首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-Aminophenyl phosphate (4-APP) and 1-naphthyl phosphate (1-NP) were compared as enzyme substrates for an amperometric milk progesterone biosensor utilising progesterone-conjugated alkaline phosphatase in a competitive immunoassay format. Cyclic voltammetry of the corresponding hydrolysis products, 4-aminophenol and 1-naphthol, at the surface of screen-printed carbon base transducers, uncoated or coated with anti-progesterone monoclonal antibody (mAb) showed well-defined anodic responses for both species, with the more sensitive being 4-aminophenol. Scan rate studies produced evidence that surface mAb could impede the diffusion of 4-aminophenol, but not 1-naphthol, toward the electrode surface. This was supported by computer simulation for the electrochemical rate constant (khet) using 4-aminophenol, which gave values at uncoated and mAb-coated electrodes of 6.5 x 10(-4) and 3.0 x 10(-4) cm s-1, respectively. The applied potential for oxidation of 4-aminophenol was 230 mV lower than for 1-naphthol. Nevertheless, by operating below +400 mV versus a saturated calomel reference electrode, it was possible to obtain a chronoamperometric signal for 1-naphthol in the absence of electrochemical interference from milk. Using mAb-coated SPCEs, calibration curves were obtained for progesterone in oestrus whole cow's milk spiked with standard concentrations over the range 0-50 ng/ml, using either 4-APP or 1NP as enzyme substrate. Precision values for triplicate sensors were 5.3-18.3% for 4-APP and 4.1-12.4% for 1-NP. An assay of real whole milk samples from different cows at various stages of the oestrus cycle produced correlations against a commercial EIA of r = 0.840 and 0.946 for 4-APP and 1-NP, respectively, 1-NP possesses the advantages over 4-APP of being inexpensive, easy to obtain and soluble (1-naphthol cf. 4-aminophenol) at high pH. From these observations, it is concluded that 1-NP is the preferred substrate for use with our proposed milk progesterone biosensor.  相似文献   

2.
An electrochemical biosensor for progesterone in cow's milk was developed and used in a competitive immunoassay by Hart et al. (1977, Studies towards a disposable screenprinted amperometric biosensor for progesterone, Biosens. Bioelectron. 12, 1113-1121). The sensor was fabricated by depositing anti-progesterone monoclonal antibody (mAb) onto screen-printed carbon electrodes (SPCEs) which were coated with rabbit anti-sheep IgG (rIgG). This sensor was operated following the steps of competitive binding between sample and conjugate (alkaline-phosphatase-labelled progesterone) for the immobilised mAb sites and measurements of an amperometric signal in the presence of p-nitrophenylphosphate using either colorimetric assays or cyclic voltammetry. The hook effect of the progesterone biosensor was found in the concentration range of milk progesterone between 0 and 5 ng/ml when the sensor was fabricated using a loading of 25 ng rIgG per electrode of a diameter of 3 mm and a 1/50 dilution of mAb. A computer model has been developed in this study to simulate the operation of this progesterone biosensor with consideration of the fabrication processes. This paper presents the results of validating the computer model and the model has predicted the hook effect as observed in tests. The model thus reveals that the hook effect is determined by the total number of binding sites available and the rates of labelled and unlabelled progesterone diffusing towards the sensor surface and the binding rates.  相似文献   

3.
Screen-printed amperometric glucose biosensors have been fabricated using a water-based carbon ink. The enzyme glucose oxidase (GOD) and the electro-catalyst cobalt phthalocyanine were mixed with the carbon ink prior to the screen-printing process; therefore, biosensors are prepared in a one-step fabrication procedure. Optimisation of the biosensor performance was achieved by studying the effects of pH, buffer strength, and applied potential on the analytical response. Calibration studies were performed under optimum conditions, using amperometry in stirred solution, with an operating potential of +500 mV versus SCE. The sensitivity was found to be 1170 nA mM(-1), with a linear range of 0.025-2 mM; the former represents the detection limit. The disposable amperometric biosensor was evaluated by carrying out replicate determinations on a sample of bovine serum. This was achieved by the method of multiple standard additions and included a correction for background currents arising from oxidizable serum components. The mean serum concentration was calculated to be 8.63 mM and compared well with the supplier's value of 8.3 mM; the coefficient of variation was calculated to be 3.3% (n=6).  相似文献   

