首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Triiodothyronine (T(3)) exerts direct action on myocardial oxygen consumption (MVO(2)), although its immediate effects on substrate metabolism have not been elucidated. The hypothesis, that T(3) regulates substrate selection and flux, was tested in isovolumic rat hearts under four conditions: control, T(3) (10 nM), epinephrine (Epi), and T(3) and Epi (TE). Hearts were perfused with [1,3-(13)C]acetoacetic acid (AA, 0.17 mM), L-[3-(13)C]lactic acid (LAC, 1.2 mM), U-(13)C-labeled long-chain free fatty acids (FFA, 0.35 mM), and unlabeled D-glucose (5.5 mM) for 30 min. Fractional acetyl-CoA contribution to the tricarboxylic acid cycle (Fc) per substrate was determined using (13)C NMR and isotopomer analysis. Oxidative fluxes were calculated using Fc, the respiratory quotient, and MVO(2). T(3) increased (P < 0.05) Fc(FFA), decreased Fc(LAC), and increased absolute FFA oxidation from 0.58 +/- 0.03 to 0.68 +/- 0.03 micromol. min(-1). g dry wt(-1) (P < 0.05). Epi decreased Fc(FFA) and Fc(AA), although FFA flux increased from 0.58 +/- 0.03 to 0.75 +/- 0.09 micromol. min(-1). g dry wt(-1). T(3) moderated the change in Fc(FFA) induced by Epi. In summary, T(3) exerts direct action on substrate pathways and enhances FFA selection and oxidation, although the Epi effect dominates at a high work state.  相似文献   

3.
Thyroid acting through ligand binding to nuclear receptors modifies myocardial respiratory kinetics and oxidative phosphorylation in the heart. Direct nongenomic action of thyroid hormone on high-energy phosphate concentrations and respiratory kinetics has never been proven in vivo but might be responsible for observed changes in oxygen utilization efficiency immediately after triiodothyronine (T3) administration. We tested the hypothesis that T3 directly and rapidly modifies myocardial high-energy phosphate concentrations and phosphorylation potential in vivo. Anesthetized sheep (age 28-40 days) thyroidectomized shortly after birth (Thy) and euthyroid age-matched controls (Con) underwent median sternotomy and received T3 infusion (0.8 microg/kg), followed by epinephrine infusion to increase myocardial oxygen consumption (MVo2). 31P magnetic resonance spectra were monitored via a surface coil over the left ventricle. T3 increased phosphocreatine (PCr)/ATP and decreased ADP in Thy animals without causing a change in MVo2. T3 produced no changes in high-energy phosphates in Con animals. T3 did not modify the PCr/ATP or ADP response to epinephrine and elevation in MVo2 in either group. Cardiac mitochondria isolated from Thy and Con animals showed no change in respiratory rate or ADP/ATP exchange efficiency after T3 incubation. T3 infusion in a hypothyroid state decreases ADP concentration, thereby altering the equilibrium between phosphorylation potential and myocardial respiratory rate. These T3-induced effects are not due to changes in ADP/ATP exchange efficiency through action at the adenine nucleotide translocator but may be due to T3 mediation of substrate utilization, confirmed in other models.  相似文献   

4.
Little is known about the role of mitochondrial NADP(+)-isocitrate dehydrogenase (NADP(+)-ICDH) in the heart, where this enzyme shows its highest expression and activity. We tested the hypothesis that in the heart, NADP(+)-ICDH operates in the reverse direction of the citric acid cycle (CAC) and thereby may contribute to the fine regulation of CAC activity (Sazanov and Jackson, FEBS Lett 344: 109-116, 1994). We documented a reverse flux through this enzyme in rat hearts perfused with the medium-chain fatty acid octanoate using [U-(13)C(5)]glutamate and mass isotopomer analysis of tissue citrate (Comte et al., J Biol Chem 272: 26117-26124, 1997). In this study, we assessed the significance of our previous finding by perfusing hearts with long-chain fatty acids and tested the effects of changes in O(2) supply. We showed that under all of these conditions citrate was enriched in an isotopomer containing five (13)C atoms. This isotopomer can only be explained by substrate flux through reversal of the NADP(+)-ICDH reaction, which is evaluated at 3-7% of flux through citrate synthase. Small variations in reversal fluxes induced by low-flow ischemia that mimicked hibernation occurred despite major changes in contractile function and O(2) consumption of the heart as well as citrate and succinate release rates and tissue levels. Our data show a reverse flux through NADP(+)-ICDH and support its hypothesized role in the fine regulation of CAC activity in the normoxic and O(2)-deprived heart.  相似文献   

