首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the distribution of mitochondrial cytochromes P-450 in porcine adrenal glands, the glands of anesthetized pigs were fixed in situ. Polyclonal antibodies against two cytochromes P-450, i.e., C27 side-chain cleavage enzyme and 11 beta-hydroxylase, were used to study the distribution of these enzymes in cryosections of the adrenal cortex. Ultrathin cryosections were evaluated by both protein-A/gold/silver immunocytochemistry and immunoelectron microscopy using double labeling with protein-A/colloidal-gold. At light microscopy, the two cytochrome P-450 enzymes were found to be broadly distributed in both the fasciculata and glomerulosa zones of the adrenal cortex. Quantitative immunoelectron microscopy revealed that both enzymes were localized only in mitochondria, in which they were present on the inner aspects of the inner mitochondrial membrane. Both cytochromes P-450 were demonstrable in all of the mitochondria examined, and statistical evaluation of the ratios of the two enzymes present in individual mitochondria yielded a normal distribution curve. Since no evidence was found for the preferential localization of either enzyme in a special population of mitochondria, we conclude that all mitochondria of the adrenal cortex contain both enzymes. We discuss implications of these findings with respect to the regulation of steroidogenesis.  相似文献   

2.
Immunogold cytochemistry of cytochromes P-450 in porcine adrenal cortex   总被引:1,自引:0,他引:1  
Summary In order to study the distribution of mitochondrial cytochromes P-450 in porcine adrenal glands, the glands of anesthetized pigs were fixed in situ. Polyclonal antibodies against two cytochromes P-450, i.e., C27 sidechain cleavage enzyme and 11 beta-hydroxylase, were used to study the distribution of these enzymes in cryosections of the adrenal cortex. Ultrathin cryosections were evaluated by both protein-A/gold/silver immunocytochemistry and immunielectron microscopy using double labeling with protein-A/colloidal-gold. At light microscopy, the two cytochrome P-450 enzymes were found to be broadly distributed in both the fasciculata and glomerulosa zones of the adrenal cortex. Quantitative immunoelectron microscopy revealed that both enzymes were localized only in mitochondria, in which they were present on the inner aspects of the inner mitochondrial membrane. Both cytochromes P-450 were demonstrable in all of the mitochondria examined, and statistical evaluation of the ratios of the two enzymes present in individual mitochondria yielded a normal distribution curve. Since no evidence was found for the preferential localization of either enzyme in a special population of mitochiondria, we conclude that all mitochondria of the adrenal cortex contain both enzymes. We discuss implications of these findings with respect to the regulation of steroidogenesis.This work was supported by grants from the National Institutes of Health (AM28113, AM32236, CA29497, NSF-INT-8317418, and NATO 818/83)  相似文献   

3.
To further elucidate the mechanisms by which ACTH (adrenocorticotropin) exerts its long-term action to maintain normal levels of adrenocortical cytochromes P-450 and related enzymes, the abilities of cholera toxin and prostaglandins E2 and F2 alpha to induce the synthesis of cytochromes P-450scc, P-45011 beta, and P-450C21 and adrenodoxin have been examined. These effectors stimulate the production of cyclic AMP and thus steroidogenesis in the adrenal cortex. Using bovine adrenocortical cells in primary monolayer culture, we have shown that treatment with cholera toxin results in increased synthesis of cytochromes P-450scc and P-45011 beta and adrenodoxin, similar to the effect observed upon ACTH treatment. Prostaglandins E2 and F2 alpha are less effective at inducing the synthesis of the mitochondrial cytochromes P-450, and do not seem to induce the synthesis of adrenodoxin. Furthermore, cholera toxin was found to be less effective at inducing the synthesis of microsomal cytochrome P-450C21 than ACTH, and no more effective than the prostaglandins. Thus, while it appears that elevation of cyclic AMP levels is a necessary step leading to increased synthesis of adrenocortical forms of cytochrome P-450, the detailed mechanism of this induction will be found to be different for each of the different enzymes.  相似文献   

