首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective. To study the efficacy of preserved human amniotic membrane in the reconstruction of conjunctival defect created during surgical removal of conjunctival lesions or symblepharon lysis. Methods. Preserved human amniotic membrane transplantation was performed in 93 eyes of 85 patients for reconstruction of various conjunctival surface problems. The indications for surgery were (1) pterygium excision (54 eyes), (2) conjunctival tumors excision (23 eyes), lysis of symblepharon (13 eyes), and covering a scleral graft (three eyes). Results. Success was noted in 69.9% (65/93) eyes, partially success in 22.6% (21/93) eyes, and failure in 7.5% (7/93) eyes with a mean follow-up of 8.9 months (1–28 months). In pterygium, conjunctival tumor, symblepharon, and scleral graft group, the success rate in each group was 70.3%, 78.3%, 53.8%, and 66.7% respectively. No serious immediate post-operative complications or graft rejection occurred. Conclusion. Amniotic membrane transplantation can be considered an alternative treatment for difficult ocular surface problems, and is effective in promoting epithelial healing, and reducing inflammation and scarring.  相似文献   

2.
Objective: To evaluate the efficacy of preserved human amniotic membrane transplantation for reconstruction of the corneal surface diseases. Methods: Preserved human amniotic membrane transplantations were performed in 84 eyes of 78 patients for corneal surface reconstruction. The indications were limbal stem cell deficiency from Steven–Johnson syndrome, chemical burn and herpes keratitis (27 eyes), bullous keratopathy (26 eyes), persistent epithelial defect and dellen (17 eyes), band keratopathy (11 eyes), preparing for prosthesis (1 eye), corneal ulcer (1 eye) and acute chemical burn (1 eye). Results: Success was noted in 83.3% (70/84) eyes, partial success in 13.1% (11/84) eyes, and failure in 3.6% (3/84) eyes for an average follow-up of 10.5 months (3 – 29 months). No patient developed major immediate post-operative complications. Conclusion: Amniotic membrane transplantation can reduce inflammation, promote corneal epithelial healing, and decrease irritation in corneal surface problems.  相似文献   

3.
Preserved human amniotic membrane (AM) is currently being used for a wide spectrum of ocular surface disorders. The AM has a basement membrane, which promotes epithelial cell migration and adhesion. The presence of a unique avascular stromal matrix reduces inflammation, neovascularization and fibrosis. The basic tenets of amniotic membrane transplantation (AMT) are to promote re-epithelialization, to reconstruct the ocular surface and to provide symptomatic relief from surface aberrations. AMT is a useful technique for reconstruction of surface defects resulting from removal of surface tumors and symblephara. AMT has effectively restored a stable corneal epithelium in eyes with, persistent epithelial defects and corneal ulcers. In the setting of acute ocular burns and SJS, AMT has satisfactorily reduced scarring and inflammation. AMT alone may be an effective alternative for partial limbal stem cell deficiency. However remarkable improvements in surface stability have resulted from concurrent AMT and limbal stem cell transplantation, wherein the limbal grafts are obtained from the normal fellow eye, living relative or cadaveric eye. In severe or bilateral cases, well being of the donor eye is a major concern. Currently, the most unique application of preserved human AM in ophthalmology is its use as a substrate for ex-vivo expansion of corneal and conjunctival epithelium. In this novel technique of tissue engineering, epithelial stem cells can be safely harvested and expanded on denuded AM. The resultant composite cultured tissue has been successfully transplanted to restore vision, as well as the structure and function of damaged ocular surfaces.  相似文献   

4.
When the ocular outer surface is badly damaged, subsequent corneal transplantation fails due to the absence of basal cells that are needed to support the graft. With the realization that the limbus and the conjunctiva have adult stem cells that can be cultured, it has been possible for us to explant culture these on de-epithelized human amniotic membrane, and to graft the resulting viable and transparent epithelium to 125 needy human patients with success. Ultrastructural, histological, biochemical and immunological assays establish the identity of the cells and the tissue formed.  相似文献   

