首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the systemic arterial chemoreceptors in regulating breathing movements was determined in 7 chronically catheterized fetal sheep with carotid denervation and vagal section. Fetal hypoxaemia (delta PaO2 = -11.4 +/- 0.6 mmHg) decreased significantly the incidence of rapid-eye-movements (control = 26 +/- 1.5 min/h; hypoxia = 12 +/- 2.6 min/h, P less than 0.001) and breathing activity (control = 18 +/- 1.0 min/h; hypoxia = 8 +/- 1.1 min/h, P less than 0.001). However, the lag in onset of inhibition (approximately 8 min) was significantly greater (P less than 0.05) than for normal fetuses. The incidence of low voltage electrocortical activity was not affected. Hypercapnia (delta PaCO2 = 9.5 +/- 1.1 mmHg) increased significantly the incidence of rapid-eye-movements and breathing activity. Hypercapnia also increased the mean amplitude of breathing activity and reduced the average breath interval. Rapid-eye-movements and breathing activity were depressed significantly by hypoxaemic hypercapnia. These observations suggest that hypoxic inhibition does not require afferent activity from the aortic or carotid bodies nor from other chemoreflexes mediated by the vagus. However, such peripheral input may be responsible for a more rapid onset of inhibition in normal fetuses.  相似文献   

2.
Isocapnic hypoxaemia (delta PaO2 = -8.0 +/- 0.5 mmHg; delta CaO2 = -2.86 +/- 0.20 ml/dl) was produced in fetal sheep by having the ewe breathe for one hour a gas mixture (v/v) of 10.5% O2 and 1.5% CO2 in N2. Mean fetal heart rate, blood pressure, and incidence of low voltage electrocortical activity were not affected. However, the incidence of rapid-eye-movements and breathing activity was reduced by about 40%. Breathing movements during hypoxaemia had a mean inspiratory time, breath interval, and tracheal pressure amplitude which did not differ significantly from those during control experiments in which the ewe breathed air from the plastic bag. These observations suggest that hypoxia decreases the incidence of breathing movements but does not affect the amplitude or pattern of breathing activity and that it may reduce the incidence of eye movements and breathing activity through a common mechanism.  相似文献   

3.
Hypoxia inhibits fetal breathing movements but after birth it stimulates breathing. These differences have long been thought to involve central nervous inhibitory mechanisms. Such mechanisms might exert a tonic inhibition of fetal breathing movements at normal fetal PaO2 and the rise in PaO2 at birth might lift this inhibitory effect. To test this hypothesis 7 fetal sheep were chronically instrumented at 125-130 days for recording electrocortical activity (ECoG), and the electromyograph (EMG) activity of the diaphragm and neck muscles. Catheters were placed in a fetal carotid and a brachial artery and in the fetal trachea. For an extracorporeal membrane oxygenation system a 12 F gauge silastic catheter was placed in the right atrium for draining fetal blood and a 9.6 F gauge catheter was placed in a carotid artery to return oxygenated blood. Three days after operation the fetuses were connected to the extracorporeal membrane oxygenation system and fetal PaO2 was raised to 65.2 +/- 4.4 mmHg (SEM) for 6 to 19 h without changing pH or PaCO2. Neither the incidence of high voltage ECoG (48.5 +/- SEM 2.0% vs 52.8 +/- 3.3%) nor of fetal breathing movements (37.3 +/- 2.6% vs 23.8 +/- 5.9%) changed during the periods of hyperoxia. Since fetal breathing movements did not become continuous, we conclude that the lower PaO2 in the fetus compared to the neonate does not exert a tonic inhibitory influence on fetal breathing movements.  相似文献   