4.
Adrenocortical mitochondrial cytochrome P-450 specific to the cholesterol side-chain cleavage (desmolase) reaction differs from that for the 11beta-hydroxylation reaction of deoxycorticosterone. The former cytochrome appears to be more loosely bound to the inner membrane than the latter. Upon ageing at 0 degrees C or by aerobic treatment with ferrous ions, the desmolase P-450 was more stable than the 11beta-hydroxylase P-450. By utilizing artificial hydroxylating agents such as cumene hydroperoxide, H2O2, and sodium periodate, the hydroxylation reaction of deoxycorticosterone to corticosterone in the absence of NADPH was observed to a comparable extent with the reaction in the presence of adrenodoxin reductase, adrenodoxin and NADPH. However, the hydroxylation reaction of cholesterol to pregnenolone was not supported by these artificial agents. Immunochemical cross-reactivity of bovine adrenal desmolase P-450 with rabbit liver microsomal P-450LM4 was also investigated. We found a weak but significant cross-reactivity between the adrenal mitochondrial P-450 and liver microsomal P-450LM4, indicating to some extent a homology between adrenal and liver cytochromes P-450.  相似文献   

5.
Diameters of the circular profiles of spherical mitochondria in parenchymal cells of the zona fasciculata in rat adrenal cortex were measured for intact controls and for the regenerating adrenal cortex on electron micrographs recorded at random. The diameter data were then processed by Bach's method which deals with the sphere size distribution. The structural parameters of the mitochondria were computed with the aid of an electronic computer. The total number of mitochondria in all the parenchymal cells of the zona fasciculata were calculated. The surface area of the inner mitochondrial membrane was then determined stereologically. Biochemical parameters were obtained for the protein, the phospholipid, and the cytochrome P-450 content, per averaged mitochondrion. The number of cytochrome P-450 molecules contained in the inner membrane was determined in terms of the unit surface area and of the unit amount of phospholipid. These correlated biochemical and stereological parameters have led to the following conclusions. (a) The genesis of the mitochondria after the adrenal enucleation is almost completed within 10 days. (b) During the period of mitochondrial proliferation, the mitochondria are small in size and also immature both in the structure and in the function of their inner membrane, (c) These small and immature mitochondria grow through an increase of the phospholipid and protein, and this increase is accompanied by expansion of the area of the membrane surface, (d) An enrichment of the inner membrane with cytochrome P-450 molecules occurs, thus indicating the differentiation of adrenocortical mitochondria. The process of membrane differentiation is not tightly coupled with that of membrane growth.  相似文献   

6.
We have estimated the concentrations of cytochromes P-450scc and P-45011 beta and the electron-transfer proteins adrenodoxin reductase and adrenodoxin in the adrenal cortex and corpus luteum using specific antibodies against these enzymes. While in the adrenal cortex the concentrations of these enzymes are relatively constant in different animals and show no significant sex differences, in corpora lutea they vary considerably and can increase at least up to fifty-fold over the levels found in the ovary. The average relative concentrations of adrenodoxin reductase, adrenodoxin and P-450 are 1:3:8 in the adrenal cortex (which has two cytochromes P-450, P-450scc and P-450(11) beta, in equal concentrations) and 1:2.5:3 in the corpus luteum (which has only P-450scc). We further present evidence that the levels of cytochrome c oxidase also show a degree of correlation with the levels of the mitochondrial steroidogenic enzymes.  相似文献   

7.
The zona glomerulosa, zona fasciculata, zona reticularis, and medulla were separated from bovine adrenal glands and cytochromes P-450 and related enzymes in each zone were investigated immunochemically by Western blotting using antisera from chickens or rabbits against cytochromes P-450scc, P-450(11)beta, P-450s21, and b5, NADH-cytochrome b5 reductase, NADPH-cytochrome P-450 reductase, NADPH-adrenodoxin reductase, and adrenodoxin. Concentrations of cytochrome P-450(11)beta, NADPH-cytochrome P-450 reductase, and cytochrome b5 per milligram of protein of homogenate were higher in the zona glomerulosa than in the other zones; the levels of the other components were higher in the zona fasciculata. The total enzyme content of all components was the highest in the zona fasciculata. The amount of adrenodoxin was about 10 times that of NADPH-adrenodoxin reductase in each zone.  相似文献   

