首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary dynamics of host-plant use in a genus of leaf-mining moths   总被引:4,自引:0,他引:4  
Abstract. We used nuclear 28S rDNA sequence data to estimate the phylogeny of 77 leaf-mining Phyllonorycter (Gracillariidae) moth species, including all 55 British species, feeding on 44 different plant genera. There was strong support for both the monophyly of Phyllonorycter and the placement of the genus Cameraria as its sister group. Host-plant use was mapped onto the moth phylogeny and investigated statistically in several ways. First, we show that the estimated level of cospeciation between leaf miners and their host plants is not greater than expected by chance, despite the physical intimacy of the association. Nevertheless, the pattern of host-plant use is far from random, with closely related Phyllonorycter species generally feeding on closely related plants. However, although Phyllonorycter species from a given host plant tend to form distinct clades, there is also statistical support for multiple independent colonizations of some host-plant taxa (e.g. the order Rosales and the genus Corylus ). Despite numerous host shifts, most Phyllonorycter species feed on trees and the few species that attack shrubs or herbs have mostly acquired these habits independently. There is also limited evidence that host shifts to herbs are more likely from shrubs than from trees. Similarly, most species mine the lower surface of leaves but the few upper-surface miners have each evolved the habit independently. Consequently, these shifts to new adaptive zones have not led to substantial radiations.  相似文献   

2.
A database on host plant records from 437 ingroup taxa has been used to test a number of hypotheses on the interaction between butterflies and their host plants using phylogenetic methods (simple character optimization, concentrated changes test, and independent contrasts test). The butterfly phylogeny was assembled from various sources and host plant clades were identified according to Chase et al.'s rbcL-based phylogeny. The ancestral host plant appears to be associated within a highly derived rosid clade, including the family Fabaceae. As fossil data suggest that this clade is older than the butterflies, they must have colonized already diversified plants. Previous studies also suggest that the patterns of association in most insect-plant interactions are more shaped by host shifts, through colonization and specialization, than by cospeciation. Consequently, we have focused explicitly on the mechanisms behind host shifts. Our results confirm, in the light of new phylogenetic evidence, the pattern reported by Ehrlich and Raven that related butterflies feed on related plants. We show that host shifts have generally been more common between closely related plants than between more distantly related plants. This finding, together with the possibility of a higher tendency of recolonizing ancestral hosts, helps to explain the apparent large-scale conservation in the patterns of association between insects and their host plants, patterns which at the same time are more flexible on a more detailed level. Plant growth form was an even more conservative aspect of the interaction between butterflies and their host plants than plant phylogeny. However, this is largely explained by a higher probability of colonizations and host shifts while feeding on trees than on other growth forms.  相似文献   

3.
Ecological and taxonomic trends in macrolepidopteran host plant selection   总被引:1,自引:0,他引:1  
Patterns of host plant use by larvae of macrolepidoptera feeding on trees and shrubs in Britain and Canada are examined. The incidence of polyphagous species varies among different lepidopteran taxa. Among largely monophagous taxa host plant switching has often occurred. The greater similarity of insect faunas on closely related plants is documented using cluster analysis. The Canadian data reveal that lepidopterans feeding on conifers are less specific in their host plant choice than species feeding on angiosperms. The numerical analyses also provide evidence of greater overlap in the insect faunas of plants belonging to the same ecological association. These results are discussed with particular reference to Lepidoptera-plant coevolution.  相似文献   

4.
Our study aimed to identify significant predictors (spatial distance, elevation, host plant taxonomy) which shape the structure of endophytic fungal (ENDF) and putative ericoid mycorrhizal (ErMF) communities associated with roots of Ericaceae in Papua New Guinea. Roots of five Ericaceae together with one non-Ericaceae species were sampled at an experimental site and one common Ericaceae species was chosen for sampling along an elevation gradient. ENDF and putative ErMF communities were determined using the 454-sequencing approach. ENDF as well as putative ErMF communities were affected by interacting host plant. While the putative ErMF community was structured by host plants at the genus level, the ENDF community was affected by host plant subfamily level. Composition of ENDF as well as putative ErMF communities were affected by elevation. Non-Ericaceae plant species (Hypericum sp.) harbored similar communities of ENDF as well as putative ErMF as Ericaceae plants. Our study provides a first insight into ErMF and ENDF community ecology of Ericaceae in Papua New Guinea.  相似文献   