4.
Hypoxia in fetal sheep depresses respiratory activity. To determine if this effect is counterbalanced by hypercarbia we studied the effects of two levels of asphyxia produced by occlusions of the maternal uterine artery. Moderate asphyxia (PaO2 16.8 +/- 1.6 (SEM) PaCO2 48.9 +/- 1.0 torr) produced no changes in the percent time fetal breathing movements occupied each hour which ranged from 25.6 +/- 7.0 to 32.4 +/- 6.2%. However, a more marked asphyxia (PaO2 12.0 +/- 0.3, PaO2 57.0 +/- 1.6) resulted in a decrease in fetal respiratory activity to 8.7 +/- 3.7% during the first hour. This depression was sustained over the next 2 h but by the 5th hour breathing had returned to 26.2 +/- 7.3%. We concluded that hypercarbia can offset the respiratory inhibition of acute moderate hypoxia, but not that of a more marked lowering of PaO2 in fetal sheep. Severe asphyxia causes an initial inhibition of respiration which is followed by a return to normal respiratory activity.  相似文献   

5.
High environmental temperature is known to impair fetal growth and development. We now report long lasting changes in fetal breathing activity following the exposure of pregnant ewes to an ambient temperature of 43 degrees C for 8 h. In 16 trials in 10 ewes (119-138 days gestation) heat exposure increased maternal and fetal core temperatures 1.5-2.0 degrees C, and the hyperventilation by the ewe produced a fall in fetal PaCO2 from 53.5 +/- 1.3 to 34.8 +/- 5.3 mmHg (P less than 0.05). Fetal breathing movements decreased in incidence during the hyperthermia but remained episodic (present during low-voltage electrocortical activity) with occasional brief episodes of breathing at high rates (greater than 4 breaths/s). However, 1-2 h after the end of heating, when maternal and fetal core temperature and PaCO2 had returned to normal, fetal breathing movements became continuous, and were augmented 30-100% in amplitude. Fetal breathing movements occurred during both low- and high-voltage electrocortical activity. The results show that a heat load similar to that experienced by sheep in sub-tropical regions in the summer months cause prolonged changes in the central regulation of fetal breathing.  相似文献   

6.
The effects of inadequate expansion of maternal blood volume on uterine blood flow, fetal oxygen levels and vasoactive mediators during the third trimester were studied in 8 pregnant sheep. Results were compared to those obtained during 15 normal pregnancies. Prevention of the normal (20 ml/day) increase in maternal plasma volume was achieved by repeated haemorrhage and injections of furosemide. These treatments also reduced the rise in blood flow to the pregnant uterine horn that normally occurs during this period of gestation: at term flow was only 508 +/- 61 (SEM) compared to 838 +/- 83 ml/min in the control group (P greater than 0.01). This reduction in uterine blood flow caused a gradual fall in fetal PaO2, and rise in fetal levels of plasma renin activity, vasopressin, catecholamines and angiotensin II without change in pHa or base excess. Four to 5 days prior to delivery, the difference from control in PaO2 was -3.9 +/- 0.5 mmHg, plasma renin activity +2.9 +/- 1.7 ng/ml.h, vasopressin +4.2 +/- 1.1 pg/ml, catecholamines +957 +/- 145.3 pg/ml and angiotensin II +243 +/- 108.2 pg/ml. Furthermore, the fall in PaO2 and rise in vasoactive mediators that normally occur 3-5 days prior to the onset of labour was either absent (PaO2 and plasma renin activity) or blunted. Thus when expansion of blood volume during pregnancy is inadequate, blood flow to the uterus is adversely affected. This leads to various degrees of chronic fetal hypoxaemia and stimulation of vasoactive mediator systems. However, the normal stimulation of vasoactive mediator systems that occurs 3-5 days before delivery appears to be blunted. Experimental prevention of blood volume expansion during pregnancy produces an excellent model for the study of chronic mild fetal hypoxaemia.  相似文献   

