首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
When proteins isolated from spicules of Strongylocentrotus purpuratus embryos were examined by western blot analysis, a major protein of approximately 43 kDa was observed to react with the monoclonal antibody, mAb 1223. Previous studies have established that this antibody recognizes an asparagine-linked, anionic carbohydrate epitope on the cell surface glycoprotein, msp130. This protein has been shown to be specifically associated with the primary mesenchyme cells involved in assembly of the spicule. Moreover, several lines of evidence have implicated the carbohydrate epitope in Ca2+ deposition into the growing spicule. The 43 kDa, spicule matrix protein detected with mAb 1223 also reacted with a polyclonal antibody to a known spicule matrix protein, SM30. Further characterization experiments, including deglycosylation using PNGaseF, two-dimensional electrophoresis, and immunoprecipitation, verified that the 43 kDa spicule matrix protein had a pl of approximately 4.0, contained the carbohydrate epitope recognized by monoclonal antibody mAb 1223 and reacted with anti-SM30. Electron microscopy confirmed the presence of proteins within the demineralized spicule that reacted with mAb 1223 and anti-SM30. We conclude that the spicule matrix protein, SM30, is a glycoprotein containing carbohydrate chains similar or identical to those on the primary mesenchyme cell membrane glycoprotein, msp130.  相似文献   

3.
Studies of the sea urchin larval skeleton have contributed greatly to our understanding of the process of biomineralization. In this study we have undertaken an investigation of the morphology of skeleton formation and the localization of proteins involved in the process of spicule formation at the electron microscope level. Sea urchin primary mesenchyme cells undergo a number of morphological changes as they synthesize the larval skeleton. They form a large spicule compartment that surrounds the growing spicule and, as spicule formation comes to an end, the density of the cytoplasm decreases. Inhibition of spicule formation by specific matrix metalloproteinase inhibitors or serum deprivation has some subtle effects on the morphology of cells and causes the accumulation of specific classes of vesicles. We have localized proteins of the organic matrix of the spicule and found that one protein, SM30, is localized to the Golgi apparatus and transport vesicles in the cytoplasm as well as throughout the occluded protein matrix of the spicule itself. This localization suggests that SM30 is an important structural protein in the spicule. Another spicule matrix protein, SM50, has a similar cytoplasmic localization, but in the spicule much of it is localized at the periphery of the spicule compartment, and consequently it may play a role in the assembly of new material onto the growing spicule or in the maintenance of the integrity of the matrix surrounding the spicule.  相似文献   

4.
In embryos of the sea urchin, Hemicentrotus pulcherrimus , as well as in cultured cells derived from isolated micromeres, spicule formation was inhibited by allylisothiocyanate, an inhibitor of H+, K+-ATPase, at above 0.5 μM and was almost completely blocked at above 10 μM. Amiloride, an inhibitor of Na+, H+ antiporter, at above 100 μM exerted only slight inhibitory effect, if any, on spicule formation. Intravesicular acidification, determined using [ dimethylamine -14C]-aminopyrine as a pH probe, was observed in the presence of ATP and 200 mM KCl in microsome fraction obtained from embryos at the post gastrula stage, at which embryos underwent spicule calcification. Intravesicular acidification and K+-dependent ATPase activity were almost completely inhibited by allylisothiocyanate at 10 μM. Allylisothiocyanate-sensitive ATPase activity was found mainly in the mesenchyme cells with spicules isolated from prisms. H+, K+-ATPase, an H+ pump, probably mediates H+ release to accelerate CaCO3 deposition from Ca2+, CO2 and H2O in the primary mesenchyme cells. Intravesicular acidification was stimulated by valinomycin at the late gastrula and the prism stages but not at the pluteus stage. K+ permeability probably increases after the prism stage to activate H+ release.  相似文献   

