首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The net uptake and output of plasma unesterified choline, glycerophosphocholine, phosphocholine and lipid choline by organs of the conscious chronically catheterized sheep were measured. There was significant production of plasma unesterified choline by the upper- and lower-body regions and the alimentary tract and uptake by the liver, lungs and kidneys. The upper- and lower-body regions drained by the venae cavae provided the bulk (about 82%) of the total body venous return of plasma unesterified choline. Production of plasma unesterified choline by the alimentary tract was approximately balanced by the plasma unesterified choline taken up by the liver, and was almost equal to the amount of choline secreted in the bile. There was a considerable amount of glycerophosphocholine in the liver and there was production of plasma glycerophosphocholine by the liver and uptake by the lungs and kidneys. Glycerophosphocholine was higher in the plasma of sheep than in that of rats. Plasma phosphocholine was produced by the alimentary tract and kidneys. There was production of plasma lipid choline by the upper- and lower-body regions drained by the venae cavae. The results suggest that the sheep synthesizes substantial amounts of choline in ectrahepatic tissues and has the capacity for extensive retention and recycling of bile choline. These observations, coupled with a slow turnover of the endogenous choline body pool, explain the low requirement of sheep for dietary choline in contrast with non-ruminant species.  相似文献   

2.
Feeding a semi-synthetic diet containing 1% orotic acid to rats for one day stimulates the CDPcholine pathway of liver phosphatidylcholine synthesis 4.5-fold without significantly increasing the liver phosphatidylcholine level. The liver betaine level increases 1.6-fold. The present experiments were performed to investigate the source of the increased liver betaine. Orotic acid feeding did not alter the rate of oxidation of 1,2[14C] choline to betaine. After liver phosphatidylcholine was labelled in vivo with 2[14-C]-ethanolamine, over 90% of the choline-derived radioactivity was recovered in liver betaine and this was consistently increased in rats fed orotic acid. It is concluded that the increased synthesis of liver phosphatidylcholine caused by dietary orotic acid is accompanied by an increased rate of liver phosphatidylcholine catabolism, with betaine as the major end-product of the choline moiety.  相似文献   

3.
beta-Migrating very-low-density lipoproteins (beta-VLDL) are cholesteryl-ester-enriched lipoproteins which accumulate in the serum of cholesterol-fed animals or patients with type III hyperlipoproteinemia. In the rat, beta-VLDL are rapidly cleared by the liver and parenchymal liver cells form the major site for uptake. In this investigation, beta-VLDL were labeled with [3H]cholesteryl esters and the hepatic intracellular transport of these esters was followed. 2 min after injection, the major part of the [3H]cholesteryl esters is already associated with the liver and a significant proportion is recovered in endosomes. Up to 25 min after injection, an increase in radioactivity in the lysosomal compartment is noticed. This radioactivity initially represents cholesteryl esters, while from 25 min onward, radioactivity is mainly present in unesterified cholesterol. Between 45 min and 90 min after beta-VLDL injection, specific transfer of unesterified [3H]cholesterol to the endoplasmic reticulum is observed, while by 3 h the majority is located in this fraction. The appearance of radioactivity in the bile was rather slow as compared to the rapid initial uptake and processing, and up to 5 h after injection only 10% of the injected dose had reached the bile (mainly as bile acids). 72 h after injection, the amount of the injected radioactivity recovered in the bile had increased to 50%. Chloroquine treatment of the rats inhibited the hydrolysis of the cholesteryl esters and the appearance of radioactivity in the bile was retarded. It is concluded that beta-VLDL are rapidly processed by parenchymal liver cells and that the cholesteryl esters from beta-VLDL are hydrolyzed in the lysosomal compartment. Unesterified cholesterol remains associated with the endoplasmic reticulum for a prolonged time, although ultimately the majority will be secreted into the bile as bile acids. The effective operation of this pathway will prevent extrahepatic accumulation of cholesteryl esters from beta-VLDL, while the prolonged residence time of unesterified cholesterol in the endoplasmic reticulum might be important for regulation of low-density lipoprotein (LDL) receptors in liver and thus for LDL levels in the blood.  相似文献   