7.
We tested the hypothesis that postnatal resetting of the carotid chemoreceptors is initiated by, and is dependent on, the rise in arterial PO2 (PaO2) which normally occurs after birth as air breathing is established. Previous studies had indicated that this resetting takes at least 24 h. We applied a technique for ventilation of the lungs of fetal sheep in utero to 3 groups of fetuses of 140-142 days gestational age: group 1 were exposed to normocapnic hyperoxia (mean PaO2 179.9 +/- 22.2 mmHg) for 27.4 +/- 0.9 h; group 2 were exposed to normocapnic hyperoxia (mean PaO2 229.4 +/- 77.5 mmHg) for 7.0 +/- 0.3 h; group 3 were ventilated for 21.6 +/- 3.3 h with a nitrogen/CO2 mixture to maintain PaO2 and PaCO2 within the normal fetal range. At the end of the ventilation period the fetuses were delivered by caesarean section, anaesthetized, paralysed and ventilation was continued. The responses of single or few fibre carotid chemoreceptor preparations to isocapnic hypoxia were then determined. To compare their response curves quantitatively, hyperbolic curves were fitted to the data. No significant differences between any of the groups were found in the vertical or the horizontal asymptotes. There was no difference in the slope of the hyperbolic line between group 2 and group 3. However, this slope was significantly greater for Group 1 than for either group 2 or group 3. Our results show that a period of hyperoxia of 24-31 h in utero, although not a similar period of normoxic ventilation, initiates the process of carotid chemoreceptor resetting.  相似文献   

8.
Role of plasma adenosine in breathing responses to hypoxia in fetal sheep.   总被引:2,自引:0,他引:2  
The importance of plasma adenosine in hypoxic inhibition of breathing movements was determined in chronically catheterized fetal sheep (greater than 0.8 term). Preductal arterial blood for adenosine measurements was withdrawn using a double lumen catheter to mix blood entering the catheter with a solution to stop adenosine metabolism. In 6 fetuses, isocapnic hypoxia (delta PaO2 congruent to -10 Torr) increased the average plasma adenosine concentration from 1.1 +/- 0.2 (SEM) to 2.0 to +/- 0.4 microM. During hypoxia, plasma levels of adenosine were inversely related to preductal arterial O2 content (CaO2) with values ranging between 1.6 and 4.0 microM when CaO2 was less than 3 ml/dl. Hypoxia also significantly reduced the incidence of fetal breathing and rapid eye movements. In other experiments, adenosine (0.36 +/- 0.03 mg/min/kg) was infused for one hour into the inferior vena cava of 5 fetuses. During this infusion, mean plasma concentration of adenosine was 2.8 +/- 0.3 microM, a value about 2.5 times the control average. Adenosine also significantly reduced the incidence of low voltage electrocortical activity, rapid eye movements and breathing activity. We conclude that hypoxic inhibition of fetal breathing most likely arises from an increase in central adenosine production, although during severe O2 deprivation (CaO2 less than 3 ml/dl) blood-borne adenosine could also contribute.  相似文献   