4.
Microband glucose biosensors were produced by insulating and sectioning through a screen-printed, water-based carbon electrode containing cobalt phthalocyanine redox mediator and glucose oxidase enzyme. Under quiescent conditions at 37 °C, at an operating potential of +0.4 V, they produced an amperometric response to glucose in buffer solutions with a sensitivity of 26.4 nA/mM and a linear range of 0.45 to 9.0 mM. An optimal pH value of 8.5 was obtained under these conditions, and a value for activation energy of 40.55 kJ mol−1 was calculated. In culture medium (pH 7.3), a sensitivity of 13 nA/mM was obtained and the response was linear up to 5 mM with a detection limit of 0.5 mM. The working concentration was up to 20 mM glucose with a precision of 11.3% for replicate biosensors (n = 4). The microband biosensors were applied to determine end-point glucose concentrations in culture medium by monitoring steady-state current responses 400 s after transfer of the biosensors into different sample solutions. In conjunction with cultures of HepG2 (human Caucasian hepatocyte carcinoma) cells, current responses obtained in 24-h supernatants showed an inverse correlation (R2 = 0.98) with cell number, indicating that the biosensors were applicable for monitoring glucose metabolism by cells and of quantifying cell number. Glucose concentrations determined using the biosensor assay were in good agreement, for concentrations up to 20 mM, with those determined spectrophotometrically (R2 = 0.99). This method of end-point glucose determination was used to provide an estimated rate of glucose uptake for HepG2 cells of 7.9 nmol/(106 cells min) based on a 24-h period in culture.  相似文献   

5.
A biosensor platform based on polyamic acid (PAA) is reported for oriented immobilization of biomolecules. PAA, a functionalized conducting polymer substrate that provides electrochemical detection and control of biospecific binding, was used to covalently attach biomolecules, resulting in a significant improvement in the detection sensitivity. The biosensor sensing elements comprise a layer of PAA antibody (or antigen) composite self-assembled onto gold (Au) electrode via N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) linking. The modified PAA was characterized by Fourier transform infrared (FTIR), (1)H nuclear magnetic resonance (NMR), and electrochemical techniques. Cyclic voltammetry and impedance spectroscopy experiments conducted on electrodeposited PAA on Au electrode using ferricyanide produced a measurable decrease in the diffusion coefficient compared with the bare electrode, indicating some retardation of electron transfer within the bulk material of the PAA. Thereafter, the modified PAA surface was used to immobilize antibodies and then to detect inducible nitric oxide synthase and mouse immunoglobulin G (IgG) using enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), and amperometric techniques. ELISA results indicated a significant amplified signal by the modified PAA, whereas the SPR and amperometric biosensors produced significant responses as the concentration of the antigen was increased. Detection limits of 3.1×10(-3)ng/ml and 2.7×10(-1)ng/ml were obtained for SPR and amperometric biosensors, respectively.  相似文献   

6.
The pH effect of pyrrole electropolymerization in the presence of glucose oxidase (GODx) on the performance and characteristic of galvanostatically fabricated glucose oxidase/polypyrrole (Ppy) biosensor is reported. Preparing the GODx/Ppy biosensors in 0.1 M KCl saline solution with various pH containing 0.05 M pyrrole monomer and 0.5 mg/ml GODx at 382 microA/cm2 current density for 100 mC/cm2 film thickness, both the galvanostatic responses and characteristics of these resulted biosensors were obtained. The results revealed that the galvanostatic glucose biosensor fabricated at neutral pH condition exhibited much higher sensitivity than those fabricated at lower or higher pH conditions, and had a good linearity form zero to 10 mM glucose with the sensitivity of 7 nA/mM. Finally, the long-term stability and the kinetic parameters, Michaelis constant and maximum current, of this biosensor were also reported.  相似文献   