4.
Unesterified radioactive cholesterol, both bound to serum lipoproteins and dispersed in ethanol-saline, was injected into bile fistula and intact rats. Due to phagocytosis, mainly by the liver macrophages, intravenously injected cholesterol in ethanol-saline disappears from the bloodstream significantly faster than lipoprotein-bound cholesterol. Soon after the initial phagocytosis, the particulate isotopic cholesterol started to reappear in blood, reaching a maximal radioactivity in blood 10-24 hr after injection. Although the radioactive cholesterol reappears in serum in both esterified and unesterified form, it is likely that cholesterol is released from the phagocytic cells as unesterified cholesterol which is then esterified intravascularly or at other sites. In the bile fistula rats, somewhat more of the lipoprotein cholesterol than of the particulate cholesterol appeared in bile early after injection. However, cholesterol turnover calculated from a twopool model was the same for rats injected with lipoproteinbound or particulate cholesterol.  相似文献   

5.
Biliary obstruction in the setting of hepatic bacterial infection has great morbidity and mortality. We developed a novel murine model to examine the effect of biliary obstruction on the clearance of hepatic Escherichia coli infection. This model may allow us to test the hypothesis that biliary obstruction itself adversely affects clearance of hepatic infections even if the bacteria are introduced into the liver by a nonbiliary route. We ligated the bile ducts of C57BL/6 mice on days -1, 0, or +1, relative to a day 0 portal venous injection of E. coli. We monitored survival, hepatic bacterial growth, pathology, and IL-10 protein levels. The role of IL-10 in this model was further examined using IL-10 knockout mice. Mice with bile duct ligation at day +1 or 0, relative to portal venous infection at day 0, had decreased survival compared with mice with only portal venous infection. The impaired survival was associated with greater hepatic bacterial growth, hepatic necrosis, and increased production of IL-10. Interestingly, the transgenic knockout of IL-10 resulted in impaired survival in mice with bile duct ligation and portal venous infection. Biliary obstruction had a dramatic detrimental effect on hepatic clearance of portal venous E. coli infection. This impaired clearance is associated with increased IL-10 production. However, transgenic knockout of IL-10 increased mortality after hepatic infection.  相似文献   

6.
The significance of the hepatic arterial supply in the intrahepatic microcirculation in normal and carbon tetrachloride-induced cirrhotic livers was studied by dye injection method and by ligation of the hepatic artery. The in vivo distribution of dye injected into the hepatic artery evidenced the presence of arterio-venous shunts in the cirrhotic liver. When the hepatic artery of the cirrhotic liver was ligated, the elevated portal venous pressure dropped significantly, and the fast-flowing population of microvessels and sinusoids in the bimodal frequency distribution plot disappeared. The fast-flowing microvessel and sinusoids appeared to be the "arterial" microvessels and sinusoids, and they were converted into the slow-flowing venous channels after hepatic arterial ligation. The transmission of arterial pressure via the A-V shunts may be of greater significance in the pathophysiology of portal hypertension than previously believed.  相似文献   

7.
Studies were carried out using an isolated rat liver system to define: the contribution of exogenous phosphatidylcholine (PC) to biliary phospholipid secretion; and its hepatic metabolism during perfusion of the livers with conjugated bile salts with different hydrophilic/hydrophobic properties. A tracer dose of sn-1-palmitoyl-sn-2-[14C]linoleoylPC was injected as a bolus into the recirculating liver perfusate, under constant infusion of 0.75 mumol/min of tauroursodeoxycholate or taurodeoxycholate. The effects on bile flow, biliary lipid secretion, 14C disappearance from the perfusate and its appearance in bile, as well as hepatic and biliary biotransformation were determined. With both the bile salts, about 40% of the [14C]PC was taken up by the liver from the perfusate over 100 min. During the same period less than 2% of the given radioactivity was secreted into bile. More than 95% of the 14C recovered in bile was located within the identical injected PC molecular species. The biliary secretion of labeled as well as unlabeled PC, however, was significantly higher in livers perfused with taurodeoxycholate than tauroursodeoxycholate, while the reverse was observed with respect to bile flow and total bile salt secretion. The exogenous PC underwent extensive hepatic metabolization which appeared to be influenced by the type of bile salt perfusing the liver. After 2 h perfusion, the liver radioactivity was found, in decreasing order, in PC, triacylglycerol, phosphatidylethanolamine and diacylglycerol. In addition, the specific activity of triacylglycerol was significantly higher in tauroursodeoxycholate than in taurodeoxycholate-perfused livers (P less than 0.025), while the reverse was true for the specific activity of hepatic PC (P less than 0.01). Because taurodeoxycholate and tauroursodeoxycholate showed opposite effects on both biliary lipid secretion and hepatic PC biotransformations, we conclude that the hepatic metabolism of glycerolipids is influenced by the physiochemical properties of bile salts.  相似文献   

