首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
In vitro studies using fusion proteins consisting of human immunodeficiency virus type 1 integrase (IN) and a synthetic polydactyl zinc finger protein E2C, a sequence-specific DNA-binding protein, showed that integration of retroviral DNA can be biased towards a contiguous 18-bp E2C-recognition site. To determine whether the fusion protein strategy can achieve site-specific integration in vivo, viruses were prepared by cotransfection and various IN-E2C fusion proteins were packaged in trans into virions. The resulting viruses incorporated with the IN-E2C fusion proteins were functional and capable of performing integration at a level ranging from 1 to 24% of that of viruses containing wild-type (WT) IN. Two of the more infectious viruses, which contained E2C fused to either the N (E2C/IN) or to the C (IN/E2C) terminus of IN, were tested for their ability to direct integration into a unique E2C-binding site present within the 5' untranslated region of erbB-2 gene on human chromosome 17. The copy number of proviral DNA was measured using a quantitative real-time nested-PCR assay, and the specificity of directed integration was determined by comparing the number of proviruses within the vicinity of the E2C-binding site to that in the whole genome. Viruses containing IN/E2C fusion proteins had sevenfold higher preference for integrating near the E2C-binding site than those viruses containing WT IN, whereas viruses containing E2C/IN had 10-fold higher preference. The results indicated that the IN-E2C fusion protein strategy is capable of directing integration of retroviral DNA into a predetermined chromosomal region in the human genome.  相似文献   

4.
Integration of retroviral DNA into the host chromosome requires the integrase protein (IN). We overexpressed the IN proteins of human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2) in E. coli and purified them. Both proteins were found to specifically cut two nucleotides off the ends of linear viral DNA, and to integrate viral DNA into target DNA. This demonstrates that HIV IN is the only protein required for integration of HIV DNA. Although the two types of IN proteins have only 53% amino acid sequence similarity, they act with equal efficiency on both type 1 and type 2 viral DNA. Binding of IN to DNA was tested: purified IN does not bind very specifically to viral DNA ends. Nevertheless, only viral DNA ends are cleaved and integrated. We interpret this as follows: in vitro quick aspecific binding to DNA is followed by slow specific cutting and integration. IN can not find viral DNA ends in the presence of an excess of aspecific DNA; in vivo this is not required since the IN protein is in constant proximity of viral DNA in the viral core particle.  相似文献   

5.
H Liu  X Wu  H Xiao  J A Conway    J C Kappes 《Journal of virology》1997,71(10):7704-7710
Retroviral integrase (IN) is expressed and incorporated into virions as part of the Gag-Pol polyprotein precursor. IN catalyzes integration of the proviral DNA into host cell chromosomes during the early stages of the virus life cycle, and as a component of Gag-Pol, it is involved in virion morphogenesis during late stages. It is unknown whether the scheme, conserved among retroviruses, for expressing and incorporating IN as a component of the Gag-Pol precursor protein is necessary for its function in the infected cell after viral entry. We have developed human immunodeficiency virus (HIV) virion-associated accessory proteins (Vpr and Vpx) as vehicles to deliver both foreign and viral proteins into the virus particle by their expression in trans as heterologous fusion proteins (X. Wu, et al., J. Virol. 69:3389-3398, 1995; X. Wu, et al., J. Virol. 70:3378-3384, 1996; X. Wu, et al., EMBO J. 16:5113-5122, 1977). To analyze IN function independent of its expression as a part of Gag-Pol, we expressed and incorporated IN into HIV type 1 (HIV-1) virions in trans as a fusion partner of Vpr (Vpr-IN). Our results demonstrate that the Vpr-IN fusion protein is efficiently incorporated into virions and then processed by the viral protease to liberate the IN protein. Virus derived from IN-minus provirus is noninfectious. However, this defect is overcome by trans complementation with the Vpr-IN fusion protein. Moreover, complemented virions are able to replicate through a complete cycle of infection, including formation of the provirus (integration). These results show, for the first time, that full IN function can be provided in trans, independent of its expression and incorporation into virions as a component of Gag-Pol. This finding also indicates that the IN domain of Gag-Pol is not required for the formation of infectious virions when IN is provided in trans. The ability to incorporate functional IN into retroviral particles in trans will provide unique opportunities to explore the function of this critical enzyme in a biologically relevant context, i.e., in infected cells as part of the nucleoprotein/preintegration complex.  相似文献   