5.
In the present study, we tested the reliability of measurements of pressure-volume area (PVA) and oxygen consumption (MVo(2)) in ex vivo mouse hearts, combining the use of a miniaturized conductance catheter and a fiber-optic oxygen sensor. Second, we tested whether we could reproduce the influence of increased myocardial fatty acid (FA) metabolism on cardiac efficiency in the isolated working mouse heart model, which has already been documented in large animal models. The hearts were perfused with crystalloid buffer containing 11 mM glucose and two different concentrations of FA bound to 3% BSA. The initial concentration was 0.3 +/- 0.1 mM, which was subsequently raised to 0.9 +/- 0.1 mM. End-systolic and end-diastolic pressure-volume relationships were assessed by temporarily occluding the preload line. Different steady-state PVA-MVo(2) relationships were obtained by changing the loading conditions (pre- and afterload) of the heart. There were no apparent changes in baseline cardiac performance or contractile efficiency (slope of the PVA-MVo(2) regression line) in response to the elevation of the perfusate FA concentration. However, all hearts (n = 8) showed an increase in the y-intercept of the PVA-MVo(2) regression line after elevation of the palmitate concentration, indicating an FA-induced increase in the unloaded MVo(2). Therefore, in the present model, unloaded MVo(2) is not independent of metabolic substrate. This is, to our knowledge, the first report of a PVA-MVo(2) relationship in ex vivo perfused murine hearts, using a pressure-volume catheter. The methodology can be an important tool for phenotypic assessment of the relationship among metabolism, contractile performance, and cardiac efficiency in various mouse models.  相似文献   

6.
This study examined whether increased superoxide (O(2)(-).) production contributes to coronary endothelial dysfunction and decreased coronary blood flow (CBF) in congestive heart failure (CHF). To test this hypothesis, the effects of the low-molecular-weight SOD mimetic M40401 on CBF and myocardial oxygen consumption (MVo(2)) were examined in dogs during normal conditions and after CHF was produced by 4 wk of rapid ventricular pacing. The development of CHF was associated with decreases of left ventricular (LV) systolic pressure, maximum first derivative of LV pressure, MVo(2), and CBF at rest and during treadmill exercise as well as endothelial dysfunction with impaired vasodilation in response to intracoronary acetylcholine. M40401 increased CBF (18 +/- 5%, P < 0.01) and MVo(2) (14 +/- 6%, P < 0.01) in CHF dogs and almost totally reversed the impaired CBF response to acetylcholine. M40401 had no effect on acetylcholine-induced coronary vasodilation, CBF, or MVo(2) in normal dogs. Western blot analysis demonstrated that extracellular SOD (EC-SOD) was significantly decreased in CHF hearts, whereas mitochondrial Mn-containing SOD was increased. Cytosolic Cu/Zn-containing SOD was unchanged. Both increased O(2)(-). production and decreased vascular O(2)(-). scavenging ability by EC-SOD could have contributed to endothelial dysfunction in the failing hearts.  相似文献   