8.
The effect of a single dose (50 mg/kg body weight) of 3-methylcholanthrene on de novo phosphatidylcholine biosynthetic activities in rat liver was studied both in a cell-free system and with slice experiments. 3-Methylcholanthrene caused a significant depression of either [methyl-14C]choline or [2-(3)H]glycerol incorporation into phosphatidylcholine when the precursor was incubated with liver slices. At the same time, there occurred a significant accumulation of radioactivity in either cholinephosphate or diacylglycerol molecule from [14C]choline or [3H]glycerol, respectively, suggesting that 3-methylcholanthrene could cause an inhibitory effect on hepatic phosphatidylcholine synthesis at the cholinephosphotransferase or/and cholinephosphate cytidylyltransferase step. Subsequent studies, where the activities of the three enzymes involved in de novo phosphatidylcholine synthesis were compared between control and 3-methylcholanthrene-pretreated rat liver subcellular fractions, demonstrated that the cholinephosphotransferase step could be the site of inhibition by 3-methylcholanthrene. On the other hand, 3-methylcholanthrene caused a significant induction of choline kinase activity in a time-dependent manner and, at the same time, the cholinephosphate pool size in liver cytosol was enlarged 2-3-fold when compared to the respective control. The overall results suggested strongly that 3-methylcholanthrene causes the counteractive effects on the de novo phosphatidylcholine biosynthesis, induction of choline kinase activity and inhibition of cholinephosphotransferase activity, both of which could participate in a concomitant increase in cholinephosphate pool size in rat liver.  相似文献   

9.
1. Injection of [Me-14C]choline into sheep indicated that the small amount of phosphatidylcholine present in abomasal digesta was largely (69%) of non-dietary or ruminal origin. 2. Long-term feeding of [Me-3H]choline to sheep produced insignificant labelling of plasma phosphatidylcholine, indicating that more than 99% of the choline body pool was of non-dietary origin. 3. In contrast, when rats were fed with [Me-3H]choline for similar periods, 18-54% of the tissue phosphatidylcholine was derived from dietary choline. 4. The loss of [14C]choline and 32P from the plasma phosphatidylcholine after a single injection of these isotopes indicated a markedly slower turnover of choline in the sheep compared with the rat. This observation, coupled with a lack of liver glycerophosphocholine diesterase, provides an explanation for the insensitivity of the sheep to an almost complete microbial destruction of dietary choline before alimentary-tract absorption.  相似文献   

10.
1. Choline, which is present in the diet of the sheep either in the non-esterified form or combined in phospholipids, is rapidly degraded in the rumen. The ultimate product formed from the N-methyl groups is methane. 2. Analysis of the non-esterified choline and the phosphatidylcholine in ruminal and abomasal digesta indicate that the phospholipid is the main vehicle for the passage of choline to the lower digestive tract. 3. The concentration of phosphatidylcholine in abomasal digesta is lower than that of ruminal digesta, which is in line with a selective retention of protozoa in the rumen as observed by others. 4. On defaunation of the rumen to remove ciliated protozoa the concentration of phosphatidylcholine in ruminal digesta falls markedly and becomes lower than that in abomasal digesta. 5. Calculation shows that the adult sheep obtains at most only about 20--25 mg of effective choline per day from its diet (0.002--0.0025% of dietary total dry-weight intake). This is some fifty times less than the minimum required to avoid pathological lesions and death in other species investigated (0.1%+ of dietary dry-weight intake). 6. Sheep liver can synthesize choline from [14C]ethanolamine both in vitro and in vivo, but the synthesis of choline per kg body weight is many times less than it is in the rat. 7. The intact sheep oxidizes an injected dose of [1,2-14C]choline to CO2 at a rate that is several times less than that observed for the rat. This could help to explain the apparent minimal requirement of sheep for dietary choline.  相似文献   