5.
The Monotropoideae (Ericaceae) are non-photosynthetic angiosperms that obtain fixed carbon from basidiomycete ectomycorrhizal fungi. In previous work, we showed that each plant species is associated with a single genus or a set of closely related genera of ectomycorrhizal fungi. Here we show that the level of specificity is much higher. We used a molecular phylogenetic approach to contrast specificity patterns among eight plant lineages and three fungal genera. We relied on fungal nuclear internal transcribed spacer (nrITS) sequence data obtained from 161 basidiocarps and 85 monotropoid roots representing 286 sampled plants screened using restriction length polymorphisms. From the phylogenetic placement of fungal symbionts in fungal phylograms, we found that three basal (Sarcodes, Pterospora, Pleuricospora) and one derived lineage (Allotropa) of plants target narrow clades of closely related species groups of fungi, and four derived lineages (Monotropa hypopithys species group, Pityopus) target more distant species groups. Within most plant lineages, geography and photobiont association constrain specificity. Specificity extended further in Pterospora andromedea, in which sequence haplotypes at the plastid trn L-F region of 73 plants were significantly associated with different fungal species groups even in sympatry. These results indicate that both the macro- and microevolution of the Monotropoideae are tightly coupled to their mycorrhizal symbionts.  相似文献   

6.
The Monotropoideae (Ericaceae) are nonphotosynthetic plants that obtain fixed carbon from their fungal mycorrhizal associates. To infer the evolutionary history of this symbiosis we identified both the plant and fungal lineages involved using a molecular phylogenetic approach to screen 331 plants, representing 10 of the 12 described species. For five species no prior molecular data were available; for three species we confirmed prior studies which used limited samples; for five species all previous reports are in conflict with our results, which are supported by sequence analysis of multiple samples and are consistent with the phylogenetic patterns of host plants. The phylogenetic patterns observed indicate that: (i) each of the 13 plant phylogenetic lineages identified is specialized to a different genus or species group within five families of ectomycorrhizal Basidiomycetes; (ii) mycorrhizal specificity is correlated with phylogeny; (iii) in sympatry, there is no overlap in mature plant fungal symbionts even if the fungi and the plants are closely related; and (iv) there are geographical patterns to specificity.  相似文献   

7.
The importance and prevalence of phylogenetic tracking between hosts and dependent organisms caused by co‐evolution and shifting between closely related host species have been debated for decades. Most studies of phylogenetic tracking among phytophagous insects and their host plants have been limited to insects feeding on a narrow range of host species. However, narrow host ranges can confound phylogenetic tracking (phylogenetic tracking hypothesis) with host shifting between hosts of intermediate relationship (intermediate hypothesis). Here, we investigated the evolutionary history of the Enchenopa binotata complex of treehoppers. Each species in this complex has high host fidelity, but the entire complex uses hosts across eight plant orders. The phylogenies of E. binotata were reconstructed to evaluate whether (1) tracking host phylogeny; or (2) shifting between intermediately related host plants better explains the evolutionary history of E. binotata. Our results suggest that E. binotata primarily shifted between both distant and intermediate host plants regardless of host phylogeny and less frequently tracked the phylogeny of their hosts. These findings indicate that phytophagous insects with high host fidelity, such as E. binotata, are capable of adaptation not only to closely related host plants but also to novel hosts, likely with diverse phenology and defense mechanisms.  相似文献   

8.