7.
The aim of the present study was to evaluate the underlying processes involved in the oxygen wasting induced by inotropic drugs and acute and chronic elevation of fatty acid (FA) supply, using unloaded perfused mouse hearts from normal and type 2 diabetic (db/db) mice. We found that an acute elevation of the FA supply in normal hearts, as well as a chronic (in vivo) exposure to elevated FA as in db/db hearts, increased myocardial oxygen consumption (MVo?(unloaded)) due to increased oxygen cost for basal metabolism and for excitation-contraction (EC) coupling. Isoproterenol stimulation, on top of a high FA supply, led to an additive increase in MVo?(unloaded), because of a further increase in oxygen cost for EC coupling. In db/db hearts, the acute elevation of FA did not further increase MVo?. Since the elevation in the FA supply is accompanied by increased rates of myocardial FA oxidation, the present study compared MVo? following increased FA load versus FA oxidation rate by exposing normal hearts to normal and high FA concentration (NF and HF, respectively) and to compounds that either stimulate (GW-610742) or inhibit [dichloroacetate (DCA)] FA oxidation. While HF and NF + GW-610742 increased FA oxidation to the same extent, only HF increased MVo?(unloaded). Although DCA counteracted the HF-induced increase in FA oxidation, DCA did not reduce MVo?(unloaded). Thus, in normal hearts, acute FA-induced oxygen waste is 1) due to an increase in the oxygen cost for both basal metabolism and EC coupling and 2) not dependent on the myocardial FA oxidation rate per se, but on processes initiated by the presence of FAs. In diabetic hearts, chronic exposure to elevated circulating FAs leads to adaptations that afford protection against the detrimental effect of an acute FA load, suggesting different underlying mechanisms behind the increased MVo? following acute and chronic FA load.  相似文献   

8.
PPARalpha and TR independently regulate cardiac metabolism. Although ligands for both these receptors are currently under evaluation for treatment of congestive heart failure, their interactions or signaling cooperation have not been investigated in heart. We tested the hypothesis that cardiac TRs interact with PPARalpha regulation of target genes and used mice exhibiting a cardioselective Delta337T TRbeta1 mutation (MUT) to reveal cross-talk between these nuclear receptors. This dominant negative transgene potently inhibits DNA binding for both wild-type (WT) TRalpha and TRbeta. We used UCP3 and MTE-1 as principal reporters and analyzed gene expression from hearts of transgenic (MUT) and nontransgenic (WT) littermates 6 h after receiving either specific PPARalpha ligand (WY-14643) or vehicle. Interactions were determined through qRT-PCR analyses, and the extent of these interactions across multiple genes was determined using expression arrays. In the basal state, we detected no differences between groups for protein content for UCP3, PPARalpha, TRalpha2, RXRbeta, or PGC-1alpha. However, protein content for TRalpha1 and the PPARalpha heterodimeric partner RXRalpha was diminished in MUT, whereas PPARbeta increased. We demonstrated cross-talk between PPAR and TR for multiple genes, including the reporters UCP3 and MTE1. WY-14643 induced a twofold increase in UCP3 gene expression that was totally abrogated in MUT. We demonstrated variable cross-talk patterns, indicating that multiple mechanisms operate according to individual target genes. The non-ligand-binding TRbeta1 mutation alters expression for multiple nuclear receptors, providing a novel mechanism for interaction that has not been previously demonstrated. These results indicate that therapeutic response to PPARalpha ligands may be determined by thyroid hormone state and TR function.  相似文献   

9.

Background

Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to the development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone supplementation reverses these defects.

Methods

Studies were performed on young (Young, 4–6 months) and aged (Old, 22–24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin.

Results

Old mice maintained cardiac function under standard workload conditions, despite a marked decrease in unlabeled (presumably palmitate) Fc and relatively similar individual carbohydrate contributions. However, old mice exhibited reduced palmitate oxidation with diastolic dysfunction exemplified by lower -dP/dT. Thyroid hormone abrogated the functional and substrate flux abnormalities in aged mice.