8.
A cytochrome P-450 capable of producing aldosterone from 11-deoxycorticosterone was purified from the zona glomerulosa of rat adrenal cortex. The enzyme was present in the mitochondria of the zona glomerulosa obtained from sodium-depleted and potassium-repleted rats but scarcely detected in those from untreated rats. It was undetectable in the mitochondria of other zones of the adrenal cortex from both the treated and untreated rats. The cytochrome P-450 was distinguishable from cytochrome P-45011 beta purified from the zonae fasciculata-reticularis mitochondria of the same rats. Molecular weights of the former and the latter cytochromes P-450, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 49,500 and 51,500, respectively, and their amino acid sequences up to the 20th residue from the N terminus were different from each other at least in one position. The former catalyzed the multihydroxylation reactions of 11-deoxycorticosterone giving corticosterone, 18-hydroxydeoxycorticosterone, 18-hydroxycorticosterone, and a significant amount of aldosterone as products. On the other hand, the latter catalyzed only 11 beta- and 18-hydroxylation reactions of the same substrate to yield either corticosterone or 18-hydroxydeoxycorticosterone. Thus, at least two forms of cytochrome P-450, which catalyze the 11 beta- and 18-hydroxylations of deoxycorticosterone, exist in rat adrenal cortex, but aldosterone synthesis is catalyzed only by the one present in the zona glomerulosa mitochondria.  相似文献   

9.
Adrenal ferredoxin, the iron-sulfur protein associated with cytochrome P-450 in adrenocortical mitochondria, has been localized at the light microscopic level in bovine adrenal cortex. Localization was achieved through the use of rabbit antiserum to bovine adrenal ferrodoxin in an unlabeled antibody peroxidase-antiperoxidase method. When sections of bovine adrenal glands were exposed to the adrenal ferredoxin antiserum, intense staining was observed in parenchymal cells of the three cortical zones. Staining for adrenal ferredoxin was not detected in the medullary chromaffin cells. The presence of adrenal ferredoxin in the three cortical zones was verified by electron paramagnetic resonance spectrometry. These determinations also revealed that while the zona fasciculata and the zona reticularis contained approximately equal concentrations of adrenal ferredoxin, the concentration of the iron-sulfur protein in the zona glomerulosa was considerably lower. Similar results were obtained when the levels of cytochrome P-450 were determined in the three cortical zones. These results represent the first immunohistochemical localization within an intact tissue or cell of any component of an NADPH-dependent electron transport sequence which is responsible for the reduction of cytochrome P-450.  相似文献   