Background

Host association patterns in Ectoedemia (Lepidoptera: Nepticulidae) are also encountered in other insect groups with intimate plant relationships, including a high degree of monophagy, a preference for ecologically dominant plant families (e.g. Fagaceae, Rosaceae, Salicaceae, and Betulaceae) and a tendency for related insect species to feed on related host plant species. The evolutionary processes underlying these patterns are only partly understood, we therefore assessed the role of allopatry and host plant family shifts in speciation within Ectoedemia.

Methodology

Six nuclear and mitochondrial DNA markers with a total aligned length of 3692 base pairs were used to infer phylogenetic relationships among 92 species belonging to the subgenus Ectoedemia of the genus Ectoedemia, representing a thorough taxon sampling with a global coverage. The results support monophyletic species groups that are congruent with published findings based on morphology. We used the obtained phylogeny to explore host plant family association and geographical distribution to investigate if host shifts and allopatry have been instrumental in the speciation of these leafmining insects.

Significance

We found that, even though most species within species groups commonly feed on plants from one family, shifts to a distantly related host family have occasionally occurred throughout the phylogeny and such shifts are most commonly observed towards Betulaceae. The largest radiations have occurred within species groups that feed on Fagaceae, Rosaceae, and Salicaceae. Most species are restricted to one of the seven global biogeographic regions, but within species groups representatives are commonly found in different biogeographic regions. Although we find general patterns with regard to host use and biogeography, there are differences between clades that suggest that different drivers of speciation, and perhaps drivers that we did not examine, have shaped diversity patterns in different clades.  相似文献   

9.
Adaptation to host-plant defences through key innovations is a driving force of evolution in phytophagous insects. Species of the neotropical bruchid genus Acanthoscelides Schilsky are known to be associated with specific host plants. The speciation processes involved in such specialization pattern that have produced these specific associations may reflect radiations linked to particular kinds of host plants. By studying host-plant associations in closely related bruchid species, we have shown that adaptation to a particular host-plant (e.g. with a certain type of secondary compounds) could generally lead to a radiation of bruchid species at the level of terminal branches. However, in some cases of recent host shifts, there is no congruence between genetic proximity of bruchid species, and taxonomic similarity of host plants. At deeper branches in the phylogeny, vicariance or long-distance colonization events seem to be responsible for genetic divergence between well-marked clades rather than adaptation to host plants. Our study also suggests that the few species of Acanthoscelides described from the Old World, as well as Neotropical species feeding on Mimosoideae, are misclassified, and are more closely related to the sister genus Bruchidius .  相似文献   

10.
研究发现,取食蔷薇科植物的3种跳甲,即蛇莓跳甲 A.fragariae、地榆跳甲A.sanguisobae和委陵跳甲A.koreana并不是最近缘物种,它们的"母种"和"子种"关系在这一系统中并不受支持.依据分子系统树,地榆跳甲与蛇莓跳甲分别是独立的物种;尽管委陵跳甲和A.ampelophaga亲缘关系最近,但综合考虑二者地理分布特点和食性差异,我们仍主张将它们作为2个独立的物种对待.  相似文献   

11.
The diversification of gall-inducing Australian Kladothrips (Insecta: Thysanoptera) on Acacia has produced a pair of sister-clades, each of which includes a suite of lineages that utilize virtually the same set of 15 closely related host plant species. This pattern of parallel insect-host plant radiation may be driven by cospeciation, host-shifting to the same set of host plants, or some combination of these processes. We used molecular-phylogenetic data on the two gall-thrips clades to analyze the degree of concordance between their phylogenies, which is indicative of parallel divergence. Analyses of phylogenetic concordance indicate statistically-significant similarity between the two clades. Their topologies also fit with a hypothesis of some degree of host-plant tracking. Based on phylogenetic and taxonomic information regarding the phylogeny of the Acacia host plants in each clade, one or more species has apparently shifted to more-divergent Acacia host-plant species, and in each case these shifts have resulted in notable divergence in aspects of the phenotype including morphology, life history and behaviour. Our analyses indicate that gall-thrips on Australian Acacia have undergone parallel diversification as a result of some combination of cospeciation, highly restricted host-plant shifting, or both processes, but that the evolution of novel phenotypic diversity in this group is a function of relatively few shifts to divergent host plants. This combination of ecologically restricted and divergent radiation may represent a microcosm for the macroevolution of host plant relationships and phenotypic diversity among other phytophagous insects.  相似文献   

