首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We made unilateral chemical (10- or 50-nl microinjections; 4.7 mM kainic acid) or electrolytic (5-15 mA; 15 s) lesions in a region of the rostral ventrolateral medulla (VLM) caudal to the retrotrapezoid nucleus in 10 decerebrate, paralyzed, vagotomized, and servo-ventilated cats. The lesions were 3.0-4.2 mm lateral to the midline, within 2 mm caudal to the facial nucleus, and within 2.5 mm of the VLM surface. Four control injections (mock cerebrospinal fluid and fluorescent beads alone) produced small and inconsistent effects over 3-5 h. The predominant effect of the lesions was a significant decrease in baseline integrated phrenic nerve amplitude (PNA) (apnea in 2 cases), total respiratory cycle duration, and the response to increased CO2 (slope < 15% of control in 3 cases). The respiratory-related peak amplitude of the integrated sympathetic signal, blood pressure, and the sympathetic nerve activity response to CO2 were also decreased after the majority of lesions. Not all lesions produced all effects, and some lesions resulted in increased PNA and respiratory cycle duration. The lesioned region appears functionally to represent a caudal extension of the retrotrapezoid nucleus containing neurons necessary for normal baseline PNA and CO2 sensitivity. In addition, it contains neurons involved in the determination of resting respiratory frequency and normal sympathetic activity and blood pressure. The pattern of mixed responses among animals suggests that a heterogeneity of function is present within a relatively small VLM region.  相似文献   

2.
Repetitive electrical stimulation of afferent fibers in the superior laryngeal nerve (SLN) evoked depressant or excitatory effects on sympathetic preganglionic neurons of the cervical trunk in Nembutal-anesthetized, paralyzed, artifically ventilated cats. The depressant effect, which consisted of suppression of the inspiration-synchronous discharge of units with such firing pattern, was obtained at low strength and frequency of stimulation (e.g. 600 mV, 30 Hz) and was absent at end-tidal CO2 values below threshold for phrenic nerve activity. The excitatory effect required higher intensity and frequency of stimulation and was CO2 independent. The depressant effect on sympathetic preganglionic neurons with inspiratory firing pattern seemed a replica of the inspiration-inhibitory effect observed on phrenic motoneurons. Hence, it could be attributed to the known inhibition by the SLN of central inspiratory activity, if it is assumed that this is a common driver for phrenic motoneurons and some sympathetic preganglionic neurons. The excitatory effect, on the other hand, appears to be due to connections of SLN afferents with sympathetic preganglionic neurons, independent of the respiratory center.  相似文献   

3.
In an effort to characterize the role of the medullary lateral tegmental field (LTF) in regulating respiration, we tested the effects of selective blockade of excitatory (EAA) and inhibitory amino acid (IAA) receptors in this region on phrenic nerve activity (PNA) of vagus-intact and vagotomized cats anesthetized with dial-urethane. We found distinct patterns of changes in central respiratory rate, duration of inspiratory and expiratory phases of PNA (Ti and Te, respectively), and I-burst amplitude after selective blockade of EAA and IAA receptors in the LTF. First, blockade of N-methyl-D-aspartate (NMDA) receptors significantly (P < 0.05) decreased central respiratory rate primarily by increasing Ti but did not alter I-burst amplitude. Second, blockade of non-NMDA receptors significantly reduced I-burst amplitude without affecting central respiratory rate. Third, blockade of GABAA receptors significantly decreased central respiratory rate by increasing Te and significantly reduced I-burst amplitude. Fourth, blockade of glycine receptors significantly decreased central respiratory rate by causing proportional increases in Ti and Te and significantly reduced I-burst amplitude. These changes in PNA were markedly different from those produced by blockade of EAA or IAA receptors in the pre-B?tzinger complex. We propose that a proper balance of excitatory and inhibitory inputs to several functionally distinct pools of LTF neurons is essential for maintaining the normal pattern of PNA in anesthetized cats.  相似文献   