10.
Cytochrome P-450scc was isolated from mitochondria of bovine adrenal cortex by hydrophobic chromatography on octyl Sepharose followed by affinity chromatography on cholesterol-7-(thiomethyl)carboxy-3 beta-acetate-Sepharose. The partially purified eluate from the octyl Sepharose resin was free of adrenodoxin and adrenodoxin reductase and displayed biphasic binding characteristics for cholesterol, cholesterol sulfate, and cholesterol acetate (CA). Chromatography of the octyl Sepharose eluate on CA-Sepharose removed extraneous proteins and resolved the cytochrome P-450scc into two fractions, each of which displayed monophasic binding with all three substrates. These fractions behaved identically with respect to their ability to bind substrates, their kinetic properties, and their rate of migration during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The dissociation constants of the cytochrome P-450scc.substrate complexes are 1.1, 2.6, and 1.3 microM for cholesterol, cholesterol sulfate, and cholesterol acetate, respectively. Addition of phospholipids isolated from adrenal cortex mitochondria or adrenodoxin had no effect on the equilibrium binding constants. Addition of Emulgen 913, however, decreased the binding affinities 10-20-fold. Emulgen 913 also inhibited the interaction of adrenodoxin with the cytochrome. An active side chain cleavage system was reconstituted with purified P-450 by addition of saturating amounts of adrenodoxin, adrenodoxin reductase, and NADPH-generating system. The apparent Km values for this reconstituted system of cholesterol, cholesterol sulfate, and cholesterol acetate are 1.8, 1.9, and 0.6 microM, respectively. Since the Km values of substrate oxidation are similar to the Kd values of the cytochrome P-450.substrate complexes, it seems likely that the binding of substrates, particularly when the side chain cleavage system is free of mitochondrial membranes, is not rate-limiting. Based on these results and electrophoretic data, it appears that one cytochrome P-450 present in adrenal mitochondria can oxidize cholesterol, its sulfate, and its acetate. This enzyme represented about 60% of the cytochrome P-450 present in the octyl Sepharose eluate. The factors responsible for the biphasic kinetics of oxidation by intact mitochondria and biphasic binding of sterol substrates by partially purified preparations of cytochrome P-450scc are still unknown.  相似文献   

11.
Adrenal ferredoxin, the iron-sulfur protein associated with cytochromes P-450 in adrenocortical mitochondria, has been localized immunohistochemically at the light microscopic level in rat adrenals by employing rabbit antiserum to bovine adrenal ferredoxin in both an unlabeled antibody peroxidase-antiperoxidase method and an indirect fluorescent antibody method. When sections of rat adrenals were exposed to the adrenal ferredoxin antiserum in both procedures, positive staining for adrenal ferredoxin was observed in parenchymal cells of the three cortical zones but not in medullary chromaffin cells. Marked differences in the intensity of staining, however, where observed among the three cortical zones: the most intense staining being found in the zona fasciculata, less in the zona reticularis, and least in the zona glomerulosa. Furthermore, differences in staining intensity were also observed among cells within both the zona fasciculata and the zona reticularis. In agreement with these immunohistochemical observations, determinations of adrenal ferredoxin contents by electron paramagnetic resonance (EPR) spectrometry in homogenates prepared from capsular and decapsulated rat adrenals revealed that the concentration of adrenal ferredoxin in the zona glomerulosa was lower than that in the zona fasciculata-reticularis. Similar results were obtained when the contents of cytochrome P-450 were determined in capsular adn decapsulated rat adrenal homogenates. These observations indicate that adrenal ferrodoxin and cytochrome P-450 are not distributed uniformly throughout the rat adrenal cortex.  相似文献   

12.
Highly specific antibodies against hemeprotein were obtained by immunizing rabbits with a highly purified cholesterol-hydroxylating cytochrome P-450scc from adrenocortical mitochondria. The antibodies do not specifically interact with other components of the adrenocortical electron transport chain, e. g., adrenodoxin reductase and adrenodoxin. Using double immunodiffusion technique (Ouchterlony method), it was shown that the antibodies did not precipitate the microsomal cytochromes P-450 LM2 and LM4, cytochrome b5 and 11 beta-hydroxylating cytochrome P-450 from adrenocortical mitochondria. Antibodies against cytochrome P-450scc inhibited the cholesterol side chain cleavage activity of cytochrome P-450scc in a reconstituted system. Limited proteolysis with trypsin and immunoelectrophoresis in the presence of specific antibodies revealed that antigenic determinants are present of the heme-containing catalytic domain of cytochrome P-450scc (F1) as well as on the domain responsible for the interaction with the phospholipid membrane (F2).  相似文献   

