of relative standard deviation (R.S.D.), and the accuracy ranged from 0.0 to 5.8% in terms of relative error (RE). This validated method was successfully applied for the evaluation of pharmacokinetic profiles of nimodipine tablets administered to 18 healthy volunteers.  相似文献   

12.
A liquid chromatography-tandem mass spectrometry method was developed for the analysis of sildenafil (SIL) and its metabolite desmethylsildenafil (DMS) in human plasma. Samples were accurately transferred to 96-well plates using a liquid handler (Multiprobe II). Solid-phase extraction was carried out on a 96-channel programmable liquid handling workstation (Quadra 96) using a C8 and cation-exchange mixed-mode sorbent. The extract was injected onto a silica column with an aqueous-organic mobile phase, a combination that was novel for improving the method sensitivity. The low limit of quantitation was 1.0 ng/ml for both SIL and DMS. The method was validated to meet the criteria of current industrial guidance for quantitative bioanalytical methods.  相似文献   

13.
A bioanalytical method for the analysis of artesunate and its metabolite dihydroartemisinin in human plasma using high throughput solid-phase extraction in the 96-wellplate format and liquid chromatography coupled to positive tandem mass spectroscopy has been developed and validated. The method was validated according to published FDA guidelines and showed excellent performance. The within-day and between-day precisions expressed as RSD, were lower than 7% at all tested concentrations including the lower limit of quantification. Using 50 microl plasma the calibration range was 1.19-728 ng/ml with a limit of detection at 0.5 ng/ml for artesunate and 1.96-2500 ng/ml with a limit of detection at 0.6 ng/ml for dihydroartemisinin. Using 250 microl of plasma sample the lower limit of quantification was decreased to 0.119 ng/ml for artesunate and 0.196 ng/ml dihydroartemisinin. Validation of over-curve samples in plasma ensured that accurate estimation would be possible with dilution if samples went outside the calibration range. The method was free from matrix effects as demonstrated both graphically and quantitatively.  相似文献   

14.
A sensitive and selective LC-MS-MS method has been developed and validated for the determination of cryptotanshinone (CTS) and its active metabolite tanshinone II A (TS II A) in rat plasma using fenofibrate (FOFB) as internal standard. Liquid-liquid extraction was used for sample preparation. Chromatographic separation was achieved on a Waters symmetry ODS column using methanol and water (85:15) as mobile phase delivered at 1.0 mL/min. LC-MS-MS analysis was carried out on a Finnigan LC-TSQ Quantum mass spectrometer using atmospheric pressure chemical ionization (APCI) and positive multiple reaction monitoring. Ions monitored were m/z 297.0--> 251.0 for CTS, m/z 295.0--> 249.0 for TS II A, and m/z 361.1--> 233.0 for FOFB with argon at a pressure of 0.2 Pa and collision energy of 25 eV for collision-induced dissociation (CID). The assay was linear over the range 0.1-20 ng/mL for CTS and 0.2-15 ng/mL for TS II A. The average recoveries of CTS and TS II A from rat plasma were 93.7 and 94.7%, respectively. The established method has been applied in a pharmacokinetic study of CTS in rats.  相似文献   

15.
A sensitive and selective method is described for the determination of artemether and its active dihydroartemisinin metabolite in human plasma using artemisinin as internal standard. The method consists of a liquid-liquid extraction with subsequent evaporation of the supernatant to dryness followed by the analysis of the reconstituted sample by liquid chromatography-mass spectrometry (LC-MS) in single ion monitoring mode using atmospheric pressure chemical ionization (APCI) as an interface. Chromatography was performed on a C(18) reversed-phase column using acetonitrile-glacial acetic acid 0.1% (66:34) as a mobile phase. The method was fully validated over a concentration range of 5-200 ng/ml using 0.5 ml of human plasma per assay. Stability assessment was also included. The method was applied to the quantification of artemether and its metabolite in human plasma of healthy volunteers participating in pharmacokinetic drug-drug interaction studies.  相似文献   