5.
This study aimed to evaluate proposed molecular markers related to eye limbal stem cells (SC) and to identify novel associated genes. The expression of a set of genes potentially involved in stemness was assessed in freshly prepared limbal, corneal and conjunctival tissues. PAX6, AC133, K12 and OCT4 were detected in all the tissues and p63(+)/K3(-)/K12(+)/Nodal(+)/Cx43(+) were expressed in conjunctival, p63(-)/K3(+)/K12(+)/Nodal(-)/Cx43(+) in corneal, and p63(+)/K3(-)/K12(-)/Nodal(-)/Cx43(-) in limbal tissues. Limbal explants were cultured on human amniotic membrane for 21 days. The cells expressed p63 but not K3, K12, Nodal and Cx43, however, the expression of K3, K12 and Cx43 was detected, and p63 and the high BrdU-labeling index decreased with more culture. Ultrastructure analysis of the cultured cells showed typically immature organization of intracellular organelles and architecture. Our data suggest that limbal, corneal and conjunctival tissues are heterogeneous with some progenitors. Also, the expression of traditional SC markers may not be a reliable indicator of limbal SC and there is an increasing need to determine factor(s) involved in their stemness.  相似文献   

6.
通过同种基因型小鼠构建造血干细胞移植模型,将预处理的全骨髓单个核细胞或c-Kit+造血干细胞移植至致死剂量照射的受体小鼠体内,动态监测移植2~16周后受体小鼠体内供体来源细胞造血重建以及嵌合情况,以期揭示不同群体的供体细胞以及预处理等因素对小鼠造血干细胞移植后造血重建的影响。实验结果显示,移植后早期(2周)全骨髓单个核细胞组髓系比例要高于c-Kit+细胞移植组,但全骨髓移植组受体小鼠呈现出较大的移植后不良反应,出现脱毛、食欲不振以及体重减轻的症状。c-Kit+细胞移植组在淋系重建上要早于全骨髓移植组,供体细胞的嵌合植入也早于全骨髓移植组,但两组实验组最终均能完成造血重建过程。实验结果表明c-Kit+细胞移植组在移植后能够较快地实现供体细胞植入,进而开始造血重建,且c-Kit+细胞移植组的不良反应要低于全骨髓移植组。结果说明在整体造血重建效果上c-Kit+细胞移植组要优于全骨髓移植组。  相似文献   

7.
Limbal Stem Cells in Health and Disease   总被引:7,自引:0,他引:7  
Stem cells are present in all self-reviewing tissues and have unique properties. The ocular surface is made up of two distinct types of epithelial cells, constituting the conjunctival and the corneal epithelia. These epithelia are stratified, squamous and non-keratinized. Although anatomically continuous with each other at the corneoscleral limbus, the two cell phenotypes represent quite distinct subpopulations. The stem cells for the cornea are located at the limbus. The microenvironment of the limbus is considered to be important in maintaining stemness of the stem cells. They also act as a barrier to conjunctival epithelial cells and prevent them from migrating on to the corneal surface. In certain pathologic conditions, however, the limbal stem cells may be destroyed partially or completely resulting in varying degrees of stem cell deficiency with its characteristic clinical features. These include conjunctivalization of the cornea with vascularization, appearance of goblet cells, and an irregular and unstable epithelium. The stem cell deficiency can be managed with auto or allotransplantation of these cells. With the latter option, systemic immunosuppression is required. The stem cells can be expanded ex vivo on a processed human amniotic membrane and transplanted back to ocular surface with stem cell deficiency without the need of immunosuppression.  相似文献   