Conclusion

The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.  相似文献   

10.
The bioenergetic basis by which the Krebs cycle substrate pyruvate increased cardiac contractile function over that observed with the Embden-Meyerhof substrate glucose was investigated in the isovolumic guinea pig heart. Alterations in the content of the high energy phosphate metabolites and the rate of high energy phosphate turnover were measured by 31P NMR. These were correlated to the changes in contractile function and rates of myocardial oxygen consumption. Maximum left ventricular developed pressure (LVDP) and high energy phosphates were observed with 16 mM glucose or 10 mM pyruvate. In hearts perfused with 16 mM glucose, the intracellular phosphocreatine (PCr) concentration was 15.2 +/- 0.6 mM with a PCr/Pi ratio of 10.3 +/- 0.9. The O2 consumption was 5.35 mumol/g wet weight/min, and these hearts exhibited a LVDP of 97 +/- 3.7 mm Hg at a constant paced rate of 200 beats/min. In contrast, when hearts were switched to 10 mM pyruvate, the PCr concentration was 18.3 +/- 0.4 mM, the PCr/Pi ratio was 30.4 +/- 2.2, the O2 consumption was 6.67 mumol/g wet weight/min, and the LDVP increased to 125 +/- 3.3 mm Hg. From NMR saturation transfer experiments, the steady-state flux of ATP synthesis from PCr was 4.9 mumol/s/g of cell water during glucose perfusion and 6.67 mumol/s/g of cell water during pyruvate perfusion. The flux of ATP synthesis from ADP was measured to be 0.99 mumol/s/g of cell water with glucose and calculated to be 1.33 mumol/s/g of cell water with pyruvate. These results suggest that pyruvate quite favorably alters myocardial metabolism in concert with the increased contractile performance. Thus, as a mechanism to augment myocardial performance, pyruvate appears to be unique.  相似文献   

11.
Overexpression of calcineurin (CLN) in the mouse heart induces severe hypertrophy that progresses to heart failure, providing an opportunity to define the relationship between energetics and contractile performance in the severely failing mouse heart. Contractile performance was studied in isolated hearts at different pacing frequencies and during dobutamine challenge. Energetics were assessed by 31P-NMR spectroscopy as ATP and phosphocreatine concentrations ([ATP] and [PCr]) and free energy of ATP hydrolysis (|Delta G( approximately ATP)|). Mitochondrial and glycolytic enzyme activities, myocardial O2 consumption, and myocyte ultrastructure were determined. In transgenic (TG) hearts at all levels of work, indexes of systolic performance were reduced and [ATP] and capacity for ATP synthesis were lower than in non-TG hearts. This is the first report showing that myocardial [ATP] is lower in a TG mouse model of heart failure. [PCr] was also lower, despite an unexpected increase in the total creatine pool. Because Pi concentration remained low, despite lower [ATP] and [PCr], |Delta G( approximately ATP)| was normal; however, chemical energy did not translate to systolic performance. This was most apparent with beta-adrenergic stimulation of TG hearts, during which, for similar changes in |Delta G( approximately ATP)|, systolic pressure decreased, rather than increased. Structural abnormalities observed for sarcomeres and mitochondria likely contribute to decreased contractile performance. On the basis of the increases in enzyme activities of proteins important for ATP supply observed after treatment with the CLN inhibitor cyclosporin A, we also conclude that CLN directed inhibition of ATP-producing pathways in non-TG and TG hearts.  相似文献   