12.
The leaf beetle genus Trirhabda contains 26 described species from the United States and Canada, feeding on host plants from the families Asteraceae and Hydrophyllaceae. In this study, we present a phylogeny for the genus that was reconstructed from mitochondrial COI and 12S rRNA fragments, nuclear ITS2 rRNA, and morphological characters. Both parsimony and mixed-model Bayesian likelihood analyses were performed. Under both methods, the mitochondrial and nuclear partitions support the same backbone phylogeny, as do the combined data. The utility of the molecular data is contrasted with the low phylogenetic signal among morphological characters. The phylogeny was used to trace the evolution of the host-plant association in Trirhabda. The recovered phylogeny shows that although the host-plant association is phylogenetically conservative, Trirhabda experienced one shift to a distantly related host-plant family, 6 shifts between host-plant tribes, and 6 between genera within tribes. The phylogeny reveals that Trirhabda were plesiomorphically adapted to tolerate complex secondary compounds of its host plants and this adaptation is retained in Trirhabda species, as evidenced by multiple shifts from chemically simpler host plants back to the more complex host plants.  相似文献   

13.
Evolution of the gall wasp-host plant association   总被引:1,自引:0,他引:1  
Gall wasps, or cynipids, form the second largest radiation of galling insects with more than 1300 described species. According to current views, the first cynipids were phytophagous and developed in herb stems of the Asteraceae without modifying plant growth or development. The first galls were supposedly multichambered stem swellings, and subsequent trends involved increase in gall complexity and reduction in the number of larval chambers. Gall wasps also have many of the features believed to be characteristic for phytophagous insects radiating in parallel with their host plants. We tested these hypotheses by mapping characters onto a recent estimate of higher cynipid relationships from a morphology-based analysis of exemplar taxa, controlling for phylogenetic uncertainty using bootstrapping. Characters were also mapped onto a metatree including all gall wasps, assembled from phylogenetic analyses as well as recent classifications. The results contradict many of the current hypotheses. The first cynipids with extant descendants were not Asteraceae stem feeders but induced distinct single-chambered galls in reproductive organs of herbaceous Papaveraceae, or possibly Lamiaceae. There has been a general trend toward more complex galls but the herb-stem feeders evolved from ancestors inducing distinct galls and their larval chambers are best understood as cryptic galls. Woody hosts have been colonized only three times, making the apparently irreversible transition from herbs to woody hosts one of the most conservative features of the gall wasp-host plant association. The evolution of host plant preferences is characterized by colonization of preexisting host-plant lineages rather than by parallel cladogenesis. Cynipids are mono- or oligophagous and host-plant choice is strongly phylogenetically conserved. Yet, the few major host shifts have involved remarkably distantly related plants. Many shifts have been onto plant species already exploited by other gall wasps, suggesting that interspecific parasitism among cynipids facilitates colonization of novel host plants.  相似文献   

14.
Two general patterns that have emerged from the intense studies on insect-host plant associations are a predominance of specialists over generalists and a taxonomic conservatism in host-plant use. In most insect-host plant systems, explanations for these patterns must be based on biases in the processes of host colonizations, host shifts, and specialization, rather than cospeciation. In the present paper, we investigate changes in host range in the nymphalid butterfly tribe Nymphalini, using parsimony optimizations of host-plant data on the butterfly phylogeny. In addition, we performed larval establishment tests to search for larval capacity to feed and survive on plants that have been lost from the female egg-laying repertoire. Optimizations suggested an ancestral association with Urticaceae, and most of the tested species showed a capacity to feed on Urtica dioica regardless of actual host-plant use. In addition, there was a bias among the successful establishments on nonhosts toward plants that are used as hosts by other species in the Nymphalini. An increased likelihood of colonizing ancestral or related plants could also provide an alternative explanation for the observed pattern that some plant families appear to have been colonized independently several times in the tribe. We also show that there is no directionality in host range evolution toward increased specialization, that is, specialization is not a dead end. Instead, changes in host range show a very dynamic pattern.  相似文献   