5.
Summary Methods are described for isolation and culture of primary mesenchyme cells from echinoid embryos. Ninety-five percentpure primary mesenchyme cells were isolated from early gastrulae ofStrongylocentrotus purpuratus, exploiting the biological segregation of these cells within the blastocoel. When cultured, more than 90% of the isolated cells reached the differentiated state, spicule formation, in synchrony with in vivo controls. Isolated primary mesenchyme cells were cultured with and without various cellular and acellular components of normal embryos in order to study the potential involvement of these components in the morphogenesis of the primary mesenchyme. Our data indicate that: 1. primary mesenchyme cells lack the ability to form the annular pattern of the primary mesenchymal ring autonomously; 2. they autonomously produce spicules of a characteristic morphology that differs from that of embryonic spicules; 3. morphogenesis of the primary mesenchyme is not affected by association with embryonic basal lamina, blastocoel matrix, or loosely aggregated epithelial cells, or by close confinement of each set of primary mesenchyme cells within the blastocoelar space; and 4. reaggregated, tightly associated epithelial cells can promote normal primary mesenchyme ring formation, and modify the primary mesenchyme-intrinsic spicule pattern to produce more normal spicule forms.  相似文献   

6.
7.
Abstract. Sea urchin embryos form an endoskeletal spicule composed of calcium carbonate and occluded matrix proteins. The accumulation of the LSM34 spicule matrix protein in embryos of Lytechinus pictus (and its ortholog, SpSM50, in Strongylocentrotus purpuratus ) has been inhibited using morpholino antisense oligonucleotides. The inhibition, using relatively high levels of antisense reagent, can result in the complete absence of spicules, and the complete loss of immunoreactive LSM34/SpSM50, as judged by immunostaining and Western blotting. Primary mesenchyme cells (PMCs) do form and express PMC-specific cell surface antigens despite this inhibition. However, these anti-LSM34/SpSM50-treated embryos do not accumulate SM30 protein, another major matrix protein. Hence, both the initiation of spicule formation and subsequent morphogenesis require LSM34 accumulation in L. pictus , and the accumulation of its ortholog, SpSM50, in S. purpuratus .  相似文献   

8.
At gastrulation the primary mesenchyme cells of sea urchin embryos lose contact with the extracellular hyaline layer and with neighboring blastomeres as they pass through the basal lamina and enter the blastocoel. This delamination process was examined using a cell-binding assay to follow changes in affinities between mesenchyme cells and their three substrates: hyalin, early gastrula cells, and basal lamina. Sixteen-cell-stage micromeres (the precursors of primary mesenchyme cells), and mesenchyme cells obtained from mesenchyme-blastula-stage embryos were used in conjunction with micromeres raised in culture to intermediate ages. The micromeres exhibited an affinity for hyalin, but the affinity was lost at the time of mesenchyme ingression in vivo. Similarly, micromeres had an affinity for monolayers of gastrula cells but the older mesenchyme cells lost much of their cell-to-cell affinity. Presumptive ectoderm and endoderm cells tested against the gastrula monolayers showed no decrease in binding over the same time interval. When micromeres and primary mesenchyme cells were tested against basal lamina preparations, there was an increase in affinity that was associated with developmental time. Presumptive ectoderm and endoderm cells showed no change in affinity over the same interval. Binding measurements using isolated basal laminar components identified fibronectin as one molecule for which the wandering primary mesenchyme cells acquired a specific affinity. The data indicate that as the presumptive mesenchyme cells leave the vegetal plate of the embryo they lose affinities for hyalin and for neighboring cells, and gain an affinity for fibronectin associated with the basal lamina and extracellular matrix that lines the blastocoel.  相似文献   

9.
Mitochondrial profile densities in electronmicrographs were counted in the swimming blastula, mesenchyme blastula, gastrula and prism stages of the sea urchin embryos Sphaerechinus granularis. No numerical changes were statistically apparent. When profile areas were investigated, the mean values of the swimming blastula, the gastrula and the prism stage showed no statistical differences. However, increased areas were measured in the mesenchyme blastula stage. This increase might be related to an increase of the embryonic volumina in the mesenchyme blastula stage. In contrast to earlier reported data, the results indicate that the mitochondrial density in S. granularis embryos does not alter during development in these stages.  相似文献   