12.
The relationship between the production of a T cell factor having affinity for IgA (IgA-binding factor(s); IgA BF) and the expression of Fc receptors specific for IgA (Fc alpha R) was studied by using murine spleen cells activated with concanavalin A (Con A blasts). Fc alpha R was detected by the cytophilic binding of anti-TNP murine IgA myeloma protein (MOPC 315 IgA) to Con A blasts as determined by an indirect rosette method with trinitrophenylated sheep red blood cells (TNP-SRBC). After 18 hr preculture with IgA, Fc alpha R was expressed on 15 to 20% of Con A blasts, which released IgA BF suppressing the in vitro IgA synthesis of the spleen cells stimulated with pokeweed mitogen (PWM). Without preculture with IgA, there was neither induction of Fc alpha R nor the production of IgA BF from Con A blasts. Fc alpha R was not induced on Con A blasts by IgA if Fc gamma R(+) cells were depleted from the blasts by rosetting with SRBC sensitized with rabbit IgG antibody (EA gamma). Even after preculture with IgA, the suppressive IgA BF was undetectable in the culture supernatant of Con A blasts depleted of the Fc gamma R(+) cell population. By using a double rosette method with EA gamma and trinitrophenylated quail red blood cells, Fc alpha R proved to be co-expressed on Fc gamma R(+) precursor T cells in the Con A blasts. The results suggested that both Fc gamma R and Fc alpha R could be co-expressed on Con A blasts, as is the case with T2D4 Fc gamma R(+), Fc alpha R(+) T hybridoma cells, which are known to produce IgG-binding factor(s) (IgG BF) and IgA BF. The relationship between Fc gamma R and Fc alpha R on a single cell was studied by using monoclonal anti-Fc gamma R antibody (2. 4G2 ). The reactivity of 2. 4G2 antibody with T cell Fc gamma R was proved by the inhibition of EA gamma rosette formation by Con A blasts or T2D4 cells. The addition of 2. 4G2 monoclonal antibody, however, did not affect the induction of Fc alpha R on Con A blasts by IgA. Furthermore, the binding of IgA to Fc alpha R already expressed on L5178Y T lymphoma cell line cells was not inhibited by the monoclonal antibody. The results confirmed that Fc alpha R are distinct from Fc gamma R co-expressed on the same Con A blasts, and that the expression of Fc alpha R on Fc gamma R(+) T cells and their production of suppressive IgA BF may be induced by the binding of IgA to Fc alpha R.  相似文献   

13.
Nitric oxide (NO) is involved in the control of myocardial metabolism. In normoperfused myocardium, NO synthase inhibition shifts myocardial metabolism from free fatty acid (FFA) toward carbohydrate utilization. Ischemic myocardium is characterized by a similar shift toward preferential carbohydrate utilization, although NO synthesis is increased. The importance of NO for myocardial metabolism during ischemia has not been analyzed in detail. We therefore assessed the influence of NO synthase inhibition with N(G)-nitro-l-arginine (l-NNA) on myocardial metabolism during moderate ischemia in anesthetized pigs. In control animals, the increase in left ventricular pressure with l-NNA was mimicked by aortic constriction. Before ischemia, l-NNA decreased myocardial FFA consumption (MV(FFA); P < 0.05), while consumption of carbohydrate and O(2) (MVo(2)) remained constant. ATP equivalents [calculated with the assumption of complete oxidative substrate decomposition (ATP(eq))] decreased with l-NNA (P < 0.05), associated with a decrease of regional myocardial function (P < 0.05). In contrast, aortic constriction had no effect on MV(FFA), while MVo(2) increased (P < 0.05) and ATP(eq) and regional myocardial function remained constant. During ischemia, alterations in myocardial metabolism were similar in control and l-NNA-treated animals: MV(FFA) decreased (P < 0.05) and net lactate consumption was reversed to net lactate production (P < 0.05). Regional myocardial function was decreased (P < 0.05), although more markedly in animals receiving l-NNA (P < 0.05). We conclude that the efficiency of oxidative metabolism was impaired by l-NNA per se, paralleled by impaired regional myocardial function. During ischemia, l-NNA had no effect on myocardial substrate consumption, indicating that NO synthases were no longer effectively involved in the control of myocardial metabolism.  相似文献   

14.
To explore the molecular basis for the ability of aggregated IgG to block the phagocytosis by human polymorphonuclear leukocytes of Con A-opsonized E and of nonopsonized Escherichia coli with mannose-binding adhesins, we examined specific aspects of the glycoprotein structure of both the 40- to 43-kDa receptor for the Fc portion of IgG (Fc gamma RII) and the 50- to 78-kDa receptor for the Fc portion of IgG (Fc gamma RIIIPMN) from human polymorphonuclear leukocytes. Fc gamma RIIIPMN isolated by both mAb and ligand affinity chromatography, but not Fc gamma RII, binds Con A in Western blots. This binding is specifically inhibitable by alpha-methylmannoside. Digestion of Fc gamma RIIIPMN by recombinant endoglycosidase H, which is specific for high mannose-type (Con A-binding) oligosaccharides, alters the epitope recognized by mAb 3G8 in or near the IgG ligand-binding site of the receptor. Similarly, the ability of Fc gamma RIIIPMN to bind human IgG ligand is sensitive to endoglycosidase H digestion. Our data indicate that ligands other than the classical IgG opsonins can bind to human Fc gamma RIIIPMN per se through lectin-carbohydrate interactions. Furthermore, Fc gamma RIIIPMN contains a high mannose type oligosaccharide chain which contributes importantly to the integrity of the classical IgG ligand-binding site. Thus, specific glycosylations of the receptor are important for both classical and nonclassical engagement of Fc gamma RIII and may play a role in determining the properties of the ligand-binding site.  相似文献   