4.
刺激猫中脑中央灰质发音区可引起动物发音、情绪反应以及心律异常、血压升高等变化。同时,本研究还揭示,分别在中脑中央灰质嘴侧和尾侧发音区注入辣根过氧化物酶后,其逆行标记神经元分布相类似;但是,中脑中央灰质发音区和非发音区的传入联系则互不相同。  相似文献   

5.
The aim of this study was to examine the cardiorespiratory effects of chemically stimulating neurons in the midline medulla oblongata (MM) of artificially ventilated and freely breathing anesthetized rats. Earlier studies reported that stimulation of the MM elicits increases or decreases in mean arterial pressure (MAP) and phrenic nerve activity, depending on the mode and site of stimulation, anesthetic, and species. In the first series of experiments, rats were anesthetized with urethane, artificially ventilated, paralyzed, and bilaterally vagotomized. The rostrocaudal extent of the MM was mapped by microinjections of DL-homocysteic acid or L-glutamate (both 100 mM, 100 nl), and, in line with previous studies, most injections produced only small responses in MAP, heart rate, and splanchnic sympathetic nerve activity. Increases in respiratory parameters were evoked in caudal regions. However, activation of a discrete region of the MM at the level of the caudal pole of the facial nucleus (CP7) consistently caused a dramatic reduction in phrenic nerve amplitude and/or frequency and, in six rats, produced a prolonged apnea. The second series of experiments was carried out on freely breathing pentobarbitone sodium-anesthetized rats, with a diaphragmatic electromyogram used to monitor respiratory activity. Respiratory activity could again be abolished at CP7 after microinjections of glutamate (100 mM, 50 nl); however, these responses were accompanied by large decreases in MAP and moderate reductions in heart rate. This depression of respiratory activity may be due to activation of propriobulbar inhibitory neurons that project to known respiratory centers in the brain stem.  相似文献   

6.
The purpose of this study is to analyze the reflex effects of laryngeal afferent activation on respiratory patterns in anesthetized, vagotomized, paralyzed, ventilated cats. We recorded simultaneously from the phrenic nerve, T10 internal intercostal nerve, and single bulbospinal expiratory neurons of the caudal ventral respiratory group (VRG). Laryngeal afferents were activated by electrical stimulation of the superior laryngeal nerve (SLN) or by cold-water infusion into the larynx. Both types of stimuli caused inhibition of phrenic activity and facilitation of internal intercostal nerve activity, indicating expiratory effort. The activity of 46 bulbospinal expiratory cells was depressed during SLN electrical stimulation, and 13 of them were completely inhibited. In 44 of 56 neurons tested, mean firing frequency (FFmean) was decreased in response to cold-water infusion and 8 others responded with increased FFmean; in the remaining 4 neurons, FFmean was unchanged. Possible reasons for different neuronal responses to SLN electrical stimulation and water infusion are discussed. We conclude that bulbospinal expiratory neurons of VRG were not the source of the reflex motoneuronal expiratory-like activity produced by SLN stimulation. Other, not yet identified inputs to spinal expiratory motoneurons are activated during this experimental condition.  相似文献   

7.
The purpose was to evaluate activities of medullary respiratory neurons during equivalent changes in phrenic discharge resulting from hypercapnia and hypoxia. Decerebrate, cerebellectomized, paralyzed, and ventilated cats were used. Vagi were sectioned at left midcervical and right intrathoracic levels caudal to the origin of right recurrent laryngeal nerve. Activities of phrenic nerve and single respiratory neurons were monitored. Neurons exhibiting antidromic action potentials following stimulations of the spinal cord and recurrent laryngeal nerve were designated, respectively, bulbospinal or laryngeal. The remaining neurons were not antidromically activated. Hypercapnia caused significant augmentations of discharge frequencies for all neuronal groups. Many of these neurons had no change or declines of activity in hypoxia. We conclude that central chemoreceptor afferent influences are ubiquitous, but excitatory influences from carotid chemoreceptors are more limited in distribution among medullary respiratory neurons. Hypoxia will increase activities of neurons that receive sufficient excitatory peripheral chemoreceptor afferents to overcome direct depression by brain stem hypoxia. The possibility that responses of respiratory muscles to hypoxia are programmed within the medulla is discussed.  相似文献   