10.
Sea urchin embryo micromeres form the primary mesenchyme, the skeleton-producing cells of the embryo. Almost nothing is known about nature and timing of the embryonic cues which induce or initiate spicule formation by these cells. A related question concerns the competence of the micromeres to respond to the cues. To examine competence in this system we have exposed cultured sea urchin micromeres to an inducing medium containing horse serum for various periods of time and have identified a period when micromeres are competent to respond to serum and form spicules. This window, between 30 and 50 h after fertilization, corresponds to the time when mesenchyme cells in vivo are aggregating and beginning to form the syncytium in which the spicule will be deposited. The loss of competence after 50 h is not due to impaired cell health since protein synthesis at this time is not significantly different from controls. Likewise the accumulation of a spicule matrix mRNA (SM 50) and a cell surface glycoprotein (msp 130), both indices of micromere/mesenchyme differentiation, still occurs in cells that have lost competence to respond to serum by forming spicules. These experiments demonstrate that the acquisition and loss of competence in these cells are regulated developmental events and establish an in vitro system for the identification of the molecular basis for inductive signal recognition and signal transduction.  相似文献   

11.
12.
The activity of ouabain-sensitive Na+, K+-ATPase in sea urchin embryos at the morula and the swimming blastula stage was practically the same to that in unfertilized eggs. The activity increased during the period between the mesenchyme blastula and the late gastrula stages. In embryo-wall cell fraction, which contained presumptive ectodermal cells as well as those of other cell lineages at the pre-gastrula stage and ectodermal cells at the late gastrula stage, the Na+, K+-ATPase activity increased in this developmental period more largely than in another cell fraction, containing mesenchyme cells and archenteron cells. Cycloheximide did not only block the activity increase in this period but also caused evident decrease in the activity in embryos at all examined stages. The activity increase in this period was strongly blocked by the treatment with actinomycin D, starting before the mesenchyme blastula stage, and was not seriously inhibited by the treatment starting at the mesenchyme blastula stage. The treatment starting at the initiation of gastrulation only slightly blocked further increase in the activity. Probably, an accumulation of mRNA encoding Na+, K+-ATPase occurs mainly in ectodermal cells and is completed up to the early gastrula stage.  相似文献   

13.
Examination of the coenenchyme tissues of Renilla reniformis revealed two regions of crystal formation: the endoderm containing small oval deposits of unknown composition and the mesoglea containing larger elongated spicules composed of calcite. Spicule formation takes place intracellularly in scleroblasts and may be explained by the following sequential processes: an organic matrix consisting of a homogeneous ground substance and fibers is formed in a large vacuole. Calcite needles 0.4 μ in diameter develop in close association with matrix fibers and vesicles, and grow to form the central core of the spicule. Large electron dense bodies dominate the scleroblast cytoplasm during these early stages of growth. In a later stage, smaller needles 0.2 μ in diameter develop surrounding the core to form the distal lobes of the spicule. ‘Lollipop’-shaped vesicles containing fibers appear in the scleroblast cytoplasm at the onset of this stage. This material is released at the calcification front and presumably is incorporated into the spicule as an organic matrix of crystals in the distal lobes.  相似文献   

14.
A monoclonal antibody, anti-Pisaster matrix-1 (anti-PM1) has been developed against an extracellular matrix antigen, Pisaster matrix-1 (PM1) found in embryos and larvae of the starfish Pisaster ochraceus . Pisaster matrix-1 was first observed in endodermal cells of the early gastrula, and shortly thereafter it was secreted into the blastocoel where it accumulated steadily during gastrulation. During the late gastrula stage it also appeared in the extracellular matrix (ECM) of the gut lumen. Immunogold electron microscopy with anti-PM1 revealed that PM1 was found in condensations of ECM associated with blastocoel matrix fibers, in the trans Golgi network, in Golgi-associated vesicles in endoderm and mesenchyme cells and throughout the ECM lining the digestive tract of late gastrula and bipinnaria larvae. When blastula or early gastrula stage embryos were grown in the presence of the PM1 antibody, archenteron elongation, bending and mouth formation failed to occur. Pisaster matrix-1 stained with alcian blue and its assembly could be disrupted with the common inhibitor of O-linked glycosaminoglycan assembly, β-xyloside but not by tunicamycin. It was not sensitive to enzymes that degrade vertebrate proteoglycans. Pisaster matrix-1 is a large (600 kDa) proteoglycan-like glycosaminoglycan, secreted exclusively by endodermal and/or endodermally derived cells that may be necessary for morphogenesis of the mouth and digestive tract of Pisaster ochraceus embryos/larvae.  相似文献   