9.
To examine the effect of cardiogenic gas mixing on gas exchange we measured arterial tension of O2 (PaO2) and arterial tension of CO2 (PaCO2) during 3- to 5-min breath holds (BH) before and after infusing 50 ml of saline into the pericardial space (PCF) of seven anesthetized, paralyzed, mechanically ventilated dogs. During BH the ventilator was disconnected and a bias flow of 50% O2 at 4-5 l/min was delivered through the side ports of a small catheter whose tip was positioned 1 cm cephalad of the carina. Paired runs, alternately with and without PCF, were performed in triplicate in each dog. Initial PaO2 was similar for control runs [81 +/- 3 mmHg (SE)] and PCF runs (78 +/- 3 mmHg; P greater than 0.1). After 3-min BH, PaO2 in PCF runs (33 +/- 3 mmHg) was less than that in control runs (58 +/- 4 mmHg) (P less than 0.001). In contrast, the pattern of PaCO2 during BH did not differ with PCF. After 3-min BH, PaCO2 was 49 +/- 3 mmHg with PCF and 49 +/- 2 mmHg in the control runs (P greater than 0.7). In two dogs, repeated 50-ml reductions in lung volume, produced by rib cage compression, did not alter the time course of PaO2 during BH. Although cardiac output decreased slightly with PCF, hemodynamic changes due to PCF were unlikely to account for the observed fall in PaO2. Our results indicate a substantial effect of cardiogenic gas mixing on O2 uptake when tracheal gas is O2 enriched during breath holding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Breathing responses to adenosine were determined in 12 chronically catheterized fetal sheep (greater than 0.8 term) in which hypoxic inhibition of breathing had been eliminated by brain stem section. The caudal extent of transection varied from the rostral midbrain to the pontomedullary junction. Isocapnic hypoxia [delta arterial PO2 (PaO2) of -12 Torr] doubled the incidence and depth of breathing activity and increased the incidence of eye movements. Intra-arterial infusion of adenosine (0.30 +/- 0.03 mg.min-1.kg fetal wt-1) increased the incidence and amplitude of breathing without affecting blood gases. Adenosine did not significantly alter the incidence of eye activity. Intra-arterial injection of oligomycin (120 +/- 26 micrograms/kg fetal wt), an inhibitor of mitochondrial oxidative phosphorylation, also stimulated breathing activity. In four fetuses with brain stem section, peripheral arterial chemodenervation blunted the stimulatory effects of hypoxia on breathing activity and abolished altogether the excitatory effects of adenosine. It is concluded that 1) hypoxia and adenosine likely inhibit breathing in normal fetuses by affecting similar areas of the brain stem and 2) in fetuses with brain section, hypoxic hyperpnea depends on peripheral and central mechanisms, whereas adenosine stimulates breathing via the peripheral arterial chemoreceptors.  相似文献   

11.
To determine whether endogenous opioids influence the fetal breathing response to CO2 we have investigated the effect of the opiate antagonist, naloxone on the incidence, rate, and amplitude of breathing movements during hypercapnia in fetal lambs in utero. In 20 experiments in six pregnant sheep (130-145 days gestation) hypercapnia was induced by giving the ewe 4-6% CO2-18% O2 in N2 to breathe for 60 min. After 30 min of hypercapnia either naloxone (13 experiments) or saline (7 experiments) was infused intravenously for the remaining 30 min. During hypercapnia breath amplitude increased from 5.8 +/- 0.5 to 9.1 +/- 1.2 mmHg (P less than 0.001), and infusion of naloxone was associated with a further significant increase to 15.7 +/- 1.2 mmHg (P less than 0.001). Naloxone had no effect on the incidence or rate of breathing movements during hypercapnia. After hypercapnia there was a significant decrease in the incidence of fetal breathing movements in the naloxone group (14.7 +/- 3.2%). Infusion of saline during hypercapnia had no effect on incidence, rate, or amplitude of fetal breathing movements. These results suggest that endogenous opioids act to suppress or limit breath amplitude during hypercapnia but do not affect rate or incidence of breathing movements.  相似文献   

12.
Graded anemia was produced for 2 h in 10 unanesthetized fetal sheep by infusing plasma in exchange for fetal blood. This reduced the mean fetal hematocrits during the 1st h of anemia to 19.7 +/- 0.5% [control (C) = 28.2 +/- 1.1%] for mild anemia, 17.4 +/- 0.9% (C = 30.0 +/- 1.1%) for moderate anemia, and 15.1 +/- 1.0% (C = 29.2 +/- 1.3%) for severe anemia. The respective mean arterial O2 contents (CaO2) were 4.46 +/- 0.20, 3.89 +/- 0.24, and 3.22 +/- 0.19 ml/dl. Mean arterial PO2 was reduced significantly (by 2 Torr) only during moderate anemia, and mean arterial pH was decreased only during severe anemia. No significant changes occurred in arterial PCO2. Fetal tachycardia occurred during anemia. Mean arterial pressure was reduced by 2-3 mmHg during mild anemia; however, no significant blood pressure changes were observed for moderate or severe anemia. The incidence of rapid-eye movements and breathing activity was not affected by mild anemia, but the incidence of both was reduced significantly during moderate and severe anemia. It is concluded that 1) a reduction in CaO2 of greater than 2.48 +/- 0.22 ml/dl by hemodilution inhibits rapid-eye movements and breathing activity, and 2) the PO2 signal for inhibition does not come from arterial blood but from lower PO2 in tissue.  相似文献   