7.
The properties of amperometric biosensors based on methanol dehydrogenase (MDH) Methylobacterium nodulans, cells, and the ferrocene-modified carbon paste electrode were investigated. It was shown that the addition of hydroxyapatite (HA) to a carbon paste increased the sensitivity and operating stability of MDH biosensors. The linear range of the electrode was 0.0135–0.5 and 0.032–1.5 mM for methanol and formaldehyde, respectively. The detection limit of methanol and formaldehyde was 4.5 and 11.0 μM, respectively. The loss of activity of the electrode within 10 days of storage in the presence of 2.0 mM KCN did not exceed 12%. Cyanide (10 mM) completely inhibited the sensor responses to formaldehyde (1.0 mM), which allowed for the selective determination of methanol in the presence of formaldehyde. The biosensor based on cells exhibited lower stability and sensitivity toward methanol and formaldehyde; the sensitivity coefficients were 980 and 21 nA/mM, respectively.  相似文献   

8.
A novel amperometric glucose biosensor based on the nine layers of multilayer films composed of multi-wall carbon nanotubes (MWCNTs), gold nanoparticles (GNp) and glucose oxidase (GOD) was developed for the specific detection of glucose. MWCNTs were chemically modified with the H2SO4–HNO3 pretreatment to introduce carboxyl groups which were used to interact with the amino groups of poly(allylamine) (PAA) and cysteamine via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide cross-linking reaction, respectively. A cleaned Pt electrode was immersed in PAA, MWCNTs, cysteamine and GNp, respectively, followed by the adsorption of GOD, assembling the one layer of multilayer films on the surface of Pt electrode (GOD/GNp/MWCNTs/Pt electrode). Repeating the above process could assemble different layers of multilayer films on the Pt electrode. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Film assembling and characterization were studied by transmission electron microscopy and quartz crystal microbalance, and properties of the resulting glucose biosensors were measured by electrochemical measurements. The marked electrocatalytic activity of Pt electrode based on multilayer films toward H2O2 produced during GOD enzymatic reactions with glucose permitted effective low-potential amperometric measurement of glucose. Taking the sensitivity and selectivity into consideration, the applied potential of 0.35 V versus Ag/AgCl was chosen for the oxidation detection of H2O2 in this work. Among the resulting glucose biosensors, the biosensor based on nine layers of multilayer films was best. It showed a wide linear range of 0.1–10 mM glucose, with a remarkable sensitivity of 2.527 μA/mM, a detection limit of 6.7 μM estimated at a signal-to-noise ratio of 3 and fast response time (within 7 s). Moreover, it exhibited good reproducibility, long-term stability and the negligible interferences of ascorbic acid, uric acid and acetaminophen. The study can provide a feasible approach on developing new kinds of oxidase-based amperometric biosensors, and can be used as an illustration for constructing various hybrid structures.  相似文献   

9.
An amperometric glucose biosensor was fabricated by the electrochemical polymerization of pyrrole onto a platinum electrode in the presence of the enzyme glucose oxidase in a KCl solution at a potential of + 0·65 V versus SCE. The enzyme was entrapped into the polypyrrole film during the electropolymerization process. Glucose responses were measured by potentio-statting the enzyme electrode at a potential of + 0·7 V versus SCE in order to oxidize the hydrogen generated by the oxidation of glucose by the enzyme in the presence of oxygen. Experiments were performed to determined the optimal conditions of the polypyrrole glucose oxidase film preparation (pyrrole and glucose oxidase concentrations in the plating solution) and the response to glucose from such electrodes was evaluated as a function of film thickness, pH and temperature. It was found that a concentration of 0·3 M pyrrole in the presence of 65 U/ml of glucose oxidase in 0·01 M KCl were the optimal parameters for the fabrication of the biosensor. The optimal response was obtained for a film thickness of 0·17 μm (75 mC/cm2) at pH 6 and at a temperature of 313 K. The temperature dependence of the amperometric response indicated an activation energy of 41 kJ/mole. The linearity of the enzyme electrode response ranged from 1·0 mM to 7·5 mM glucose and kinetic parameters determined for the optimized biosensors were 33·4 mM for the Km and 7·2 μA for the Imax. It was demonstrated that the internal diffusion of hydrogen peroxide through the polypyrrole layer to the platinum surface was the main limiting factor controlling the magnitude of the response of the biosensor to glucose. The response was directly related to the enzyme loading in the polypyrrole film. The shelf life and the operational stability of the optimized biosensor exceed 500 days and 175 assays, respectively. The substrate specificity of the entrapped glucose oxidase was not altered by the immobilization procedure.  相似文献   