15.
Previous studies have implicated an 130-kD glycoprotein containing complex, N-linked oligosaccharide chain(s) in the process of spicule formation in sea urchin embryos. To ascertain whether the processing of high mannose oligosaccharides to complex oligosaccharides is necessary for spiculogenesis, intact embryos and cultures of spicule-forming primary mesenchyme cells were treated with glycoprotein processing inhibitors. In both the embryonic and cell culture systems 1-deoxymannojirimycin (1-MMN) and, to a lesser extent, 1-deoxynojirimycin (1-DNJ) inhibited spicule formation. These inhibitors did not affect gastrulation in whole embryos or filopodial network formation in cell cultures. Swainsonine (SWSN) and castanospermine (CSTP) had no effect in either system. Further analysis revealed the following: (a) 1-MMN entered the embryos and blocked glycoprotein processing in the 24-h period before spicule formation as assessed by a twofold increase in endoglycosidase H sensitivity among newly synthesized glycoproteins upon addition of 1-MMN; (b) 1-MMN did not affect general protein synthesis until after its effects on spicule formation were observed; (c) Immunoblot analysis with an antibody directed towards the polypeptide chain of the 130-kD protein (mAb A3) demonstrated that 1-MMN did not affect the level of the polypeptide that is known to be synthesized just before spicule formation; (d) 1-MMN and 1-DNJ almost completely abolished (greater than 95%) the appearance of mAb 1223 reactive complex oligosaccharide moiety associated with the 130-kD glycoprotein; CSTP and SWSN had much less of an effect on expression of this epitope. These results indicate that the conversion of high mannose oligosaccharides to complex oligosaccharides is required for spiculogenesis in sea urchin embryos and they suggest that the 130-kD protein is one of these essential complex glycoproteins.  相似文献   

16.
In sea urchin embryos exposed to 14C-proline at 20°C for 3 hr at the gastrula, prism or pluteus stage, 14C-radioactivity was found in hot acid-extractable proteins, in which more than 4% of the radioactivity was detectable in hydroxyproline residues. In these embryos, 14C-radioactivity in collagen-like proteins was found in the archenteron, spicule and embryo-wall cells. The rate of synthesis of collagen-like proteins was highest in the archenteron in the mid-gastrula stage, in the embryo-wall cells in the prism stage and in the spicule in the pluteus stage. The rate of synthesis decreased in the archenteron and increased in embryo-wall cells in the period between the mid- and late-gastrula stages, when the rate of synthesis in the spicule was quite low. Thereafter, the rate decreased slightly in the embryo-wall cells, was maintained in archenteron and increased markedly in the spicule. The rates of synthesis of collagen-like proteins are high in these embryonic organs at stages at which development and growth respectively, occur in embryos. Therefore, synthesis of collagen-like proteins probably supports morphogenesis in these embryonic organs.  相似文献   

17.
The ADP-ribosylations of proteins in nuclei, plasma membrane vesicles, mitochondria, microsome vesicles and the soluble fraction of sea urchin embryos isolated at various stages of development were examined by measuring the radioactivities of proteins after exposure of these subcellular fractions to [adenosine-14C]NAD or [adenylate-32P]NAD. ADP-ribosylation of proteins was detected only in the nuclear and plasma membrane fractions. In the nuclear fraction, the rate of ADP-ribosylation of the histone fraction did not change appreciably during early development. In the TCA-insoluble protein fraction of the nuclei, the rate of ADP-ribosylation increased from fertilization to the morula stage, then decreased and again increased from the mesenchyme blastula to the late gastrula stage. After exposure of the nuclear fraction to [adenylate-32P]NAD, a protein band with a molecular weight of 90 kDa was detected by SDS-polyacrylamide gel electrophoresis and radioautography at all stages examined. Its labeling intensity indicated that its ADP-ribosylation is higher at the morula and late gastrula stages than at other stages. In the plasma membrane fraction, proteins with molecular weights of 22 and 68 kDa were ADP-ribosylated and their rates of ADP-ribosylation hardly changed during early development.  相似文献   