13.
The mitochondrial proteins involved in adrenocortical steroidogenesis are synthesized as higher molecular weight precursors which require processing by the mitochondria to their mature sizes. The post-translational maturation of two of these proteins has been examined: the cholesterol side chain cleavage cytochrome P-450 (P-450scc) and the iron-sulfur protein, adrenodoxin. Total translation products synthesized in a cell-free system programmed by bovine adrenocortical poly(A+) RNA were incubated with isolated bovine adrenocortical or heart mitochondria followed by immunoisolation of radiolabeled P-450scc or adrenodoxin. In the presence of adrenocortical mitochondria, the precursor form of P-450scc was converted into a trypsin-resistant form that had the same molecular weight as mature P-450scc. Unlike adrenocortical mitochondria, heart mitochondria were unable to process the P-450scc precursor which remained unaltered and trypsin-sensitive. In addition, a matrix fraction of heart mitochondria did not cleave the P-450scc precursor. In contrast, the adrenodoxin precursor did not exhibit similar specificity as it was processed to the mature form by both adrenocortical and heart mitochondria. Also, the adrenocortical mitochondria were not restricted to processing endogenous proteins as they imported and cleaved the precursor to ornithine transcarbamylase. The results indicate that some mitochondrial precursor proteins have tertiary structures which allow them to be recognized by all mitochondria while other mitochondrial precursor proteins have structures recognizable by only specialized mitochondria.  相似文献   

14.
Previous investigations have demonstrated that cells isolated from the outer zone (zona fasciculata + zona glomerulosa) of the guinea-pig adrenal cortex produce far more cortisol than those from the inner zone (zona reticularis). Studies were carried out to compare mitochondrial steroid metabolism in the two zones. Protein and cytochrome P-450 concentrations were similar in outer and inner zone mitochondria. However, the rate of 11 beta-hydroxylation was significantly greater in the outer zone despite the fact that substrates for 11 beta-hydroxylation (11-deoxycortisol, 11-deoxycorticosterone) produced larger type I spectral changes in inner zone mitochondria. The apparent affinities of 11-deoxycortisol and 11-deoxycorticosterone for mitochondrial cytochrome(s) P-450 were similar in the two zones. In both inner and outer zone mitochondria, 11 beta-hydroxylation was inhibited by metyrapone but unaffected by aminoglutethimide. Cholesterol sidechain cleavage activity, measured as the rate of conversion of endogenous cholesterol to pregnenolone, was far greater in outer than inner zone mitochondria. Addition of exogenous cholesterol or 25-hydroxycholesterol to the mitochondrial preparations did not affect pregnenolone production in either zone. Addition of pregnenolone to outer zone mitochondria produced a reverse type I spectral change (delta A 420-390 nm), suggesting displacement of endogenous cholesterol from cytochrome P-450. In inner zone mitochondria, pregnenolone induced a difference spectrum (delta A 425-410 nm) similar to the reduced vs oxidized cytochrome b5 spectrum. A b5-like cytochrome was found to be present in the mitochondrial preparations. Prior reduction of the cytochrome with NADH eliminated the pregnenolone-induced spectral change in inner zone mitochondria but had no effect in outer zone preparations. The results suggest that differences in mitochondrial steroid metabolism between the inner and outer adrenocortical zones account in part for the differences in cortisol production by cells in each zone.  相似文献   