10.
This work presents a novel, miniature optical biosensor by immobilizing horseradish peroxidase (HRP) or the HRP/glucose oxidase (GOx) coupled enzyme pair on a CMOS photosensing chip with a detection area of 0.5 mm × 0.5 mm. A highly transparent TEOS/PDMS Ormosil is used to encapsulate and immobilize enzymes on the surface of the photosensor. Interestingly, HRP-catalyzed luminol luminescence can be detected in real time on optical H2O2 and glucose biosensors. The minimum reaction volume of the developed optical biosensors is 10 μL. Both optical H2O2 and glucose biosensors have an optimal operation temperature and pH of 20–25 °C and pH 8.4, respectively. The linear dynamic range of optical H2O2 and glucose biosensors is 0.05–20 mM H2O2 and 0.5–20 mM glucose, respectively. The miniature optical glucose biosensor also exhibits good reproducibility with a relative standard deviation of 4.3%. Additionally, ascorbic acid and uric acid, two major interfering substances in the serum during electrochemical analysis, cause only slight interference with the fabricated optical glucose biosensor. In conclusion, the CMOS-photodiode-based optical biosensors proposed herein have many advantages, such as a short detection time, a small sample volume requirement, high reproducibility and wide dynamic range.  相似文献   

11.
We have developed a boronate affinity immunoassay system using m-aminophenylboronic acid (mAPB) coupling to bacterial magnetic particles (BMPs). Homobifunctional crosslinker, Bis-(succcimidyl)suberate (BS3), was employed for preparation of mAPB-BMPs conjugates (mAPB-BMPs). Quantities of HbA1c on mAPB-BMPs were evaluated based on luminescence from alkaline phosphatase-conjugated anti-Hb antibody (ALP–antibody) binding to HbA1c on the BMP surface. The binding of HbA1c to mAPB-BMPs occurred gradually and was almost completed within 10 mm. The coupling reaction is enhanced due to static electric interaction between the positive charges on HbA1c and negative charges on BMPs. The amount of HbA1c binding to mAPB-BMPs increased with increasing sodium chloride concentrations in the range of 0–100 mM. However, the amount of Hb binding to mAPB-BMPs also increased in high concentration of sodium chloride. The Hb binding to mAPB-BMPs was detached from mAPB-BMPs when Hb–mAPB-BMPs were washed with low salt buffer. This indicates that Hb is nonspecifically adsorbed onto the surface of mAPB-BMPs in high concentration of sodium chloride. These results suggest that selective separation of HbA1c using mAPB-BMPs can be achieved with these conditions. A dose–response curve was obtained between luminescence intensity and HbA1c concentration using a fully automated boronate affinity immunoassay. A linear relationship between luminescence intensity and HbA1c concentration was obtained in the range of 10–104 ng/ml.  相似文献   

12.
Acinetobacter junii SY-01 producing a lipase enantioselectively hydrolyzing 1,3-dioxolane derivatives was isolated from water sludge sample and the effect of solvent, acyl donor, vinyl acetate concentration, substrate concentration, operating temperature and immobilization on activity and enantioselectivity was studied for the resolution of 1,3-dioxolane derivatives through transesterification reaction using a lipase from the isolated strain. Best selectivity was obtained at lower substrate concentration (3–5 mM), higher vinyl acetate concentration (500–1000 mM) and lower temperature (30–40 °C) in the reaction mixture. Lipase immobilized onto Accurel MP-1000 (micro-porous polypropylene) gave the best results and the reactivity was about 29-fold higher than the free enzyme without the decrease of enantioselectivity. Resolution of 1,3-dioxolane derivatives was carried out in flask scale containing 100 ml solvents using the lipase immobilized onto Accurel MP-1000. In this reaction, the yield and enantiomeric excess of the remaining (2R, 4S)-alcohol were 31.2% and 98.2%, respectively. This result suggests that it can be used as an alternative method, compared to the present synthetic method, for the production of optically pure (2R, 4S)-itraconazole.  相似文献   