18.
Metalloendoproteases have been implicated in a variety of fusion processes including plasma membrane fusion and exocytosis. As a prerequisite to skeleton formation in the sea urchin embryo, primary mesenchyme cells undergo fusion via filopodia to form syncytia. The spicule is formed within the syncytial cable by matrix and mineral deposition. To investigate the potential involvement of a metalloendoprotease in spiculogenesis, the effect of inhibitors of this enzyme on skeleton formation was studied. Experiments with primary mesenchyme cells in vitro and in normal embryos revealed that skeleton formation was blocked by these inhibitors. These findings implicate a metalloendoprotease in spiculogenesis; such an enzyme has been demonstrated in homogenates of primary mesenchyme cells. The most likely site of action of the metalloendoprotease is at the cell membrane fusion stage and/or at subsequent events requiring membrane fusion.  相似文献   

19.
The formation of spicules and development of pluteus arms in sea urchin embryos were strongly blocked by H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride) but were not affected by HA1004 ( N -(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride). Archenteron formation occurred normally in the presence of these compounds. Late gastrulae (28 hr after fertilization) were exposed to 32Pi for 30 min at 20°C, and then dissociated and their primary mesenchyme cells with spicules, embryo-wall cells and archenteron cells were separated. Then, the radioactivities in the protein fractions of these separated cells were measured. Results showed that culture of embryos with H-7 strongly inhibited 32p incorporation into proteins in primary mesenchyme cells but caused little inhibition of its incorporations in embryo-wall cells and archenteron cells. The effective concentrations of H-7 for inhibition of 32p incorporation were within the range that blocked spicule formation and growth of pluteus arms in embryos. HA1004 only slightly inhibited 32p incorporation into protein in mesenchyme cells, embryo-wall cells and archenteron cells of embryos exposed to 32Pi. Protein kinase C activity was detectable only in isolated primary mesenchyme cells associated with spicule structures. These suggest that phosphorylation of proteins by protein kinase C contributes to the formation of spicule structures.  相似文献   

20.
Scanning electron microscopy of six stages of Lytechinus variegatus embryos from hatching through gastrulation reveals changes in the shapes of the ectodermal cells and morphological changes in the extracellular material (ECM) in relation to the locations and migratory activities of mesenchyme cells. The classical optical patterns in the blastular wall (Okazaki patterns) are due to differential orientations of the cells, which bend and extend sheet-like lamellipodia over adjoining cells toward the eventual location of the primary mesenchymal ring. The blastocoelic surfaces of the blastomeres become covered with a thin basal lamina (BL) composed of fibers and nonfibrous material. During primary mesenchyme cell (PMC) ingression, a web-like ECM is located in the blastocoel overlying the amassed PMCs. This ECM becomes sparse in migratory mesenchyme blastulae, and is confined to the animal hemisphere. Localized regions of intertwining basal cell processes in the blastular wall are also present during PMC migration. While a distinct BL is present during early and midgastrulation, blastocoelic ECM is absent. Late gastrulae, on the other hand, have an abundance of blastocoelic ECM concentrated near secondary mesenchyme cell protrusive activity. ECM appearing at both the early mesenchyme and late gastrula stages are probably remnants of degraded BL and intercellular matrix preserved by fixation for SEM. Thus, early mesenchyme ECM is formed of BL material whose degradation is necessary for entry of PMCs into the blastocoel. Late gastrula ECM is apparently a degradation product of BL and intercellular material whose destruction is required for fusion of the gut with oral ectoderm in formation of the mouth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号