15.
Thyroid hormones, T4 and T3, regulate their own production by feedback inhibition of TSH and TRH synthesis in the pituitary and hypothalamus when T3 binds to thyroid hormone receptors (TRs) that interact with the promoters of the genes for the TSH subunit and TRH. All TR isoforms are believed to be involved in the regulation of this endocrine axis, as evidenced by the massive dysregulation of TSH production in mice lacking all TR isoforms. However, the relative contributions of TR isoforms in the pituitary vs. the hypothalamus remain to be completely elucidated. Thus, to determine the relative contribution of pituitary expression of TR-alpha in the regulation of the hypothalamic-pituitary-thyroid axis, we selectively impaired TR-alpha function in TR-beta null mice (TR-beta-/-) by pituitary restricted expression of a dominant negative TR-beta transgene harboring a delta337T mutation. These animals exhibited 10-fold and 32-fold increase in T4 and TSH concentrations, respectively. Moreover, the negative regulation of TSH by exogenous T3 was completely absent and a paradoxical increase in TSH concentrations and TSH-beta mRNA was observed. In contrast, prepro-TRH expression levels in T3-treated TR-beta-/- were similar to levels observed in the delta337/TR-beta-/- mice, and ligand-independent activation of TSH in hypothyroid mice was equivalently impaired. Thus, isolated TR-beta deficiency in TRH paraventricular hypothalamic nucleus neurons and impaired function of all TRs in the pituitary recapitulate the baseline hormonal disturbances that characterize mice with complete absence of all TRs.  相似文献   

16.
17.
We previously reported that a population of Fc gamma-receptor+ (Fc gamma R+) suppressor cells present in normal unstimulated rabbit bone marrow inhibited the growth of autologous rapidly proliferating bone marrow cells devoid of Fc gamma R. It is now reported that the Fc gamma R+ bone marrow cells produced a soluble, nondialyzable suppressor factor(s) (SF) which blocked the proliferation of Fc gamma R- bone marrow cells. In addition, the Fc gamma R+ cells and SF significantly inhibited spleen cell proliferation in response to concanavalin A (Con A), phytohemagglutinin, and pokeweed mitogen. The bone marrow SF exhibited a dose-dependent suppression of the growth of IL-2-dependent T lymphocytes in the presence of IL-2. SF also completely blocked the production or release of IL-2 by Con A-stimulated T cells. Thus, these bone marrow natural suppressor cells produced a soluble factor, which regulated the growth of rapidly proliferating bone marrow cells and also regulated T cell reactivity by modulating IL-2 production and activity.  相似文献   