8.
We used the neurotoxin, kainic acid, which is known to stimulate neuronal cell bodies as opposed to axons of passage by binding to specific amino acid receptors to determine whether cells with such receptors have access to the ventrolateral medullary surface and are involved in central ventilatory chemosensitivity. Pledgets with 4.7 mM kainic acid were placed bilaterally on the rostral, intermediate, or caudal ventilatory chemosensitive areas for 1-2 min in chloralose-urethan-anesthetized, paralyzed, vagotomized, glomectomized, and servo-ventilated cats. Application of kainic acid on the caudal or intermediate areas produced no consistent significant effects on eucapnic phrenic output or on the slope or maximum value of the phrenic nerve response to increased end-tidal PCO2. Rostral area kainic acid produced immediate augmentation and then diminution of blood pressure and phrenic output. Apnea developed in six of nine cats by 40 min. In all five cats in which it could be tested, the slope of the CO2 response was clearly decreased. Of [3H]kainic acid applied to the rostral area, 88.4% was shown to be within 2 mm of the ventral surface. Comparison of surface application sites of this and other studies suggests that an area overlapping the border of the original rostral and intermediate areas allows access to neurons involved in the chemoreception process, which may also provide tonic facilitatory input to cardiorespiratory systems.  相似文献   

9.
Wang GM  Song G  Zhang H 《生理学报》2005,57(4):511-516
本文旨在研究电刺激家兔迷走神经诱导的黑-伯(Hering-Breuer,HB)反射中的学习和记忆现象。选择性电刺激家兔迷走神经中枢端(频率10~100Hz,强度20~60μA,波宽0.3ms,持续60s),观察对膈神经放电的影响。以不同频率电刺激家兔迷走神经可模拟HB反射的两种成分,即类似肺容积增大所致抑制吸气的肺扩张反射和类似肺容积缩小所致加强吸气的肺萎陷反射。(1)长时高频(≥40Hz,60s)电刺激迷走神经可模拟呼吸频率减慢,呼气时程延长的肺扩张反射。随着刺激时间的延长,膈神经放电抑制的程度逐渐衰减,表现为呼吸频率的减慢(主要由呼气时程延长所致)在刺激过程中逐渐减弱或消失,显示为适应性或“习惯化”的现象;刺激结束时呼吸运动呈现反跳性增强,表现为一过性的呼气时程缩短,呼吸频率加快,然后才逐渐恢复正常。长时低频(〈40Hz,60s)电刺激迷走神经可模拟呼吸频率加快、呼气时程缩短的肺萎陷反射。随着刺激时间的延长,膈神经放电增强的程度逐渐衰减,同样表现出“习惯化”现象;刺激结束后,膈神经放电不是突然降低,而是继续衰减,表现为呼气时程逐渐延长,呼吸频率逐渐减慢,直至恢复到前对照水平,表现了刺激后的短时增强效应。(2)HB反射的适应性或“习惯化”程度反向依赖于刺激强度和刺激频率,表现为随着刺激强度和频率的增加,膈神经放电越远离正常基线水平,即爿惯化程度减弱。结果表明,家兔HB反射具有“习惯化”这一非联合型学习现象,反映与其有关的呼吸神经元网络具有突触功能的可翅性,呼吸的中枢调控反射具有一定的适应性。  相似文献   