11.
木文研究了多种氨基酸、乙醇胺和甲基乙醇胺对细胞摄取胆碱和合成磷脂酰胆碱(PC)的影响,发现多种氨基酸非竞争性地抑制细胞摄取胆碱。含胆碱代谢物的分析显示胆碱转变成CDP-胆碱,随之形成PC均不受氨基酸影响。乙醇胺竞争性地抑制胆碱摄取,且存在剂量依赖关系。乙醇胺能明显抑制胆碱激酶活性,但细胞内胆碱和磷酸胆碱的代谢池并不改变,提示乙醇胺不影响胆碱转变成磷酸胆碱。根据CDP-胆碱和PC的比放射性分布,乙醇胺也不影响PC的生物合成。甲基乙醇胺抑制胆碱摄入的程度强于乙醇胺,并抑制胆碱激酶和CTP:磷酸胆碱胞苷转移酶活性,含胆碱代谢物以CDP-胆碱下降最显著;提示甲基乙醇胺不仅抑制胆碱摄入而且还干扰了CDP-胆碱通路。  相似文献   

12.
Accumulation of lysophosphatidylcholine in gall-bladder bile is involved in the pathogenesis of acute cholecystitis. [1-14C]oleoyl- or [1-14C]palmitoyl-lysophosphatidylcholine was thus instilled in the in situ guinea pig gall-bladder and the absorption and metabolism of the lipid were determined. We found that, after 6 h instillation, 53% of the oleoyl derivative was adsorbed by the gall-bladder, whereasee only 37% of the palmitoyl derivative was absorbed. Although some differences in the metabolism of these two lipids were observed, a major portion of the absorbed radioactivity was found in the gall-bladder wall as phosphatidylcholine. To determine the mechanism of phosphatidylcholine formation from lysophosphatidylcholine by the gall-bladder mucosa, we used lysophosphatidylcholine which was labelled in the fatty acid moiety with 14C and in the choline moiety with 3H. Our data suggest that the mechanism of phosphatidylcholine formation from lysophosphatidylcholine involved acylation with an acyl donor other than a second molecule of lysophosphatidylcholine. We hypothesize that this mechanism as well as others described serve to prevent accumulation of lysophosphatidylcholine within the gall-bladder lumen and thus prevent damage to the gall-bladder mucosa.  相似文献   

13.
The concentration of unesterified choline in the plasma in the jugular vein of the rat (0.85 nmol/ml) was found to be three times that of the arterial supply to the brain (0.25 nmol/ml), indicating a higher efflux than uptake of unesterified choline by the brain. No such difference was found for the rabbit and no arterio-venous difference for phosphatidylcholine or lysophosphatidylcholine was observed in either species. No arterio-venous difference was found for choline in blood cells. The infusion of [Me-3H]choline into the circulation of the rat or rabbit indicated an uptake of radioactive choline by the brain and an efflux of non-radioactive choline. In the rabbit such an infusion produced a steady rise in the labelling of phosphatidylcholine and lysophosphatidylcholine in the plasma. When [14C2]ethanolamine was injected intraperitoneally into the rat there was a labelling of phosphatidylcholine, lysophosphatidylcholine and sphingomyelin in the plasma and cells of blood from the jugular vein and the arterial supply, as well as in the brain tissue. However, no labelling of unesterified choline in these tissues could be detected. Unesterified choline was shown to be liberated into the plasma when whole blood from the rat or man, but not the rabbit, was incubated for short periods at 30 degrees C.  相似文献   