15.
Species of Ophraella, a North American genus of leaf beetles (Chrysomelidae), feed variously on eight genera in four tribes of Asteraceae. A phylogenetic analysis, based on morphological features and allozymes, was undertaken to deduce the history of host affiliation within the genus. The two data sets are combined to arrive at a provisional phylogeny of the species, onto which host associations are parsimoniously mapped. Among and within the 12 species studied, at least two shifts are postulated to have occurred among congeneric plant species, five between genera in the same tribe, and four between different tribes of Asteraceae. The phylogeny of Ophraella appears not to be congruent with that of its hosts. This and other evidence indicates that many host shifts in Ophraella postdate the divergence of the host plants, a conclusion that may apply commonly to phytophagous insects. A phenetic analysis of the plants' secondary compounds provides modest support for the hypothesis that host shifts are facilitated by commonalities in plant chemistry. A possible trend in host shifts is evident, from chemically simpler to chemically more forbidding plants. The chemical barriers to host shifts in Ophraella appear to require adaptation in both behavior and in physiological attributes. There is no evidence that the host associations of these insects or the divergence in secondary chemistry of their hosts can be attributed to coevolution.  相似文献   

16.
Effects of host plant α‐ and β‐diversity often confound studies of herbivore β‐diversity, hindering our ability to predict the full impact of non‐native plants on herbivores. Here, while controlling host plant diversity, we examined variation in herbivore communities between native and non‐native plants, focusing on how plant relatedness and spatial scale alter the result. We found lower absolute magnitudes of β‐diversity among tree species and among sites on non‐natives in all comparisons. However, lower relative β‐diversity only occurred for immature herbivores on phylogenetically distinct non‐natives vs. natives. Locally in that comparison, non‐native gardens had lower host specificity; while among sites, the herbivores supported were a redundant subset of species on natives. Therefore, when phylogenetically distinct non‐natives replace native plants, the community of immature herbivores is likely to be homogenised across landscapes. Differences in communities on closely related non‐natives were subtler, but displayed community shifts and increased generalisation on non‐natives within certain feeding guilds.  相似文献   

17.
We ask whether patterns of genetic variation in a phytophagous insect's responses to potential host plants shed light on the phylogenetic history of host association. Ophraella communa feeds chiefly, and in eastern North America exclusively, on Ambrosia (Asteraceae: Ambrosiinae). Using mostly half-sib breeding designs, we screened for genetic variation in feeding responses to and larval survival on its own host and on seven other plants that are hosts (or, on one case, closely related to the host) of other species of Ophraella. We found evidence for genetic variation in feeding responses to five of the seven test plants, other than the natural host. We found no evidence of genetic variation in feeding responses to two plant species, nor in capacity for larval survival on six. These results imply constraints on the availability of genetic variation; however, little evidence for constraints in the form of negative genetic correlations was found. These results are interpreted in the context of a provisional phylogeny of, and a history of host shifts within, the genus. Ophraella communa does not present evidence of genetic variation in its ability to feed and/or survive on Solidago, even though it is probably descended from a lineage that fed on Solidago or related plants, possibly as recently as 1.9 million years ago. Genetic variation in performance on this plant may have been lost. Based on evidence for genetic variation and on mean performance, by far the greatest potentiality for adaptation to a congener's host was evinced in responses to Iva frutescens, which not only is related and chemically similar to Ambrosia, but also is the host of a closely related species of Ophraella that may have been derived from an Ambrosia-associated ancestor. Genetic variation in O. communa's capacity to feed and/or survive on its congeners' hosts is less evident for plants that do not represent historically realized host shifts (with one exception) than for those that may (but see Note Added in Proof). The results offer some support for the hypothesis that the evolution of host shifts has been guided in part by constrained genetic variation.  相似文献   