6.
Holmes-Son ML  Chow SA 《Journal of virology》2000,74(24):11548-11556
Purified fusion proteins made up of a retroviral integrase and a sequence-specific DNA-binding protein have been tested in in vitro assays for their ability to direct integration into specific target sites. To determine whether these fusion proteins can be incorporated into human immunodeficiency virus type 1 (HIV-1) and are functional to mediate integration, we used an in trans approach to deliver various integrase-LexA proteins to an integrase-defective virus containing an integrase mutation at aspartate residue 64. Integrase-LexA, integrase-LexA DNA-binding domain, or N- or C-terminally truncated integrase-LexA proteins were fused to the HIV-1 accessory protein, Vpr. Coexpression of the Vpr fusion proteins and an integrase-defective HIV-1 molecular clone by a producer cell line resulted in efficient incorporation of the fusion protein into the integrase-mutated virus. In addition, each of these viruses was infectious and capable of performing integration, as determined by two independent cellular assays that measure reporter gene expression. With the exception of the N-terminally truncated integrase fused to LexA, which was at about 1%, all of the fusion proteins restored integration to a similar level, at 17 to 24% of that of the wild-type virus. The low level observed with the N-terminally truncated integrase fused to LexA is consistent with previous results implying that the N terminus of integrase is involved in multiple steps of the retroviral life cycle. These data indicate that the integrase-fusion proteins retain catalytic function in the integrase-mutated viruses and demonstrate the feasibility of incorporating integrase fusion proteins into HIV-1 for the development of site-directed retroviral vectors.  相似文献   

7.
8.
Retroviral integrases (INs) function in the context of preintegration complexes (PICs). Two conserved Lys residues in the N-terminal domain of human immunodeficiency virus type 1 (HIV-1) IN were analyzed here for their roles in integration and virus replication. Whereas HIV-1(K46A) grew like the wild type, HIV-1(K34A) was dead. Yet recombinant IN(K34A) protein functioned in in vitro integration assays, and Vpr-IN(K34A) efficiently transcomplemented the infectivity defect of an IN active site mutant virus in cells. HIV-1(K34A) was therefore similar to a number of previously characterized mutant viruses that failed to replicate despite encoding catalytically competent IN. To directly analyze mutant PIC function, a sensitive PCR-based integration assay was developed. HIV-1(K34A) and related mutants failed to support detectable levels (<1% of wild type) of integration. We therefore concluded that mutations like K34A disrupted higher-order interactions important for PIC function/maturation compared to the innate catalytic activity of IN enzyme.  相似文献   

9.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

10.
11.
12.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) inserts the viral DNA genome into host chromosomes. Here, by native agarose gel electrophoresis, using recombinant IN with a blunt-ended viral DNA substrate, we identified the synaptic complex (SC), a transient early intermediate in the integration pathway. The SC consists of two donor ends juxtaposed by IN noncovalently. The DNA ends within the SC were minimally processed (~15%). In a time-dependent manner, the SC associated with target DNA and progressed to the strand transfer complex (STC), the nucleoprotein product of concerted integration. In the STC, the two viral DNA ends are covalently attached to target and remain associated with IN. The diketo acid inhibitors and their analogs effectively inhibit HIV-1 replication by preventing integration in vivo. Strand transfer inhibitors L-870,810, L-870,812, and L-841,411, at low nM concentrations, effectively inhibited the concerted integration of viral DNA donor in vitro. The inhibitors, in a concentration-dependent manner, bound to IN within the SC and thereby blocked the docking onto target DNA, which thus prevented the formation of the STC. Although 3'-OH recessed donor efficiently formed the STC, reactions proceeding with this substrate exhibited marked resistance to the presence of inhibitor, requiring significantly higher concentrations for effective inhibition of all strand transfer products. These results suggest that binding of inhibitor to the SC occurs prior to, during, or immediately after 3'-OH processing. It follows that the IN-viral DNA complex is "trapped" by the strand transfer inhibitors via a transient intermediate within the cytoplasmic preintegration complex.  相似文献   