14.
Canine spinal cord energy state after in situ freezing   总被引:1,自引:1,他引:0  
[Methyl-3H]choline has been injected intraventricularly into adult rabbits, and the rate of synthesis of phosphatidylcholine, choline plasmalogen and sphingomyelin (and their hydrosoluble precursors) in isolated neuronal and glial cells has been investigated. At all time intervals examined, the injected radioactivity was incorporated only into the base moiety of the choline lipids in both cell types. Maximum labelling of the two choline phosphoglycerides occurred in neurons 150 min after administration, whereas the highest specific radioactivity for glial phosphatidylcholine and choline plasmalogen was reached at 6 and 10 h, respectively. At any time interval examined, the neuronal and glial choline plasmalogen displayed a higher specific radioactivity than the corresponding diacyl-derivative. The two phosphoglycerides incorporated the base in both cell populations at a faster rate than did whole brain tissue. Sphingomyelin was labelled in both cells at a low rate and acquired measurable radioactivity levels only after 2 h from isotope administration. Highest levels of radioactivity for phosphorylcholine and cytidine-5′-diphosphocholine were reached in both neurons and glia 1-2 h after administration, but these levels per unit protein were higher in glial than in neuronal cells.  相似文献   

15.
Lipid overload-induced hepatic cholesterol accumulation is a major public health problem worldwide, and choline has been reported to ameliorate cholesterol accumulation, but its mechanism remains unclear. Our study found that choline prevented high-fat diet (HFD)-induced cholesterol metabolism disorder and enhanced choline uptake and phosphatidylcholine synthesis in the liver tissues; choline incubation prevented fatty acid (FA)-induced cholesterol accumulation and FA-induced inhibition of bile acid synthesis. Moreover, compared to single FA incubation, choline incubation or FA + choline co-incubation increased the mRNA abundances and protein levels of HNF4α and up-regulated the degradation of cholesterol into bile acids. Mechanistically, choline prevented the FA-induced accumulation of SREBP2 protein and the interaction between SREBP2 and HNF4α, thereby enhancing the DNA binding capacity of the HNF4α to the CYP7A1 promoter, and promoting the degradation of cholesterol into bile acids. Our study elucidated the novel regulatory mechanisms of choline preventing HFD-induced cholesterol accumulation and increasing bile acid synthesis by SREBP-2/HNF-4α/CYP7A1 pathway.  相似文献   

16.
Swine plasma low density lipoprotein (LDL) isolated ultracentrifugally (d 1.019-1.063) was labeled with 125-I, dialyzed, and reisolated by centrifugation at d 1.063. Over 96% of the radioactivity was shown to be associated with the apoprotein. After reinjection into the donor animal, disapperance of 125-I was followed for up to 122 hr. At all time intervals examined, over 95% of the total plasma 125-I was recovered in LDL (D 1.006-1.063), i.e., there was apparently no transfer of radioactivity to high density or very low density lipoproteins. The disappearance curve was biexponential, with half-lives of 0.83 plus or minus 0.06 and 22.5 plus or minus 1.7 hr for the first and second phases, respectively (13 studies). The mean calculated fractional catabolic rate was 0.041 plus or minus 0.003 hr-minus 1. Similar results were obtained in three dogs using autologous LDL of density 1.020-1.050; fractional catabolic rates were 0.031, 0.031, and 0.029 hr-minus 1. Tissue distribution of 125-I was determined in swine killed at various time intervals after [125-I]LDL injection with corrections for radioactivity in trapped plasma. Of the tissues examined, the liver showed by far the highest concentration. Total hepatic radioactivity, expressed as a percentage of total plasma radioactivity, was rather constant and independent of the time of killing from 3 to 122 hr (15.8 plus or minus 1.9%). The total extravascular LDL pool calculated from analysis of the plasma disappearance curves was about 20-30% of the size of the plasma LDL pool. These data are consistent with the conclusion that the liver accounts for a very large fraction of the total extravascular LDL pool. These data are consistent with the conclusion that the liver accounts for a very large fraction of the total extravascular LDL pool and that it is infairly rapid equilibrium with the plasma pool. To what extent the liver is involved in irreversible degradation cannot be inferred from these findings.  相似文献   