10.
Neurons within the dorsomedial hypothalamus (DMH) play a critical role in subserving the cardiovascular and neuroendocrine response to psychological stress. An increase in respiratory activity is also a characteristic feature of the physiological response to psychological stress, but there have been few studies of the role of DMH neurons in regulating respiratory activity. In this study we determined the effects of activation of DMH neurons on respiratory activity (assessed by measuring phrenic nerve activity, PNA) and the relationship between evoked changes in respiratory activity and changes in sympathetic vasomotor activity in spontaneously breathing urethane-anesthetized rats. Microinjections of bicuculline (4-40 pmol in 20 nl) into the DMH evoked dose-dependent increases in PNA burst frequency and amplitude. These were accompanied by dose-dependent decreases in mean tracheal CO(2) levels, indicative of hyperventilation. In control experiments, microinjections of bicuculline into sites adjacent to the DMH evoked much smaller or no changes in PNA. In experiments where renal sympathetic nerve activity (RSNA) was also measured, cycle-triggered averaging revealed that RSNA under resting conditions was partly correlated with the PNA, but in response to DMH disinhibition there was no consistent change in the amplitude of the respiratory-related variations in RSNA. The results indicate that DMH neurons can exert a powerful stimulatory effect on respiratory activity, causing hyperventilation. This is not associated with an increase in the degree of coupling between PNA and RSNA, indicating that the DMH-evoked increase in RSNA is not a consequence of increased central respiratory drive.  相似文献   

11.
We studied the influence of central and peripheral chemoreceptor stimulation on the activities of the phrenic and internal intercostal (iic) nerves in decerebrate, vagotomized, and paralyzed cats with bilateral pneumothoraces. Whole iic nerves of the rostral thorax (T2-T5) usually discharged during neural inspiration, whereas those of the caudal thorax (T7-T11) were primarily active during neural expiration. Filaments of rostral iic nerves that terminated in iic muscles generally discharged during expiration, suggesting that inspiratory activity recorded in whole iic nerves may have innervated other structures, possibly parasternal muscles. All nerves were phasically active at hyperoxic normocapnia and increased their activities systematically with hypercapnia. Isocapnic hypoxia or intra-arterial NaCN injection consistently increased phrenic and inspiratory iic nerve activities. In contrast, expiratory iic nerve discharges were either decreased (10 cats) or increased (7 cats) by hypoxia. Furthermore, expiratory responses to NaCN were highly variable and could not be predicted from the corresponding response to hypoxia. The results show that central and peripheral chemoreceptor stimulation can affect inspiratory and expiratory motoneuron activities differentially. The variable effects of hypoxia on expiratory iic nerve activity may reflect a relatively weak influence of carotid body afferents on expiratory bulbospinal neurons. However, the possibility that the magnitude of expiratory motoneuron activity is influenced by the intensity of the preceding centrally generated inspiratory discharge is also discussed.  相似文献   

12.
We have previously demonstrated that microinjection of dl-homocysteic acid (DLH), a glutamate analog, into the pre-B?tzinger complex (pre-B?tC) can produce either phasic or tonic excitation of phrenic nerve discharge during hyperoxic normocapnia. Breathing, however, is influenced by input from both central and peripheral chemoreceptor activation. This influence of increased respiratory network drive on pre-B?tC-induced modulation of phrenic motor output is unclear. Therefore, these experiments were designed to examine the effects of chemical stimulation of neurons (DLH; 10 mM; 10-20 nl) in the pre-B?tC during hyperoxic modulation of CO2 (i.e., hypercapnia and hypocapnia) and during normocapnic hypoxia in chloralose-anesthetized, vagotomized, mechanically ventilated cats. For these experiments, sites were selected in which unilateral microinjection of DLH into the pre-B?tC during baseline conditions of hyperoxic normocapnia [arterial PCO2 (PaCO2) = 37-43 mmHg; n = 22] produced a tonic (nonphasic) excitation of phrenic nerve discharge. During hypercapnia (PaCO2 = 59.7 +/- 2.8 mmHg; n = 17), similar microinjection produced excitation in which phasic respiratory bursts were superimposed on varying levels of tonic discharge. These DLH-induced phasic respiratory bursts had an increased frequency compared with the preinjection baseline frequency (P < 0.01). In contrast, during hypocapnia (PaCO2 = 29.4 +/- 1.5 mmHg; n = 11), microinjection of DLH produced nonphasic tonic excitation of phrenic nerve discharge that was less robust than the initial (normocapnic) response (i.e., decreased amplitude). During normocapnic hypoxia (PaCO2 = 38.5 +/- 3.7; arterial Po2 = 38.4 +/- 4.4; n = 8) microinjection of DLH produced phrenic excitation similar to that seen during hypercapnia (i.e., increased frequency of phasic respiratory bursts superimposed on tonic discharge). These findings demonstrate that phrenic motor activity evoked by chemical stimulation of the pre-B?tC is influenced by and integrates with modulation of respiratory network drive mediated by input from central and peripheral chemoreceptors.  相似文献   