13.
A novel amperometric ethanol biosensor was constructed using alcohol dehydrogenase (ADH) physically immobilized within poly(vinyl alcohol)–multiwalled carbon nanotube (PVA–MWCNT) composite obtained by a freezing–thawing process. It comprises a MWCNT conduit, a PVA binder, and an ADH function. The measurement of ethanol is based on the signal produced by β-nicotinamide adenine dinucleotide (NADH), the product of the enzymatic reaction. The homogeneity of the resulting biocomposite film was characterized by atomic force microscopy (AFM). The performance of the PVA–MWCNT–ADH biocomposite modified glassy carbon electrode was evaluated using cyclic voltammetry and amperometry in the presence of NADH and in the presence of ethanol. The ethanol content in standard solutions was determined and a sensitivity of 196 nA mM−1, a linear range up to 1.5 mM, and a response time of about 8 s were obtained. These characteristics allowed its application for direct detection of ethanol in alcoholic beverages: beer, red wine, and spirit.  相似文献   

14.
Biotransformation of nitrophenols in upflow anaerobic sludge blanket reactors   总被引:11,自引:0,他引:11  
Four identical bench-scale upflow anaerobic sludge blanket (UASB) reactors, R1, R2, R3 and R4, were used to assess nitrophenols degradation at four different hydraulic retention times (HRT). Reactor R1 was used as control, whereas R2, R3, and R4 were fed with 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP), respectively. The concentration of each nitrophenol was gradually varied from 2 to 30 mg/l during acclimation. After acclimation reactors were operated under steady-state conditions at four different HRTs – 30, 24, 18, and 12 h, to study its effect on the removal of nitrophenols. Overall removal of 2-NP and 4-NP was always more than 99% but 2,4-DNP removal decreased from 96% to 89.7% as HRT was lowered from 30 to 12 h. 2-Aminophenol (2-AP), 4-aminophenol (4-AP) and 2-amino,4-nitrophenol (2-A,4-NP) were found to be the major intermediates during the degradation of 2-NP, 4-NP and 2,4-DNP, respectively. Out of the total input of nitrophenolic concentration (30 mg/l), on molar basis, about 41.2–48.4% of 2-NP, 59.4–68% of 4-NP, 30–26.6% of 2,4-DNP was recovered in the form of their respective amino derivatives at 30–12 h HRT. COD removal was 98–89%, 97–56%, 97–52%, and 94–46% at 30–12 h HRT for R1, R2, R3 and R4, respectively. Average cell growth was observed to be 0.15 g volatile suspended solid (VSS) per g COD consumed. Methanogenic inhibition was observed at lower HRTs (18 and 12 h), however denitrification was always more than 99% with non-detectable level of nitrite. The granules developed inside the reactors were black in color and their average size varied between 1.9 and 2.1 mm.  相似文献   

15.
Two chitosan samples (medium molecular weight (MMCHI) and low molecular weight (LMCHI)) were investigated as an enzyme immobilization matrix for the fabrication of a glucose biosensor. Chitosan membranes prepared from acetic acid were flexible, transparent, smooth and quick-drying. The FTIR spectra showed the existence of intermolecular interactions between chitosan and glucose oxidase (GOD). Higher catalytic activities were observed on for GOD-MMCHI than GOD-LMCHI and for those crosslinked with glutaraldehyde than using the adsorption technique. Enzyme loading greater than 0.6 mg decreased the activity. Under optimum conditions (pH 6.0, 35°C and applied potential of 0.6 V) response times of 85 s and 65 s were observed for medium molecular weight chitosan glucose biosensor (GOD-MMCHI/PT) and low molecular weight chitosan glucose biosensor (GOD-LMCHI/PT), respectively. The apparent Michaelis-Menten constant () was found to be 12.737 mM for GOD-MMCHI/PT and 17.692 mM for GOD-LMCHI/PT. This indicated that GOD-MMCHI/PT had greater affinity for the enzyme. Moreover, GOD-MMCHI/PT showed higher sensitivity (52.3666 nA/mM glucose) when compared with GOD-LMCHI/PT (9.8579 nA/mM glucose) at S/N>3. Better repeatability and reproducibility were achieved with GOD-MMCHI/PT than GOD-LMCHI/PT regarding glucose measurement. GOD-MMCHI/PT was found to give the highest enzymatic activity among the electrodes under investigation. The extent of interference encountered by GOD-MMCHI/PT and GOD-LMCHI/PT was not significantly different. Although the Nafion coated biosensor significantly reduced the signal due to the interferents under study, it also significantly reduced the response to glucose. The performance of the biosensors in the determination of glucose in rat serum was evaluated. Comparatively better accuracy and recovery results were obtained for GOD-MMCHI/PT. Hence, GOD-MMCHI/PT showed a better performance when compared with GOD-LMCHI/PT. In conclusion, chitosan membranes shave the potential to be a suitable matrix for the development of glucose biosensors.  相似文献   