17.
1-Palmitoyl-2-linoleoyl phosphatidylcholine (PLPC) labeled in either the choline, glycerol, palmitate, or linoleate component in reconstituted rat high density lipoprotein (rHDL), was administered by vein to rats with bile fistula and taurocholate infusion. PLPC disappeared from plasma in a monoexponential fashion with a half-life of 50 min. A small fraction, about 14%, of PLPC disappearance was due to removal of linoleate from the sn-2 ester bond to form plasma cholesterol esters, presumably by lecithin-cholesterol acyltransferase. Otherwise, nearly all of the PLPC components that disappeared from blood in 1 h were recovered in the liver. The choline, glycerol, and linoleate components appeared predominantly in hepatic phosphatidylcholine (PC). These three components remained together in the liver with similar fractions of each in individual PC molecular species, most notably 1-stearoyl-2-linoleoyl-PC and dilinoleoyl-PC as well as PLPC. However, the palmitate component was spread among hepatic triglyceride, free fatty acid, other phospholipids, and all palmitate-containing molecular species of PC. Less than 2% of any administered PLPC component appeared in 1-stearoyl-2-arachidonyl-PC, the major species by mass in the liver. The palmitate component from plasma PLPC appeared in biliary PC at a more rapid rate than glycerol and linoleate components; the latter components appeared in bile in identical fashion. The results show that about two-thirds of plasma PLPC disappearance is due to phospholipase A1 hydrolysis, probably hepatic lipase. The putative produce, 2-linoleoyl-lysoPC, is efficiently reacylated with a saturated fatty acid in the liver, conserving PC.  相似文献   

18.
We have utilized the in situ perfused rat liver under nonrecirculating conditions to examine the effect of temperature on the metabolism and biliary secretion of [125I]-asialoorosomucid (ASOR). In this manner we were able to follow the fate of a single round of internalized ligand. In control livers perfused at 37 degrees C, approximately 50% of [125I]-ASOR injected into the portal vein was extracted on first pass. Five minutes after the injection, radioactivity, which had been extracted initially, began to appear in the hepatic venous effluent. Within 25 min, 50% of the initially extracted radioactivity was released into the perfusion medium; the bulk of this radioactivity (greater than 95%) was soluble in trichloroacetic acid. In livers perfused at temperatures slightly less than 37 degrees C (30-35 degrees C), first-pass extraction of [125I]-ASOR was similar to that observed at 37 degrees C. However, a severalfold decrease in the rate of release of radioactivity from the liver into the perfusion medium was noted at the lower perfusion temperatures; whereas greater than 50% of the initially extracted radioactivity was released within 30 min from livers perfused at 37 degrees C, only 5% was released at 30 degrees C. At the lower perfusion temperature, a larger proportion of the released radioactivity was acid precipitable (24% vs. 5%). Some radioactivity also was recovered in the bile; of the total amount of radioactivity released from the liver in 30 min at 37 degrees C, approximately 5% was directed into the bile. At lower temperatures of perfusion, a greater fraction of the radioactivity that was released from the liver was directed into the bile (20% at 30 degrees C vs. 5% at 37 degrees C). The data imply that the endosomal pathway to the lysosome is highly sensitive to slight reductions in temperature while the transcytotic route into bile is less sensitive. Lower temperatures might prolong the residence time of ASOR in the prelysosomal endosomal compartments, and thereby increase the likelihood that undegraded ligand will be returned to the blood or be missorted into bile.  相似文献   