15.
Rat liver mitoplasts containing less than 1% microsomal contamination contain cytochrome P-450 at 25% of the microsomal level and retain the capacity for monooxygenase activation of structurally different carcinogens such as aflatoxin B1 (AFB1), benzo(a)pyrene (BaP), and dimethylnitrosamine. Both phenobarbital (PB) and 3-methylcholanthrene (3-MC) induce the level of mitochondrial cytochrome P-450 by 2.0- to 2.5-fold above the level of control mitoplasts. The enzyme activities for AFB1 (3-fold) and BaP (16-fold) metabolism were selectively induced by PB and 3-MC, respectively. Furthermore, the metabolism of AFB1 and BaP by intact mitochondria was supported by Krebs cycle substrates but not by NADPH. Both PB and 3-MC administration cause a shift in the CO difference spectrum of mitoplasts (control, 448 nm; PB, 451 nm; and 3-MC, 446 nm) suggesting that they induce two different forms of mitochondrial cytochromes P-450. Mitoplasts solubilized with cholate and fractionated with polyethylene glycol exhibit only marginal monooxygenase activities. The activity, however, was restored to preparations from both PB-induced and 3-MC-induced mitochondrial enzymes (AFB1 activation, ethylmorphine, and benzphetamine deamination and BaP metabolism) by addition of purified rat liver cytochrome P-450 reductase, and beef adrenodoxin and adrenodoxin reductase. The latter proteins failed to reconstitute activity to purified microsomal cytochromes P-450b and P-450c that were fully active with P-450 reductase. Monospecific rabbit antibodies against cytochrome P-450b and P-450c inhibited both P-450 reductase and adrenodoxin-supported activities to similar extents. Anti-P-450b and anti-P-450c provided Ouchterlony precipitin bands against PB- and 3-MC induced mitoplasts, respectively. We conclude that liver mitoplasts contain cytochrome P-450 that is closely similar to the corresponding microsomal cytochrome P-450 but can be distinguished by a capacity to interact with adrenodoxin. These inducible cytochromes P-450 are of mitochondrial origin since their levels in purified mitoplasts are over 10 times greater than can arise from the highest possible microsomal contamination.  相似文献   

16.
The turnover of newly synthesized cytochromes P-450scc and P-45011 beta, and adrenodoxin was investigated in bovine adrenocortical cells in primary monolayer cultures. Cells were pulse-radiolabeled with [35S]methionine, and specific newly synthesized enzymes were immunoisolated at various times following labeling and quantitated. Adrenocorticotropin (ACTH) treatment did not alter the average turnover rate of total cellular proteins or that of total mitochondrial proteins. The half-life of total cellular proteins of control and ACTH-treated cells was determined to be 20.5 and 23 h, respectively. The half-life of mitochondrial proteins of control and ACTH-treated cells was determined to be 42.5 and 44 h, respectively. The turnover rate of newly synthesized cytochrome P-450scc was approximately the same as total mitochondrial protein (t1/2 = 38 h), and was unchanged by ACTH treatment (t1/2 = 42 h). ACTH treatment did not greatly alter the turnover rate of adrenodoxin. The half-life of adrenodoxin from control and ACTH-treated cells was determined to be 20 and 17 h, respectively. However, ACTH treatment appeared to increase the half-life of cytochrome P-45011 beta from 16 h in control cells to 24 h in treated cells. The differential rate of turnover of mitochondrial proteins studied here supports the contention that mitochondria are subject to heterogeneous degradation. It appears that chronic treatment of bovine adrenocortical cells in culture with ACTH leads to increased steroidogenic capacity, primarily as a result of increased synthesis of steroidogenic enzymes, although, as shown for cytochrome P-45011 beta, ACTH action might also increase steroidogenic capacity by increasing the half-life of this steroid hydroxylase.  相似文献   

17.
NADPH-cytochrome c reductase (NADPH : ferricytochrome oxido-reductase, EC 1.6.2.4), the flavoprotein which mediates the NADPH-dependent reduction of cytochromes P-450 in adrenocortical microsomes, has been localized immunohistochemically at the light microscopic level in rat adrenal glands. Localization was achieved through the use of sheep antiserum produced against purified, trypsin-solubilized rat hepatic microsomal NADPH-cytochrome c reductase in both an unlabeled antibody peroxidase-antiperoxidase technique and an indirect fluorescent antibody method. The sheep antibody to rat hepatic microsomal NADPH-cytochrome c reductase concomitantly inhibited the NADPH-cytochrome c reductase and progesterone 21-hydroxylase activities catalyzed by isolated rat adrenal microsomes. When sections of rat adrenal glands were exposed to the reductase antiserum in both immunohistochemical procedures, positive staining for NADPH-cytochrome c reductase was observed in parenchymal cells of the three cortical zones but not in medullary chromaffin cells. The intensity of staining, however, was found to differ among the three cortical zones, with the most intense staining being found in the zona fasciculata and the least in the zona glomerulosa. The intensity of staining was also found to differ among cells within the zona fasciculata. These immunohistochemical observations demonstrate that microsomal NADPH-cytochrome c reductase is not distributed uniformly throughout the rat adrenal cortex.  相似文献   