18.
Myocardial contractile dysfunction develops following trauma-hemorrhagic shock (T/HS). We have previously shown that, in a rat fixed pressure model of T/HS (mean arterial pressure of 30-35 mmHg for 90 min), mesenteric lymph duct ligation before T/HS prevented T/HS-induced myocardial contractile depression. To determine whether T/HS lymph directly alters myocardial contractility, we examined the functional effects of physiologically relevant concentrations of mesenteric lymph collected from rats undergoing trauma-sham shock (T/SS) or T/HS on both isolated cardiac myocytes and Langendorff-perfused whole hearts. Acute application of T/HS lymph (0.1-2%), but not T/SS lymph, induced dual inotropic effects on myocytes with an immediate increase in the amplitude of cell shortening (1.4 ± 0.1-fold) followed by a complete block of contraction. Similarly, T/HS lymph caused dual, positive and negative effects on cellular Ca2? transients. These effects were associated with changes in the electrophysiological properties of cardiac myocytes; T/HS lymph initially prolonged the action potential duration (action potential duration at 90% repolarization, 3.3 ± 0.4-fold), and this was followed by a decrease in the plateau potential and membrane depolarization. Furthermore, intravenous infusion of T/HS lymph, but not T/SS lymph, caused myocardial contractile dysfunction at 24 h after injection, which mimicked actual T/HS-induced changes; left ventricular developed pressure (LVDP) and the maximal rate of LVDP rise and fall (±dP/dt(max)) were decreased and inotropic response to Ca2? was blunted. However, the contractile responsiveness to β-adrenergic receptor stimulation in the T/HS lymph-infused hearts remained unchanged. These results suggest that T/HS lymph directly causes negative inotropic effects on the myocardium and that T/HS lymph-induced changes in myocyte function are likely to contribute to the development of T/HS-induced myocardial dysfunction.  相似文献   

19.
We have previously reported that ANG II stimulation increased superoxide anion (O2-) through the activation of NAD(P)H oxidase and inhibited nitric oxide (NO)-dependent control of myocardial oxygen consumption (MVo2) by scavenging NO. Our objective was to investigate the role of NAD(P)H oxidase, especially the gp91phox subunit, in the NO-dependent control of MVo2. MVo2 in mice with defects in the expression of gp91phox [gp91(phox)(-/-)] was measured with a Clark-type oxygen electrode. Baseline MVo2 was not significantly different between wild-type (WT) and gp91(phox)(-/-) mice. Stimulation of NO production by bradykinin (BK) induced significant decreases in MVo2 in WT mice. BK-induced reduction in MVo2 was enhanced in gp91(phox)(-/-) mice. BK-induced reduction in MVo2 in WT mice was attenuated by 10(-8) mol/l ANG II, which was restored by coincubation with Tiron or apocynin. In contrast to WT mice, BK-induced reduction in MVo2 in gp91(phox)(-/-) mice was not altered by ANG II. There was a decrease in lucigenin (5 x 10(-6) mol/l)-detectable O2- in gp91(phox)(-/-) mice compared with WT mice. ANG II resulted in significant increases in O2- production in WT mice, which was inhibited by coincubation with Tiron or apocynin. However, ANG II had no effect on O2- production in gp91(phox)(-/-) mice. Histological examination showed that the development of abscesses and/or the invasion of inflammatory cells occurred in lungs and livers but not in hearts and kidneys from gp91(phox)(-/-) mice. These results indicate that the gp91(phox) subunit of NAD(P)H oxidase mediates O2- production through the activation of NAD(P)H oxidase and attenuation of NO-dependent control of MVo2 by ANG II.  相似文献   

20.
The lectin concanavalin A (Con A) acts as a mitogen that preferentially activates T-cells. It stimulates the energy metabolism of thymocytes within seconds of exposure. We studied short-term effects (<30 min) of Con A on a conceptually simplified model system of rat thymocyte energy metabolism in the concentration range of 0-2 microg Con A per 107 cells, using metabolic control analysis. The model system consisted of three blocks of reactions, linked by the common intermediate mitochondrial membrane potential (Delta[psi]m): the substrate oxidation reactions, which produce the linking intermediate, and the proton conductance (or leak) and ATP turnover pathways which consume Delta[psi]m. Firstly, we used top-down elasticity analysis to establish which subsystems are targeted by Con A. Secondly, we quantitatively analysed the steady-state regulation of the system variables by Con A: how do the subsystem fluxes respond to Con A individually and as a whole? Our results indicate that: (1) steady-state respiration and Delta[psi]m increase as Con A concentration is raised, but at higher concentrations the increase in respiration is less and Delta[psi]m falls; (2) Con A independently changes the kinetics of the reactions that produce and consume Delta[psi]m: the Delta[psi]m-producing reactions are inhibited, and the reactions involved in ATP turnover are stimulated; and (3) the overall effects of Con A are mostly mediated by effects on ATP turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号