13.
We determined the effect of breathing 9% CO2/10% O2/81% N2 (asphyxia) on cardiac output distribution (microspheres) in 4-5 day old unanesthetized, chronically instrumented piglets prior to and following intravenous indomethacin administration. Thirty minutes of asphyxia caused PaCO2 to increase from 35 +/- 2 mmHg to 66 +/- 2 mmHg, PaO2 to decrease from 73 +/- 4 mmHg to 41 +/- 1 mmHg, and pH to decrease from 7.52 +/- 0.05 to 7.21 +/- 0.07. Arterial pressure was increased slightly but cardiac output was not changed significantly. Asphyxia caused blood flow to the brain, diaphragm, liver, heart, and adrenal glands to increase while causing decreases in blood flow to the skin, small intestine, and colon. Blood flows to the stomach and kidneys tended to decrease, but the changes were not significant. Treatment with indomethacin during asphyxia did not alter arterial pressure or cardiac output but decreased cerebral blood flow to the preasphyxiated level and decreased adrenal blood flow about 20%. Indomethacin did not alter blood flow to any other systemic organ. At this time the piglet was allowed to breathe air for 2.5 hr undisturbed. Two and a half hours after indomethacin administration, blood flows to all organs returned to the preasphyxia control levels with the exception of cerebral blood flow which was reduced (93 +/- 13 to 65 +/- 7 ml/100 g X min). Three hours after indomethacin administration, the cerebral hyperemia caused by asphyxia was less (134 +/- 17 ml/100 g X min) than prior to indomethacin (221 +/- 15 ml/100 g X min). Indomethacin did not alter the asphyxia-induced changes to any other systemic organ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Lesions that completely destroyed the paraventricular nucleus of the hypothalamus were placed in fetal sheep (n = 4) at 108-110 days of gestational age. These fetuses were then subjected to hypotension (50% of initial mean fetal arterial blood pressure), hypoxaemia (a decrease in fetal PaO2 greater than or equal to 5 torr) and bolus injection of corticotropin releasing factor (CRF-1.0 micrograms iv) in random order on successive days. The lesioned fetuses produced significantly less ACTH after hypotension (+10 min: 35.7 +/- 26.9 vs. 358.0 +/- 99.7 and +30 min: 28.2 +/- 12.2 vs. 238.0 +/- 73.0 pg.ml-1) (P less than 0.05), hypoxaemia (+40 min: 23.5 +/- 9.3 vs. 198.3 +/- 75.8 and +60 min: 32.3 +/- 18.8 vs. 295.3 +/- 99.9 pg.ml-1) (P less than 0.05) and intravenous administration of 1 microgram CRF (+15 min: 32.0 +/- 16.8 vs. 145.7 +/- 25.0 and +60 min: 33.0 +/- 23.3 vs. 161.3 +/- 43.1 pg.ml-1) (P less than 0.05). Our experiments suggest an important role for the fetal paraventricular nucleus in control of ACTH secretion. They also indicate that impairment of paraventricular nucleus function at this stage of fetal life may have a detrimental effect on the ability of the anterior pituitary to secrete ACTH in response to exogenous CRF.  相似文献   