18.
Isolated bovine adrenal cortex mitochondria imported in vitro synthesized pre-P-450(SCC) and processed it to the mature form. Partial radio-sequencing of the processed P-450(SCC) gave a result identical with that for authentic P-450(SCC). Rat liver mitochondria also imported pre-P-450(SCC) and processed it to the mature form, whereas bovine heart mitochondria were unable to import and process pre-P-450(SCC) although both mitochondrial preparations imported and processed pre-adrenodoxin. The pre-P-450(SCC) processing activity of bovine adrenal cortex mitochondria was associated with the matrix side surface of the inner membrane. The processing protease could be solubilized by sodium cholate and partially purified by ammonium sulfate fractionation. The partially purified processing protease cleaved pre-P-450(SCC) at the correct position. It was also active in processing pre-P-450(11 beta) but inactive toward pre-adrenodoxin. Bovine heart mitochondria lacked the processing activity to pre-P-450(SCC). The localization of pre-P-450(SCC) and mature P-450(SCC) in bovine adrenal cortex mitochondria was examined. Mature P-450(SCC) processed by the mitochondria was found associated with the matrix-side surface of the inner membrane, which is the correct location of P-450(SCC) in the cell. In the presence of o-phenanthroline, pre-P-450(SCC) was imported into the organelles without being processed and remained soluble in the matrix. The incorporation of newly processed mature P-450(SCC) into the inner membrane was also observed when pre-P-450(SCC) was incubated with inner membrane vesicles. Mature P-450(SCC) generated in vitro from pre-P-450(SCC) by the partially purified processing protease was incorporated not only into the inner membrane vesicles but also into bovine adrenal cortex microsomes. These findings suggested that the processing of pre-P-450(SCC) occurred prior to the incorporation of mature-P-450(SCC) into the inner membrane.  相似文献   

19.
Both cytochromes c and P-450 can be reduced in vitro by a mitochondrial hydroxylation chain consisting of flavoprotein, adrenodoxin and NADPH as electron donors. The effects of pH, ionic strength, content and stoichiometry of intermediate electron carriers on the reduction rate of cytochromes c and P-450 have been compared. The data obtained demonstrate that the reduction of these cytochromes proceeds by different ways. It has been found that cytochrome c has an inhibitory effect on cytochrome P-450 reduction. On the other hand, cytochrome P-450 remarkably activates the process of cytochrome c reduction.  相似文献   

20.
Follicles were collected from cows and processed for electron microscopy and for immunofluorescent staining at the light microscope level. Key regulatory steroidogenic enzymes cholesterol side-chain-cleavage cytochrome P-450 (P-450scc) and 17 alpha-hydroxylase cytochrome P-450 (P-45017 alpha) were immunolocalized using specific IgG fractions raised against these enzymes. In larger follicles in which the theca interna had differentiated, positive staining for cytochromes P-450scc and P-450(17) alpha was observed in the cells of the theca interna. Electron microscopic examination showed that these cells were rich in endoplasmic reticulum, mainly rough, and had moderate numbers of mitochondria with tubular and lamellar cristae. Positive staining was also present in the theca of follicles undergoing atresia. Positive staining for cytochrome P-450(17) alpha was not observed in the membrana granulosa but cytochrome P-450scc was present in the membrana granulosa in some follicles, particularly in the larger antral follicles. By contrast, positive staining for both enzymes was not observed in stroma, surface epithelium or in small preantral follicles in which the theca interna had not differentiated. These results indicate good agreement between the type(s) of steroidogenic enzyme(s) present in tissues and the type(s) of steroid hormone(s) produced. It is concluded that regulation of steroid hormone production involves, at least in part, regulation of the levels of steroidogenic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号