8.
The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases. [BMB Reports 2014; 47(3): 135-140]  相似文献   

9.
10.
Objective: To define the best conditions foramniotic membrane preparation, storage and banking in its use for cornealreconstruction.Methods: Amniotic membrane pieces were prepared understerile conditions from placentas selected on the basis of donor medical andsocial history, serology, microbiological tests and histology. The pieces werekept at –140 °C but before grafting they werethawed and stored at 4 °C in RPMI medium, to have apreparation usable within 72 h. This procedure was validatedby testing its therapeutic effectiveness in 25 patients 13 of which had cornealulcers of various origin, 3 had sequelae of herpes simplex keratitis, 3 bandkeratopathy and 6 corneal stem cell deficiency due to chemical or thermalburns.Results: The preparation showed appreciableanti-inflammatory and analgesic effects. In the absence of corneal stem celldeficiency a stable re-epithelialisation was achieved in 15 out of 19 patients.When the limbus was lesioned, the amniotic membrane decreased vascularizationand increased the number of corneal epithelial cells only in 1 of the 6patients. No adverse reactions attributable to the tissue were recorded.Conclusions: A ready-to-use amniotic membrane preparationstored at 4 °C after cryopreservation has been tested incorneal reconstruction. Like the amniotic membrane thawed immediately beforegrafting, this preparation displayed full therapeutic effect in epithelialdefects with stromal ulceration but without severe limbal stem cell deficiency.In two years banking activity 463 pieces of the preparation were successfullydistributed to 90 Italian hospitals.  相似文献   

11.
纳米粒子在生物医学上的应用越来越广泛,其进入细胞的机制与规律是设计与开发的基础.已有研究发现,表面修饰不同亲疏水性基团的金纳米粒子,在内吞机制被抑制时,进入细胞的能力明显不同.更特别的是,粒子表面亲水性基团与疏水性基团呈间隔条纹规则排列的纳米粒子,与其他修饰成分相同仅排列不同的纳米粒子进入细胞的规律区别显著.这一特殊现象无法用已有的纳米粒子进入细胞的机制解释.本文针对该研究结果,将纳米粒子与细胞的体系简化,定量分析了3种不同纳米粒子进入细胞前后的不同状态,计算获得了表面修饰不同亲疏水性基团的纳米粒子与细胞膜之间相互作用的Flory.Huggins自由能.结果发现,修饰规则间隔排列亲疏水基团的纳米粒子,其作用自由能在与细胞接触前后变化最大.研究结果不仅解释了实验发现,同时预示了纳米粒子进入细胞的新机制.  相似文献   

12.
In search of markers for the stem cells of the corneal epithelium   总被引:5,自引:0,他引:5  
The anterior one-fifth of the human eye is called the cornea. It consists of several specialized cell types that work together to give the cornea its unique optical properties. As a result of its smooth surface and clarity, light entering the cornea focuses on the neural retina allowing images to come into focus in the optical centres of the brain. When the cornea is not smooth or clear, vision is impaired. The surface of the cornea consists of a stratified squamous epithelium that must be continuously renewed. The cells that make up this outer covering come from an adult stem cell population located at the corneal periphery at a site called the corneal limbus. While engaging in the search for surface markers for corneal epithelial stem cells, vision scientists have obtained a better understanding of the healthy ocular surface. In this review, we summarize the current state of knowledge of the ocular surface and its adult stem cells, and analyse data as they now exist regarding putative corneal epithelial stem cell markers.  相似文献   

13.
The human amniotic membrane (HAM) is a highly abundant and readily available tissue. This amniotic tissue has considerable advantageous characteristics to be considered as an attractive material in the field of regenerative medicine. It has low immunogenicity, anti-inflammatory properties and their cells can be isolated without the sacrifice of human embryos. Since it is discarded post-partum it may be useful for regenerative medicine and cell therapy. Amniotic membranes have already been used extensively as biologic dressings in ophthalmic, abdominal and plastic surgery. HAM contains two cell types, from different embryological origins, which display some characteristic properties of stem cells. Human amnion epithelial cells (hAECs) are derived from the embryonic ectoderm, while human amnion mesenchymal stromal cells (hAMSCs) are derived from the embryonic mesoderm. Both populations have similar immunophenotype and multipotential for in vitro differentiation into the major mesodermal lineages, however they differ in cell yield. Therefore, HAM has been proposed as a good candidate to be used in cell therapy or regenerative medicine to treat damaged or diseased tissues.  相似文献   