15.
Experiments were conducted in 12 chronically-catheterized pregnant sheep to examine the effect of prolonged hypoxaemia secondary to the restriction of uterine blood flow on fetal oxygen consumption. Surgery was performed at 115 days gestation to place a teflon vascular occluder around the maternal common internal iliac artery and for insertion of vascular catheters. Following a 5-day recovery period, uterine blood flow was reduced in 6 animals for 24 hours and in 6 animals, the occluder was not adjusted. Fetal arterial PO2 decreased from 19.9 +/- 2.0 mmHg to 12.8 +/- 2.0 mmHg and 11.0 +/- 2.0 mmHg at 1 and 24 hours respectively in the experimental group and did not change the control group. Fetal pH decreased from 7.34 +/- 0.01 to 7.25 +/- 0.03 and 7.29 +/- 0.02 at 1 and 24 hours of hypoxaemia respectively. Fetal arterial lactate concentrations remained elevated throughout the experimental period with maximum concentrations of 6.6 +/- 2.1 mmol/l being present at 4 hours compared to 1.3 +/- 0.2 mmol/l during the control period. Umbilical blood flow increased from 186 +/- 19 ml/min/kg to 251 +/- 39 ml/min/kg at 1 h of hypoxaemia and returned to 191 +/- 21 ml/min/kg at 24 h. In association with the progressive fall in oxygen delivery to the fetus, oxygen extraction increased from 0.33 +/- 0.04 to 0.43 +/- 0.04 and 0.54 +/- 0.05 at 1 and 24 hours, respectively. Overall oxygen consumption by the fetus remained unchanged from control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We studied breathing and behavioral response to increased arterial CO2 (PaCO2) in 12 fetal sheep between 130 and 145 days of gestation. Of these 12 fetuses, 10 had an increase in PaCO2 through maternal rebreathing of CO2; in the other 2 fetuses CO2 was increased via an endotracheal tube and application of continuous distending airway pressure. We used our window technique to observe and videotape fetal behavior. The experiments consisted of recording breathing activity and behavior during resting conditions (1 low- and high-voltage ECoG cycle) and during administration of CO2. We measured electrocortical activity (ECoG), eye movements (EOG), electromyography of the diaphragm (EMGdi) and neck muscles, tracheal (Ptr), amniotic, and carotid arterial pressures. Administration of CO2 by the rebreathing technique produced an increase in the amplitude of breathing activity as reflected by an increase in Ptr from 5.0 +/- 0.6 to 12 +/- 1.9 mmHg (P less than 0.01) and an increase in SEMGdi from 32 +/- 4 to 77 +/- 8% max (P less than 0.001). Frequency increased due to a decrease in inspiratory (TI) and expiratory duration. Ptr/TI increased from 11.0 +/- 2.0 to 37.4 +/- 9.0 mmHg/s (P less than 0.05) and SEMGdi/TI increased from 67 +/- 7 to 221 +/- 28% max/s (P less than 0.001). Although the response was at times prolonged into the transitional high-voltage zone, it did not persist during established high-voltage ECoG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We investigated the role of cord occlusion in the initiation of breathing at birth using an extracorporeal membrane oxygenator system to control fetal blood gases independently of the placenta in 12 chronically instrumented fetal lambs. In group IA (n = 9; exp = 12) PaCO2 was kept constant (5.62 +/- 0.21 to 5.70 +/- 0.23 kPa) during cord occlusion. Group IB (n = 7; exp = 8) were cord occlusion experiments from group IA in which no fetal breathing movements had occurred; CO2 flow to the membrane was increased and fetal PaCO2 rose significantly (5.45 +/- 0.24 to 8.27 +/- 0.56 kPa). In group II (n = 7; exp = 12) PaCO2 was allowed to increase from 5.98 +/- 0.24 kPa to 8.09 +/- 0.48 kPa after cord occlusion. Within 5 min of cord occlusion, FBM did not occur in 11 out of 12 experiments in group IA or in 11 out of 12 experiments in group II. In contrast in group IB breathing did occur in 5 out of 8 experiments. When they occurred, fetal breathing movements were always associated with low voltage electrocortical activity. Our results do not support the hypothesis that the initiation of breathing within 5 minutes of birth is dependent on an inhibitory factor of placental origin. Furthermore these data suggest an association between the presence of breathing and a substantial rise in PaCO2.  相似文献   