13.
X Wu  H Liu  H Xiao  J A Conway    J C Kappes 《Journal of virology》1996,70(6):3378-3384
The human immunodeficiency virus type I (HIV-1) Vpr and HIV-2 Vpx proteins package into virions through interactions with their cognate Gag polyprotein precursor. The targeting properties of Vpr and Vpx have been exploited to incorporate foreign proteins into virions by expression as heterologous fusion molecules (X. Wu, H.-M. Liu, H. Xiao, J. Kim, P. Seshaiah, G. Natsoulis, J. D. Boeke, B. H. Hahn, and J. C. Kappes, J. Virol. 69:3389-3398, 1995). To explore the possibility of utilizing Vpx and Vpr to target dominant negative mutants of the HIV Pol proteins into virions, we fused HIV-2 Vpx with an enzymatically defective protease (PR) mutant. Using a vector system to facilitate transient coexpression with HIV provirus, Vpx-PR-mutant (VpxPR(M)) fusion protein was expressed and packaged efficiently into HIV-2 and simian immunodeficiency virus virions. Immunoblot analysis of purified virions demonstrated that the packaging of VpxPR(M) interfered with the processing of the Gag and Gag/Pol precursor proteins, similar to that of a well-characterized active-site PR inhibitor. The incomplete processing of Gag and Gag/Pol was consistent with a 25-fold reduction in virion infectivity. The coexpression of a packaging defective VpxPR(M) fusion protein with HIV-2 provirus produced virions with fully processed Gag protein, similar to wild-type virions. Importantly, virions trans complemented with a Vpx-chloramphenicol acetyltransferase fusion protein were normal with respect to the processing of Gag protein and the ability to infect and replicate in vitro. These results indicate that VpxPR(M) specifically inhibited the function of the viral protease and provide for the first time proof of principle that the incorporation of foreign proteins into virions via fusion with Vpx can inhibit HIV replication. The use of accessory proteins as vehicles to deliver deleterious proteins to virions, including dominant negative mutants of Pol proteins, may provide new opportunities for application of gene therapy-based antiretroviral strategies. The ability to package PR by expression in trans, independent of the Gag/Pol precursor, also represents a novel approach that may be exploited to study the function of the Pol proteins.  相似文献   

14.
We have reconstituted concerted human immunodeficiency virus type 1 (HIV-1) integration in vitro with specially designed mini-donor HIV-1 DNA, a supercoiled plasmid acceptor, purified bacterium-derived HIV-1 integrase (IN), and host HMG protein family members. This system is comparable to one previously described for avian sarcoma virus (ASV) (A. Aiyar et al., J. Virol. 70:3571-3580, 1996) that was stimulated by the presence of HMG-1. Sequence analyses of individual HIV-1 integrants showed loss of 2 bp from the ends of the donor DNA and almost exclusive 5-bp duplications of the acceptor DNA at the site of integration. All of the integrants sequenced were inserted into different sites in the acceptor. These are the features associated with integration of viral DNA in vivo. We have used the ASV and HIV-1 reconstituted systems to compare the mechanism of concerted DNA integration and examine the role of different HMG proteins in the reaction. Of the three HMG proteins examined, HMG-1, HMG-2, and HMG-I(Y), the products formed in the presence of HMG-I(Y) for both systems most closely match those observed in vivo. Further analysis of HMG-I(Y) mutants demonstrates that the stimulation of integration requires an HMG-I(Y) domain involved in DNA binding. While complexes containing HMG-I(Y), ASV IN, and donor DNA can be detected in gel shift experiments, coprecipitation experiments failed to demonstrate stable interactions between HMG-I(Y) and ASV IN or between HMG-I(Y) and HIV-1 IN.  相似文献   

15.
Mutations in the IN domain of retroviral DNA may affect multiple steps of the virus life cycle, suggesting that the IN protein may have other functions in addition to its integration function. We previously reported that the human immunodeficiency virus type 1 IN protein is required for efficient viral DNA synthesis and that this function requires specific interaction with other viral components but not enzyme (integration) activity. In this report, we characterized the structure and function of the Moloney murine leukemia virus (MLV) IN protein in viral DNA synthesis. Using an MLV vector containing green fluorescent protein as a sensitive reporter for virus infection, we found that mutations in either the catalytic triad (D184A) or the HHCC motif (H61A) reduced infectivity by approximately 1,000-fold. Mutations that deleted the entire IN (DeltaIN) or 34 C-terminal amino acid residues (Delta34) were more severely defective, with infectivity levels consistently reduced by 10,000-fold. Immunoblot analysis indicated that these mutants were similar to wild-type MLV with respect to virion production and proteolytic processing of the Gag and Pol precursor proteins. Using semiquantitative PCR to analyze viral cDNA synthesis in infected cells, we found the Delta34 and DeltaIN mutants to be markedly impaired while the D184A and H61A mutants synthesized cDNA at levels similar to the wild type. The DNA synthesis defect was rescued by complementing the Delta34 and DeltaIN mutants in trans with either wild-type IN or the D184A mutant IN, provided as a Gag-IN fusion protein. However, the DNA synthesis defect of DeltaIN mutant virions could not be complemented with the Delta34 IN mutant. Taken together, these analyses strongly suggested that the MLV IN protein itself is required for efficient viral DNA synthesis and that this function may be conserved among other retroviruses.  相似文献   