19.
The initial rate of incorporation of methyl-labeled choline into the acid-soluble pool (phosphorylcholine) of Novikoff hepatoma cells growing in suspension culture was investigated as a function of the choline concentration in the medium. Below, but not above, 20 micro m, choline incorporation followed simple Michaelis-Menten kinetics at 24, 33, or 37 degrees C with an apparent K(m) of 4-7 micro m, and the V(max) values decreased with a Q(10) of about 2.3 with a decrease in temperature. Between 20 and 500 micro m, on the other hand, the rate of incorporation increased linearly with an increase in choline concentration in the medium, and the increase in incorporation rate with increase in choline concentration was about the same at all temperatures tested. The data suggest that at low concentrations choline is taken up mainly by a transport reaction, whereas at concentrations above 20 micro m, simple diffusion becomes the principal mode of uptake. The energy of activation for choline transport was estimated from an Arrhenius plot of the V(max) values as 67,000 J (16 kcal)/mole. At concentrations below 20 micro m, choline incorporation into membrane phosphatidylcholine also followed simple Michaelis-Menten kinetics, and the apparent K(m) was about the same as that for choline transport. The data support the conclusion that the transport of choline into the cell is the rate-limiting step in the conversion of choline to phosphorylcholine and its incorporation into phosphatidylcholine. At concentrations above 100 micro m, on the other hand, the ultimate rate of choline incorporation into phosphatidylcholine was independent of the choline concentration in the medium or the intracellular level of phosphorylcholine. Further, the rate of turnover of the choline moiety of phosphatidylcholine (half-life, 20-24 hr) either in whole cells or during incubation of isolated membrane fractions was unaffected by the presence of an excess of choline in the medium. The overall results indicate that a direct exchange between free choline and the choline moiety of phosphatidylcholine does not play a significant role in the incorporation of choline into phosphatidylcholine by Novikoff cells or in the turnover of the choline moiety of phosphatidylcholine, and that labeled choline therefore is a useful precursor in studying the synthesis and turnover of membrane phosphatidylcholine in these cells.  相似文献   

20.
The physiological role of liver alcohol dehydrogenase   总被引:10,自引:7,他引:10       下载免费PDF全文
1. Yeast alcohol dehydrogenase was used to determine ethanol in the portal and hepatic veins and in the contents of the alimentary canal of rats given a diet free from ethanol. Measurable amounts of a substance behaving like ethanol were found. Its rate of interaction with yeast alcohol dehydrogenase and its volatility indicate that the substance measured was in fact ethanol. 2. The mean alcohol concentration in the portal blood of normal rats was 0.045mm. In the hepatic vein, inferior vena cava and aorta it was about 15 times lower. 3. The contents of all sections of the alimentary canal contained measurable amounts of ethanol. The highest values (average 3.7mm) were found in the stomach. 4. Infusion of pyrazole (an inhibitor of alcohol dehydrogenase) raised the alcohol concentration in the portal vein 10-fold and almost removed the difference between portal and hepatic venous blood. 5. Addition of antibiotics to the food diminished the ethanol concentration of the portal blood to less than one-quarter and that of the stomach contents to less than one-fortieth. 6. The concentration of alcohol in the alimentary canal and in the portal blood of germ-free rats was much decreased, to less than one-tenth in the alimentary canal and to one-third in the portal blood, but detectable quantities remained. These are likely to arise from acetaldehyde formed by the normal pathways of degradation of threonine, deoxyribose phosphate and beta-alanine. 7. The results indicate that significant amounts of alcohol are normally formed in the gastro-intestinal tract. The alcohol is absorbed into the circulation and almost quantitatively removed by the liver. Thus the function, or a major function, of liver alcohol dehydrogenase is the detoxication of ethanol normally present. 8. The alcohol concentration in the stomach of alloxan-diabetic rats was increased about 8-fold. 9. The activity of liver alcohol dehydrogenase is generally lower in carnivores than in herbivores and omnivores, but there is no strict parallelism between the capacity of liver alcohol dehydrogenase and dietary habit. 10. The activity of alcohol dehydrogenase of gastric mucosa was much decreased in two out of the three germ-free rats tested. This is taken to indicate that the enzyme, like gastric urease, may be of microbial origin. 11. When the body was flooded with ethanol by the addition of 10% ethanol to the drinking water the alcohol concentration in the portal vein rose to 15mm and only a few percent of the incoming ethanol was cleared by the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号