13.
Stimulation of the superior laryngeal nerve (SLN) results in apnea in animals of different species, the mechanism of which is not known. We studied the effect of the GABA(A) receptor blocker bicuculline, given intravenously and intracisternally, on apnea induced by SLN stimulation. Eighteen 5- to 10-day-old piglets were studied: bicuculline was administered intravenously to nine animals and intracisternally to nine animals. The animals were anesthetized and then decerebrated, vagotomized, ventilated, and paralyzed. The phrenic nerve responses to four levels of electrical SLN stimulation were measured before and after bicuculline. SLN stimulation caused a significant decrease in phrenic nerve amplitude, phrenic nerve frequency, minute phrenic activity, and inspiratory time (P < 0.01) that was proportional to the level of electrical stimulation. Increased levels of stimulation were more likely to induce apnea during stimulation that often persisted beyond cessation of the stimulus. Bicuculline, administered intravenously or intracisternally, decreased the SLN stimulation-induced decrease in phrenic nerve amplitude, minute phrenic activity, and phrenic nerve frequency (P < 0.05). Bicuculline also reduced SLN-induced apnea and duration of poststimulation apnea (P < 0.05). We conclude that centrally mediated GABAergic pathways are involved in laryngeal stimulation-induced apnea.  相似文献   

14.
The present study examines the coexistence of neurons in the same cardiovascular point of the pontomedulla that integrates urinary bladder (UB) motility, and pelvic nerve activity (PNA). Microinjection of monosodium L-glutamate (Glu) into the locus coeruleus (LC), the gigantocellular tegmental field (FTG), the rostral ventrolateral medulla (RVLM), and the dorsomedial medulla (DM) produced pressor responses, whereas injection into the lateral tegmental field (FTL), the nucleus of tractus solitarii (NTS), and the caudal ventrolateral medulla (CVLM) produced depressor responses. However, microinjection of Glu into the dorsomotor nucleus of the vagus (DMV) and the ambiguus nucleus (AN), where the vagus nerve originates, produced marked bradycardia. Many of these cardiovascular responses were accompanied by increased, or decreased parasympathetic PNA. In six animals, sympathetic renal nerve activity (RNA) and PNA also increased simultaneously during the pressor response. The present study also examines the connection between the DMV-AN and the sacral intermediolateral column (IML), where parasympathetic preganglionic neurons (PGNs) of the pelvic nerve located. Biotinylated dextran amine (BDA), an anterograde tracer, was iontophoretically injected into the DMV or AN. No labelled terminal or neuron was detected in the sacral IML, but labelled terminals were observed in the bilateral LC, and also in the bilateral sides of the FTG, FTL, RVLM, DM, and CVLM. These results suggest that neurons of the DMV and/or AN may indirectly regulate the sacral parasympathetic PGNs through the LC for supraspinal control of the pelvic nerve. Furthermore, these results also suggest the coexistence of multiple autonomic integrating mechanisms of different kinds within various cardiovascular areas of the pontomedulla.  相似文献   