14.
15.
为了衡量细胞固定化载体的性能。基于单分子层吸附理论,利用溶液中亚甲蓝染料在固形物表面的吸附倾向;建立了用于测定细胞固定化载体比表面的“动态染料吸附法”,方法学考察时以PVA-海藻酸钠的混合载体为例,结果表明四批次测量同一载体比表面的结果变异系数为5.5%,测量的载体比表面能精确反映载体内PVA,或是海藻酸钠浓度的变化,说明方法重复性好,灵敏度高,同时讨论了文献中“染料吸附法”测定比表面的不足。  相似文献   

16.
The degradation of phenol (100-2800 mg/L) by cells Pseudomonas putida CCRC14365 in an extractive hollow-fiber membrane bioreactor (HFMBR) was studied, in which the polypropylene fibers were prewetted with ethanol. The effects of flow velocity, the concentrations of phenol, and the added dispersive agent tetrasodium pyrophosphate on phenol degradation and cell growth were examined. It was shown that about 10% of phenol was sorbed on the fibers at the beginning of the degradation process. The cells P. putida fully degraded 2000 mg/L of phenol within 73 h when the cells were immobilized and separated by the fibers. Even at a level of 2800 mg/L, phenol could be degraded more than 90% after 95-h operation. At low phenol levels (< 400 mg/L) where substrate inhibition was not severe, it was more advantageous to treat the solution in a suspended system. At higher phenol levels (> 1000 mg/L), however, such HFMBR-immobilized cells could degrade phenol to a tolerable concentration with weak substrate-inhibition effect, and the degradation that followed could be completed by suspended cultures due to their larger degradation rate. The process development in an HFMBR system was also discussed.  相似文献   

17.
To facilitate biosensor studies of G-protein coupled receptors (GPCR) and other membrane proteins, reliable methods for preparation of sensor surfaces with high protein density are required. We present here a method for the easy and rapid immobilization and reconstitution of GPCR on carboxylated dextran surfaces modified with long alkyl groups. Following amine coupling of the detergent-solubilized receptor, lipid/detergent-mixed micelles were adhered as they were injected over the immobilized surface, taking advantage of the integrated flow cells. The detergent was eluted in the subsequent buffer flow and the remaining lipid formed a bilayer on the chip surface. With this procedure, rhodopsin was functionally reconstituted in a lipid environment in approximately 1 min. This method can also be used for the easy formation of pure supported lipid bilayers for use in model membrane interaction studies.  相似文献   

18.
19.
Cellular membranes are one of the primary sites of injury during freezing and thawing for cryopreservation of cells. Fourier transform infrared spectroscopy (FTIR) was used to monitor membrane phase behavior and ice formation during freezing of stallion sperm. At high subzero ice nucleation temperatures which result in cellular dehydration, membranes undergo a profound transition to a highly ordered gel phase. By contrast, low subzero nucleation temperatures, that are likely to result in intracellular ice formation, leave membrane lipids in a relatively hydrated fluid state. The extent of freezing-induced membrane dehydration was found to be dependent on the ice nucleation temperature, and showed Arrhenius behavior. The presence of glycerol did not prevent the freezing-induced membrane phase transition, but membrane dehydration occurred more gradual and over a wider temperature range. We describe a method to determine membrane hydraulic permeability parameters (ELp, Lpg) at subzero temperatures from membrane phase behavior data. In order to do this, it was assumed that the measured freezing-induced shift in wavenumber position of the symmetric CH2 stretching band arising from the lipid acyl chains is proportional to cellular dehydration. Membrane permeability parameters were also determined by analyzing the H2O-bending and -libration combination band, which yielded higher values for both ELp and Lpg as compared to lipid band analysis. These differences likely reflect differences between transport of free and membrane-bound water. FTIR allows for direct assessment of membrane properties at subzero temperatures in intact cells. The derived biophysical membrane parameters are dependent on intrinsic cell properties as well as freezing extender composition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号