16.
Liu Y  Qu X  Guo H  Chen H  Liu B  Dong S 《Biosensors & bioelectronics》2006,21(12):2195-2201
The carbon nanotubes–chitosan (CNTs–CS) composite provides a suitable biosensing matrix due to its good conductivity, high stability, and good biocompatibility. Enzymes can be firmly incorporated into the matrix without the aid of other cross-linking reagents. The composite is easy to form insoluble film in solution above pH 6.3. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the CNTs–CS composite film has been developed. At pH 6.0, the fungi laccase incorporated into the composite film remains better catalytic activity than that dissolved in solution. The system is in favor of the accessibility of substrate to the active site of laccase, thus the affinity to substrates is improved greatly, such as 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), catechol, and O2 with Km values of 19.86 μM, 9.43 μM, and 3.22 mM, respectively. The major advantages of the as-prepared biosensor are: detecting different substrates (ABTS, catechol, and O2), possessing high affinity and sensitivity, durable long-term stability, and facile preparation procedure. On the other hand, the system can be applied in fabrication of biofuel cells as the cathodic catalysts based on its good electrocatalysis for oxygen reduction. It can be extended to immobilize other enzymes and biomolecules, which will greatly facilitate the development of biosensors, biofuel cells, and other bioelectrochemical devices.  相似文献   

17.
The aim of our experiments was to study the influence of genistein [tyrosine kinase (TK) inhibitor with estrogenic activity] and lavendustin A (TK inhibitor without estrogenic activity) on female reproductive processes in domestic animals in vitro. It was found that genistein (0.001–1 μg/ml) increased IGF-I release by cultured bovine and porcine granulosa cells, but decreased its secretion by rabbit granulosa cells (0.01–10 μg/ml). Genistein stimulated progesterone secretion by bovine and rabbit granulosa cells (at 0.01–10 μg/ml), estradiol output by rabbit granulosa cells (at 1 μg/ml) and porcine ovarian follicles (at 10 μg/ml), as well as cAMP production by bovine (at 0.001–1 μg/ml) and rabbit (at 1 μg/ml) granulosa cells. No effects of genistein (at 10 μg/ml) on PGF-2 alpha and progesterone release by porcine ovarian follicles were observed. Genistein significantly (P < 0.05) stimulated the reinitiation and completion of nuclear maturation of porcine oocytes (at 5 μg/ml), as well as the preimplantation development of rabbit zygotes (at 1 μg/ml). Lavendustin A (0.001–1 μg/ml) increased IGF-I release by bovine (but not by porcine) granulosa cells, cAMP release by bovine granulosa cells, and PGF-2 alpha output by porcine ovarian follicles (at 10 μg/ml). Lavendustin (at 1 μg/ml) had no significant effect on IGF-I release by porcine granulosa cells, on estradiol and cAMP output by rabbit granulosa cells, or on progesterone secretion by porcine follicles (at 10 μg/ml). Inhibitory actions of lavendustin (at 10 μg/ml) on estradiol secretion by porcine follicles were also found. Furthermore, lavendustin, like genistein, promoted the reinitiation and completion of meiosis in porcine oocytes. The present study demonstrates a predominantly stimulatory effect of TK inhibition on endocrine and generative processes in domestic animals. The majority of these effects are similar for both compounds, indirectly suggesting that their action is due to tyrosine kinase inhibition and protein kinase A-stimulation, rather than estrogenic activity.  相似文献   