15.
The projections of phrenic nerve afferents to neurons in the dorsal (DRG) and ventral (VRG) respiratory group were studied in anesthetized, paralyzed, and vagotomized cats. Extracellular recordings of neuronal responses to vagal nerve and cervical phrenic nerve stimulation (CPNS) indicated that about one-fourth of the DRG respiratory-modulated neurons were excited by phrenic nerve afferents with an onset latency of approximately 20 ms. In addition, non-respiratory-modulated neurons within the DRG were recruited by CPNS. Although some convergence of vagal and phrenic afferent input was observed, most neurons were affected by only one type of afferent. In contrast to the DRG, only 3 out of 28 VRG respiratory-modulated neurons responded to CPNS. A second study determined that most of these neuronal responses were due to activation of diaphragmatic afferents since 90% of the DRG units activated by CPNS were also excited at a longer latency by thoracic phrenic nerve stimulation. The difference in onset latency of neuronal excitation indicates an afferent peripheral conduction velocity of about 10 m/s, which suggests that they are predominately small myelinated fibers (group III) making paucisynaptic connections with DRG neurons. Decerebration, decerebellation, and bilateral transection of the dorsal columns at C2 do not abolish the neuronal responses to cervical PNS.  相似文献   

16.
Factors contributing to the production of a phase lag along chains of oscillatory networks consisting of Hodgkin-Huxley type neurons are analyzed by means of simulations. Simplified network configurations are explored consisting of the basic building blocks of the spinal central pattern generator (CPG) generating swimming in the lamprey. It consists of reciprocally coupled crossed inhibitory C interneurons and ipsilateral excitatory E interneurons that activate C neurons and other E neurons. Oscillatory activity in the model network can, in the simplest case, be produced by a pair of reciprocally coupled C interneurons oscillating through an escape mechanism. Different levels of tonic excitation drive the network over a wide burst frequency range. In this type of network, powerful frequency-regulating factors are the effective inhibition produced by the active side, in combination with the tendency of the inactive side to escape from the inhibition. These two mechanisms can be affected by several factors, e.g. spike frequency adaptation (calcium-dependent K(+) channels), N-methyl-D-aspartate membrane properties as well as presence of low-voltage activated calcium channels. A rostrocaudal phase lag can be produced either by extending the contralateral inhibitory projections or the ipsilateral excitatory projections relatively more in the caudal than the rostral direction, since both an increased inhibition and a phasic excitation slow down the receiving network. The phase lag becomes decreased if the length of the intersegmental projections is increased or if the projections are extended symmetrically in both the rostral and the caudal directions. The simulations indicate that the conditions in the ends of an oscillator chain may significantly affect sign, magnitude and constancy of the phase lag. Also, with short and relatively weak intersegmental connections, the network remains robust against perturbations as well as intrinsic frequency differences along the chain. The phase lag (percentage of cycle duration) increases, however, with burst frequency also when the coupling strength is comparatively weak. The results are discussed and compared with previous "phase pulling" models as well as relaxation oscillators.  相似文献   

17.
Kainic acid (4.7 mM) applied to the rostral ventrolateral medulla (RVLM) surface decreases phrenic output, CO2 sensitivity, and blood pressure in chloralose-urethan-anesthetized, vagotomized, paralyzed, glomectomized, servoventilated cats. In this study using the same preparation, bilateral 50- to 100-nl kainate injections just below the RVLM surface better localized these responses topographically. The physiological responses to unilateral 10-nl kainate injections were then correlated with anatomic location determined by fluorescent microbeads (0.5 micron diam). Many sites were associated with no effect, a few rostral and caudal sites with increased phrenic activity, and cluster of sites with decreased phrenic activity often to apnea, decreased CO2 sensitivity, and decreased responses to carotid sinus nerve stimulation. Blood pressure was unaffected. These sites, within 400 microns of the surface, were ventral to the facial nucleus, ventrolateral to the nucleus paragigantocellularis lateralis, caudal to the superior olive, and rostral to the retrofacial nucleus. They appeared to be within the recently described retrotrapezoid nucleus, which contains cells with respiratory-related activity and projections to the dorsal and ventral respiratory groups. Cells within this site appear able to provide tonic input to respiration and to affect peripheral and central chemoreception.  相似文献   