16.
We determined cabergoline and L-dopa in human plasma using liquid chromatography-mass spectrometry with tandem mass spectrometry (LC-MS-MS). The deproteinized plasma samples with organic solvent or acid were analyzed directly by reversed-phase liquid chromatography. Using multiple reaction monitoring (MRM, product ions m/z 381 of m/z 452 for cabergoline and m/z 152 of m/z 198 for L-dopa) on LC-MS-MS with electrospray ionization (ESI), cabergoline and L-dopa in human plasma were determined. Calibration curves of the method showed a good linearity in the range 5-250 pg/ml for cabergoline and 1-200 ng/ml for L-dopa, respectively. The limit of determination was estimated to be approximately 2 pg/ml for cabergoline and approximately 0.1 ng/ml for L-dopa, respectively. The method was applied to the analysis of cabergoline and L-dopa in plasma samples from patients treated with these drugs. The precision of analysis showed coefficients of variation ranging from 3.8% to 10.5% at cabergoline concentration of 13.8-26.2 pg/ml and from 2.9% to 8.9% at an L-dopa concentration of 302.5-522.1 ng/ml in patient plasma. As a result, the procedure proved to be very suitable for routine analysis.  相似文献   

17.
Two mass spectrometry-based methods are described for the determination of 447C88 (I), a novel inhibitor of acylcoenzyme A cholesterol acyltransferase (ACAT), in rat, dog and human plasma. The first method uses gas chromatography-mass spectrometry (GC-MS) with electron ionisation and selected-ion monitoring. The method employs solid-phase extraction of I from plasma and requires alkylation of I using iodoethane. The second method uses liquid chromatography-tandem mass spectrometry (LC-MS-MS) with atmospheric-pressure chemical-ionisation and selected-reaction monitoring. The LC-MS-MS method uses a simplified version of the extraction procedure used for GC-MS and does not require derivatisation of I. While both methods provide the necessary limit of quantitation of 0.5 ng/ml in human, dog and rat plasma with the required precision and accuracy, the LC-MS-MS assay offers increased sensitivity, selectivity and speed over the GC-MS assay. This allows a same day turn round of results for in excess of 100 samples, including sample preparation and data acquisition and processing.  相似文献   

18.
A high-pressure liquid chromatography with ultra-violet detection method for the simultaneous determination of risperidone and 9-hydroxyrisperidone in plasma after liquid-liquid extraction has been developed. The limit of quantitation was 5 nmol/L, and the inter-day coefficient of variation was less than 8% for both compounds. The mean recoveries of risperidone and 9-hydroxyrisperidone added to plasma were 96.8 and 99.4%, with an intra-day coefficient of variation of under 5 and 6%, respectively. Studies of analytical interference showed that the most commonly co-administered antidepressants and benzodiazepines did not interfere. The method was used for the determination of the plasma concentrations of a schizophrenic patient treated daily with an oral dose of 4.5 mg risperidone. The patient suffered severe extrapyramidal side-effects after adding risperidone to his previous medication of haloperidol and levomepromazine. The risperidone plasma concentration was well above the average (182 nmol/L), which suggests that a pharmacokinetic interaction occurred, presumably due to inhibition of the enzyme CYP2D6.  相似文献   

19.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method has been developed and validated for simultaneous quantification of venlafaxine (VEN) and O-desmethyl venlafaxine (ODV) in human plasma. The analytes were extracted from human plasma by using solid-phase extraction (SPE) technique. Escitalopram (ESC) was used as the internal standard. A Betasil C18 column provided chromatographic separation of analytes followed by detection with mass spectrometry. The mass transition ion-pair has been followed as m/z 278.27-->121.11 for VEN, m/z 264.28-->107.10 for ODV and m/z 325.00-->262.00 for ESC. The method involves a solid phase extraction from plasma, simple isocratic chromatography conditions and mass spectrometric detection that enables detection at nanogram levels. The proposed method has been validated with linear range of 3-300 ng/ml for VEN and 6-600 ng/ml for ODV. The intrarun and interrun precision and accuracy values are within 10%. The overall recoveries for VEN and ODV were 95.9 and 81.7%, respectively. Total elution time as low as 3 min only.  相似文献   

20.
For toxicological purposes, a HPLC assay was developed for the simultaneous determination of risperidone and 9-hydroxyrisperidone in human plasma. After a single-step liquid-liquid extraction, both compounds were separated on a C(18) column and measured at 280 nm. A good inter-assay accuracy (<116%) was achieved with inter-assay precision less than 12%. Quantification limits were 10 ng/ml. This rapid method (run time <5 min) is currently used for poison management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号