16.
17.
Retroviral replication requires the integration of reverse-transcribed viral cDNA into a cell chromosome. A key barrier to forming the integrated provirus is the nuclear envelope, and numerous regions in human immunodeficiency virus type 1 (HIV-1) have been shown to aid the nuclear localization of viral preintegration complexes (PICs) in infected cells. One region in integrase (IN), composed of Val-165 and Arg-166, was reportedly essential for HIV-1 replication and nuclear localization in all cell types. In this study we confirmed that HIV-1(V165A) and HIV-1(R166A) were replication defective and that less mutant viral cDNA localized to infected cell nuclei. However, we present three lines of evidence that argue against a specific role for Val-165 and Arg-166 in PIC nuclear import. First, results of transient transfections revealed that V165A FLAG-tagged IN and green fluorescent protein-IN fusions carrying either V165A or R166A predominantly localized to cell nuclei. Second, two different strains of previously described class II IN mutant viruses displayed similar nuclear entry profiles to those observed for HIV-1(V165A) and HIV-1(R166A), suggesting that defective nuclear import may be a common phenotype of replication-defective IN mutant viruses. Third, V165A and R166A mutants were defective for in vitro integration activity, when assayed both as PICs isolated from infected T-cells and as recombinant IN proteins purified from Escherichia coli. Based on these results, we conclude that HIV-1(V165A) and HIV-1(R166A) are pleiotropic mutants primarily defective for IN catalysis and that Val-165 and Arg-166 do not play a specific role in the nuclear localization of HIV-1 PICs in infected cells.  相似文献   

18.
Replication of retroviruses requires integration of the linear viral DNA genome into the host chromosomes. Integration requires the viral integrase (IN), located in high-molecular-weight nucleoprotein complexes termed preintegration complexes (PIC). The PIC inserts the two viral DNA termini in a concerted manner into chromosomes in vivo as well as exogenous target DNA in vitro. We reconstituted nucleoprotein complexes capable of efficient concerted (full-site) integration using recombinant wild-type human immunodeficiency virus type I (HIV-1) IN with linear retrovirus-like donor DNA (480 bp). In addition, no cellular or viral protein cofactors are necessary for purified bacterial recombinant HIV-1 IN to mediate efficient full-site integration of two donor termini into supercoiled target DNA. At about 30 nM IN (20 min at 37 degrees C), approximately 15 and 8% of the input donor is incorporated into target DNA, producing half-site (insertion of one viral DNA end per target) and full-site integration products, respectively. Sequencing the donor-target junctions of full-site recombinants confirms that 5-bp host site duplications have occurred with a fidelity of about 70%, similar to the fidelity when using IN derived from nonionic detergent lysates of HIV-1 virions. A key factor allowing recombinant wild-type HIV-1 IN to mediate full-site integration appears to be the avoidance of high IN concentrations in its purification (about 125 microg/ml) and in the integration assay (<50 nM). The results show that recombinant HIV-1 IN may not be significantly defective for full-site integration. The findings further suggest that a high concentration or possibly aggregation of IN is detrimental to the assembly of correct nucleoprotein complexes for full-site integration.  相似文献   

19.
20.
The integration of viral cDNA into the host genome is a critical step in the life cycle of HIV-1. This step is catalyzed by integrase (IN), a viral enzyme that is positively regulated by acetylation via the cellular histone acetyl transferase (HAT) p300. To investigate the relevance of IN acetylation, we searched for cellular proteins that selectively bind acetylated IN and identified KAP1, a protein belonging to the TRIM family of antiviral proteins. KAP1 binds acetylated IN and induces its deacetylation through the formation of a protein complex which includes the deacetylase HDAC1. Modulation of intracellular KAP1 levels in different cell types including T cells, the primary HIV-1 target, revealed that KAP1 curtails viral infectivity by selectively affecting HIV-1 integration. This study identifies KAP1 as a cellular factor restricting HIV-1 infection and underscores the relevance of IN acetylation as a crucial step in the viral infectious cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号