18.
Three points located approximately 8 mm apart were identified in a dorsolateral funiculus of the lower thoracic spinal cord in mesencephalic cats, each producing stepping movements on the ipsilateral hindlimb when stimulated. An area 5–17 mm caudal to the caudal stepping point (SP) was scanned for neurons responding synaptically to stimulating the rostral or caudal SP prior and subsequent to electrolytic coagulation of the medial SP. Relative incidence of neurons excited by stimulating the caudal SP did not change following this type of lesioning, although stimulation of the rostral SP at the rate of 4 Hz induced response 5 times less frequently than before. Even stimulation of the rostral SP at the rate of 40–60 Hz, which had considerably increased firing index prior to coagulation, could only produce excitation in tiny numbers of neurons. This indicates that synaptic excitation of neurons becomes considerably more difficult once the stepping strip between stimulation and recording sites has been damaged.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 763–769, November–December, 1988.  相似文献   

19.
Inspiratory rhythm in airway smooth muscle tone   总被引:2,自引:0,他引:2  
In anesthetized paralyzed open-chested cats ventilated with low tidal volumes at high frequency, we recorded phrenic nerve activity, transpulmonary pressure (TPP), and either the tension in an upper tracheal segment or the impulse activity in a pulmonary branch of the vagus nerve. The TPP and upper tracheal segment tension fluctuated with respiration, with peak pressure and tension paralleling phrenic nerve activity. Increased end-tidal CO2 or stimulation of the carotid chemoreceptors with sodium cyanide increased both TPP and tracheal segment tension during the increased activity of the phrenic nerve. Lowering end-tidal CO2 or hyperinflating the lungs to achieve neural apnea (lack of phrenic activity) caused a decrease in TPP and tracheal segment tension and abolished the inspiratory fluctuations. During neural apnea produced by lowering end-tidal CO2, lung inflation caused no further decrease in tracheal segment tension and TPP. Likewise, stimulation of the cervical sympathetics, which caused a reduction in TPP and tracheal segment tension during normal breathing, caused no further reduction in these parameters when the stimulation occurred during neural apnea. During neural apnea the tracheal segment tension and TPP were the same as those following the transection of the vagi or the administration of atropine (0.5 mg/kg). Numerous fibers in the pulmonary branch of the vagus nerve fired in synchrony with the phrenic nerve. Only these fibers had activity which paralleled changes in TPP and tracheal tension. We propose that the major excitatory input to airway smooth muscle arises from cholinergic nerves that fire during inspiration, which have preganglionic cell bodies in the ventral respiratory group in the region of the nucleus ambiguus and are driven by the same pattern generators that drive the phrenic and inspiratory intercostal motoneurons.  相似文献   

20.
Neurons in the caudal pressor area (CPA) are a source of tonic sympathoexcitation that is dependent on activation of cardiovascular sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM). In the present study, we sought to clarify the mechanism through which CPA neurons elicit increases in RVLM neuronal discharge, vasoconstrictor sympathetic tone, and arterial pressure. In urethan-chloralose-anesthetized, paralyzed, and artificially ventilated rats, bilateral disinhibition of CPA with bicuculline (Bic) after bilateral disinhibition of caudal ventrolateral medulla (CVLM) caused increases in splanchnic sympathetic nerve activity (+277% control) and arterial pressure (+54 mmHg). Inhibition of CVLM neurons with muscimol abolished the pressor response to activation of CPA neurons, suggesting that neurons within CVLM mediate the excitatory responses from CPA. Disinhibition of CVLM and CPA with Bic enhanced the sympathoexcitatory responses to stimulation of CPA with DL-homocysteic acid, which were blocked by microinjections of kynurenic acid into CVLM. We conclude that the pathway from CPA to RVLM involves an obligatory glutamatergic activation of sympathoexcitatory neurons in the vicinity of CVLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号