18.
We investigated arterial PCO2 (PaCO2) and pH (pHa) responses in ponies during 6-min periods of high-intensity treadmill exercise. Seven normal, seven carotid body-denervated (2 wk-4 yr) (CBD), and five chronic (1-2 yr) lung (hilar nerve)-denervated (HND) ponies were studied during three levels of constant load exercise (7 mph-11%, 7 mph-16%, and 7 mph-22% grade). Mean pHa for each group of ponies became alkaline in the first 60 s (between 7.45 and 7.52) (P less than 0.05) at all work loads. At 6 min pHa was at or above rest at 7 mph-11%, moderately acidic at 7 mph-16% (7.32-7.35), and markedly acidic at 7 mph-22% (7.20-7.27) for all groups of ponies. Yet with no arterial acidosis at 7 mph 11%, normal ponies decreased PaCO2 below rest (delta PaCO2) by 5.9 Torr at 90 s and 7.8 Torr by 6 min of exercise (P less than 0.05). With a progressively more acid pHa at the two higher work loads in normal ponies, delta PaCO2 was 7.3 and 7.8 Torr by 90 s and 9.9 and 11.4 Torr by 6 min, respectively (P less than 0.05). CBD ponies became more hypocapnic than the normal group at 90 s (P less than 0.01) and tended to have greater delta PaCO2 at 6 min. The delta PaCO2 responses in normal and HND ponies were not significantly different (P greater than 0.1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The possibility that adenosine mediates hypoxic inhibition of fetal breathing and eye movements was tested in nine chronically catheterized fetal sheep (0.8 term). Intracarotid infusion of adenosine (0.25 +/- 0.03 mg.min-1.kg-1) for 1 h to the fetus increased heart rate and hemoglobin concentration but did not significantly affect mean arterial pressure or blood gases. As with hypoxia, adenosine decreased the incidence of rapid eye movements by 55% and the incidence of breathing by 77% without significantly affecting the incidence of low-voltage electrocortical activity. However, with longer (9 h) administration, the incidence of breathing and eye movements returned to normal during the adenosine infusion. Intravenous infusion of theophylline, an adenosine receptor antagonist, prevented most of the reduction in the incidence of breathing and eye movements normally seen during severe hypoxia (delta arterial PO2 = -10 Torr). It is concluded that 1) adenosine likely depresses fetal breathing and eye movements during hypoxia and 2) downregulation of adenosine receptors may contribute to the adaptation of breathing and eye movements during prolonged hypoxia.  相似文献   

20.
Electrophysiological responses of the fetus to hypoxia and asphyxia.   总被引:2,自引:0,他引:2  
To study the effect of transient hypoxia on neural function in utero, we examined brainstem auditory and somatosensory evoked potentials in chronically instrumented fetal sheep subject to altered maternal inspired gases. Moderate hypoxia without acidosis for 1 h, in 10 fetuses (fetal arterial pH = 7.37 +/- 0.03, PaO2 = 1.4 +/- 0.27 kPa) caused a transient depression of the later components of the evoked potentials. These recovered within 1 h. However, in 6 fetuses exposed to a second, acidotic, insult 2 days later, associated with a higher inspired PCO2 (fetal pH = 7.25 +/- 0.05, PaO2 = 1.17 +/- 0.28 kPa), there was greater impairment of the later components of the evoked potentials, with significant changes still observable 72 h later. In 4 fetuses a non-acidotic hypoxia was repeated instead and in these fetuses no persisting deficit was seen. These data suggest that there is a narrow threshold between a degree of intrauterine hypoxaemia associated with no sequelae and an insult causing persistent cerebral impairment, and that even mild acidosis may contribute to this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号