18.
Adaptive radiations consist of two intertwined processes, diversification of species and diversification of their ecological niches, but it is unclear whether there is a causal link between the processes. In phytophagous insects, ecological diversification mainly involves shifts in host-plant associations and in larval feeding habits (internal or external) on different plant parts, and several observations indicate that speciation is facilitated by host shifts. Data on host use in individual species suggest that internal feeders are less likely to colonize new hosts than external-feeding taxa and, consequently, increases in collective host ranges and species numbers should be slowed down in endophagous lineages. We tested these related hypotheses by using phylogenetic information to reconstruct the evolutionary history of larval resource use in the sawfly subfamily Nematinae, a group of 1000 plus species with a broad range of niches: the subfamily's combined host range includes over 20 plant families, and larvae may feed externally on leaves or needles, or internally, for example, in buds, fruits, leaves, or galls. The results show that: (1) Most internally feeding groups have evolved independently from external-feeding ancestors, but several distinct internal habits have appeared convergently multiple times; (2) Shifts among host taxa are clearly more common than changes in larval habits; (3) The majority of host switches have occurred among phylogenetically close plant groups, but many shifts are manifest among distantly related, ecologically proximate hosts; (4) Although external feeding characteristic of the common ancestor of Nematinae is associated with relatively high rates of host-shifting, internal feeders are very conservative in their host use; (5) In contrast, the effect of endophagy on speciation probabilities is more variable: net speciation rates are lowered in most internal-feeding groups, but a striking exception is found in species that induce galls on Salicaceae. The loose connection between collective host ranges and species diversity provides empirical support for theoretical models suggesting that speciation rates are a function of a complex interplay between "intrinsic" niche width and resource heterogeneity.  相似文献   

19.
ABSTRACT. The behaviour of newly emerged adult Colorado potato beetles on preferred hosts follows a stereotyped pattern of sampling, feeding, grooming and rest. Reduced meal sizes on less-preferred hosts is accompanied by increased sampling and frequent interruptions in feeding. A systematic increase in pre-ingestive sampling on less-preferred foodplants indicates that beetles discriminate among closely related species within the Solanaceae. This ability may depend primarily on stimuli perceived at, and near, the leaf surface. Three geographic populations of beetles have adapted to different local host plants, but have not lost their preference for feeding on an ancestral host species. Host shifts by oligophagous insects to related plant species may evolve through selection for feeding generalists in isolated populations, and may not require genetic changes affecting the perception of a particular novel host.  相似文献   

20.
The Drosophila repleta group encompasses an ensemble of species that inhabit desertic areas that are inhospitable to other drosophilids. These species have a tractable ecology, as they breed and feed on necrotic tissues of a wide diversity of species of Cactaceae, with a certain degree of host specificity, which makes them suitable models to investigate the role of host plant shifts in diversification. Most species have their own primary host plant, which may be shared with a closely related species. However, the consequences of host plant shifts from primary to secondary hosts have not been thoroughly studied so far. We investigated the effects of the cactus host on developmental instability and performance of D. gouveai Tidon‐Sklorz & Sene and D. antonietae Tidon‐Sklorz & Sene (Diptera: Drosophilidae), a pair of closely related sibling species, and of their F1 interspecific hybrids reared in primary and secondary host plants. Fluctuating asymmetry (FA) for wing size was significantly greater in flies of both species reared in their respective secondary cactus host than in those grown in the primary host. Interspecific hybrids also exhibited host‐dependent levels of FA. However, hybrids did not show greater FA than the parental species, suggesting that hybridization per se did not affect developmental stability. Even though cactus host shifts affected different measures of fitness (larval viability and adult size) both in D. antonietae and D. gouveai, we did not detect a consistent relationship between FA and fitness. Our results suggest that FA cannot be used as a sensitive indicator of genetic and phenotypic quality and we discuss its application as a fitness predictor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号