18.
A novel strategy for the fabrication of sensitive immunosensor to detect alpha-fetoprotein (AFP) in human serum has been proposed. The immunosensor was prepared by immobilizing AFP antigen onto the glassy carbon electrode (GC) modified by gold nanoparticles and carbon nanotubes doped chitosan (GNP/CNT/Ch) film. GNP/CNT hybrids were produced by one-step synthesis based on the direct redox reaction. The electrochemical properties of GNP/CNT/Ch films were characterized by impedance spectroscopy and cyclic voltammetry. It was indicated that GNP/CNT nanohybrid acted as an electron promoter and accelerated the electron transfer. Sample AFP, immobilized AFP, and alkaline phosphatase (ALP)-labeled antibody were incubated together for the determination based on a competitive immunoassay format. After the immunoassay reaction, the bound ALP label on the modified GC led to an amperometric response of 1-naphthyl phosphate (1-NP), which was changed with the different antigen concentrations in solution. Under the optimized experimental conditions, the resulting immunosensor could detect AFP in a linear range from 1 to 55 ng ml(-1) with a detection limit of 0.6 ng ml(-1). The proposed immunosensor, by using GNP/CNT/Ch as the immobilization matrix of AFP, offers an excellent amperometric response of ALP-anti-AFP to 1-NP. The immunosensor provided a new alternative to the application of other antigens or other bioactive molecules.  相似文献   

19.
Influences of steroid hormone additions or of their binding by specific antisera on nuclear maturation and subsequent fertilization and cleavage of bovine oocytes were studied in vitro. It was found that progesterone in doses of 50 ng/ml, 250 ng/ml, 1 μg/ml or 5 μg/ml stimulates reinitiation and in doses of 1 or 5 μg/ml stimulates further development of meiosis. Antiserum to progesterone had opposite effects on nuclear maturation, but has no influence on the ability of matured oocytes to subsequent fertilization and cleavage. Testosterone additions (10 ng, 100 ng, 1 μg or 5 μg/ml) did not influence nuclear maturation, but antiserum to this hormone inhibited both meiosis reinitiation and completion, as well as lowered the rate of oocytes fertilized and embryos obtained. Estradiol (5, 50, 100 or 500 ng or 5 μg/ml) treatment stimulated reinitiation, but not nuclear maturation. Antiserum to estradiol activated both reinitiation, development and completion of meiosis, but the cells matured by estradiol deficit were as a rule uncapable of fertilization and further cleavage. Estradiol addition (1 μg/ml) to maturation medium together with FSH (10 μg/ml) (but not of FSH alone) lead to a significantly higher rate of fertilization and cleavage of matured cells.

Results obtained suggest (1) relative independence of reinitiation, further development of nuclear maturation and cytoplasmic maturation regulation in bovine oocytes as well as (2) the involvement of steroid hormones in these three processes.  相似文献   


20.
A biosensor based on flow injection of the recognition element has been developed. As a model a pH-transducer was used, and urease was chosen as the recognition element. The pH-transducer was immersed in an internal flow-through chamber which was in contact with the sample solution via a semi-permeable membrane. The recognition element, urease, was injected into the buffer solution passing through the biosensor. The enzyme catalysed the hydrolysis of urea and the concomitant increase in pH was recorded. The biosensor response time was about three minutes at a constant flow rate of 0·05 ml/min. The linear range of the calibration curve of the biosensor was 0–5 mM. The observed detection limit was approximately 0.1 mM. The sample throughput was 6–12 per hour. The pH-response of the biosensor, for a sample solution containing urea (3·26 mM), showed a reproducibility (r.s.d) of 28% (n = 5) and a repeatability (r.s.d.) of 8% (n = 5). Operation at elevated temperatures (up to 50°C) was demonstrated. The presence of glucose (28 mM), acetone (6·7 mM), citric acid (0·2 mM) or sodium acetate (0·6 mM) in the sample solution did not interfere with the sensor response. A lowering of the biosensor response which was observed in the presence of copper ions (due to urease inhibition) could be completely eliminated by adding EDTA to the urease solution. Thus, this work demonstrates a new type of biosensors, based on SIRE-technology (Sensors with Injectable Recognition Elements), which show high accuracy and stability, quick response and high sample throughput. These features suggest the suitability of the system for automation. Such sensors should readily be combined with other enzymes or enzyme systems. The enzyme (urease) cost per analysis (injection) for the biosensor was estimated to be approximately US$0·02. This could be substantially reduced by further optimisation and miniaturisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号