首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Carbon monoxide improves adaptation of Arabidopsis to iron deficiency   总被引:3,自引:0,他引:3  
Carbon monoxide (CO) is an endogenous gaseous molecule and regulates a variety of biological processes in animals. However, whether CO regulates nutrient stress responses in plants is largely unknown. In this paper, we described an observation that CO can regulate iron-homeostasis in iron-starved Arabidopsis. Exogenous CO at 50 μ m was able to prevent the iron deficient-induced chlorosis and improve chlorophyll accumulation. Expression of AtIRT1 , AtFRO2 , AtFIT1 and AtFER1 was up-regulated by CO exposure in iron-deficient seedlings. CO-regulated iron homeostasis could also be found in monocot maize and green alga Chlamydomonas reinhardtii . Treatment with external CO increased iron accumulation in iron-deficient Arabidopsis and C. reinhardtii , and restored leaf greening in Maize ys1 and ys3 mutants (defective in Fe uptake). Moreover, endogenous CO level was increased in Arabidopsis under iron-deficiency. Finally, CO exposure induced NO accumulation in root tips. However, such an action could be blocked by NO scavenger cPTIO. These results indicate that CO may play an important role in improving plant adaptation to iron deficiency or cross-talking with NO under the iron deficiency.  相似文献   

2.
Sterol synthesis is an iron-dependent metabolic pathway in eukaryotes. Consequently, fungal ergosterol biosynthesis (ERG) is down-regulated in response to iron deficiency. In this report, we show that, upon iron limitation or overexpression of the iron-regulated mRNA-binding protein Cth2, the yeast Saccharomyces cerevisiae down-regulates the three initial enzymatic steps of ergosterol synthesis (ERG1, ERG7 and ERG11). Mechanistically, we show that Cth2 protein limits the translation and promotes the decrease in the mRNA levels of these specific ERG genes, which contain consensus Cth2-binding sites defined as AU-rich elements (AREs). Thus, expression of CTH2 leads to the accumulation of initial sterol intermediates, such as squalene, and to the drop of ergosterol levels. Changes in CTH2 expression levels disturb the response of yeast cells to stresses related to membrane integrity such as high ethanol and sorbitol concentrations. Therefore, CTH2 should be considered as a critical regulatory factor of ergosterol biosynthesis during iron deficiency.  相似文献   

3.
Beta-adrenergic receptors (beta-ARs), like other G-protein-coupled receptors, can undergo post-transciptional regulation at the level of mRNA stability. In particular, the human beta(1)- and beta(2)-ARs and the hamster beta(2)-AR mRNA undergo beta-agonist-mediated destabilization. By UV cross-linking, we have previously described an approximately M(r) 36,000 mRNA-binding protein, betaARB, that binds to A/C+U-rich nucleotide regions within 3'-untranslated regions. Further, we have demonstrated previously that betaARB is immunologically distinct from AUF1/heterogeneous nuclear ribonucleoprotein (hnRNP) D, another mRNA-binding protein associated with destabilization of A+U-rich mRNAs (Pende, A., Tremmel, K. D., DeMaria, C. T., Blaxall, B. C., Minobe, W., Sherman, J. A., Bisognano, J., Bristow, M. R., Brewer, G., and Port, J. D. (1996) J. Biol. Chem. 271, 8493-8501). In this report, we describe the peptide composition of betaARB. Mass spectrometric analysis of an approximately M(r) 36,000 band isolated from ribosomal salt wash proteins revealed the presence of two mRNA-binding proteins, hnRNP A1, and the elav-like protein, HuR, both of which are known to bind to A+U-rich nucleotide regions. By immunoprecipitation, HuR appears to be the biologically dominant RNA binding component of betaARB. Although hnRNP A1 and HuR can both be immunoprecipitated from ribosomal salt wash proteins, the composition of betaARB (HuR alone versus HuR and hnRNP A1) appears to be dependent on the mRNA probe used. The exact role of HuR and hnRNP A1 in the regulation of beta-AR mRNA stability remains to be determined.  相似文献   

4.
5.
6.

Background  

In aerobically grown cells, iron homeostasis and oxidative stress are tightly linked processes implicated in a growing number of diseases. The deregulation of iron homeostasis due to gene defects or environmental stresses leads to a wide range of diseases with consequences for cellular metabolism that remain poorly understood. The modelling of iron homeostasis in relation to the main features of metabolism, energy production and oxidative stress may provide new clues to the ways in which changes in biological processes in a normal cell lead to disease.  相似文献   

7.
Rats exposed to 25 or 300 ppm NH3 vapor for 5-15 days 6 hr daily showed dose-dependent blood ammonia after 5 days. Brain and blood glutamine were also increased at the same time in rats exposed to 300 ppm. The blood ammonia concentration of the exposed rats resumed control levels at 10 and 15 days while hepatic citrulline synthesis increased above that of the controls. The animals exposed to 300 ppm NH3 showed initially a slight acidosis. As circulating ammonia decreased, brain and blood glutamine returned to the control range. Our findings support the idea that ureagenesis is aimed mainly at the removal of NH+4 with only secondary and small effects on the acid-base balance.  相似文献   

8.
9.
Recent accelerated trends of human-induced global changes are providing many examples of adaptation to novel environments. Although the rate of environmental change can vary dramatically, its effect on evolving populations is unknown. A crucial feature explaining the adaptation to harsh environments is the supply of beneficial mutations via immigration from a 'source' population. In this study, we tested the effect of immigration on adaptation to increasing concentrations of antibiotics. Using experimental population of Pseudomonas aeruginosa, a pathogenic bacterium, we show that higher immigration rates and a slow increase in antibiotic concentration result in a more rapid evolution of resistance; however, a high immigration rate combined with rapid increases in concentration resulted in higher maximal levels of resistance. These findings, which support recent theoretical work, have important implications for the control of antibiotic resistance because they show that rapid rates of change can produce variants with the ability to resist future treatments.  相似文献   

10.
A novel iron uptake system was observed in pseudorevertants of Escherichia,coli strains defective in ferrienterochelin transport. The new system is unique in that it is an active transport system that does not utilize any known siderophore. Acquisition of the new uptake system occurs concomitantly with the loss of two major outer membrane proteins (b and c) believed to function as structural components of transmembrane pores.  相似文献   

11.
Insights into RNA biology from an atlas of mammalian mRNA-binding proteins   总被引:3,自引:0,他引:3  
RNA-binding proteins (RBPs) determine RNA fate from synthesis to decay. Employing two complementary protocols for covalent UV crosslinking of RBPs to RNA, we describe a systematic, unbiased, and comprehensive approach, termed "interactome capture," to define the mRNA interactome of proliferating human HeLa cells. We identify 860 proteins that qualify as RBPs by biochemical and statistical criteria, adding more than 300 RBPs to those previously known and shedding light on RBPs in disease, RNA-binding enzymes of intermediary metabolism, RNA-binding kinases, and RNA-binding architectures. Unexpectedly, we find that many proteins of the HeLa mRNA interactome are highly intrinsically disordered and enriched in short repetitive amino acid motifs. Interactome capture is broadly applicable to study mRNA interactome composition and dynamics in varied biological settings.  相似文献   

12.
The paper presents results of investigations on some mechanisms of metabolic adaptation in mammals. There are four sections in the tissue metabolic system of acid-base homeostasis: polyamines as factors of metabolic adaptation; significance of carbon dioxide for metabolic response formation in hypobiosis; polyamines metabolism in hypobiosis. Peculiarities of intermediate metabolism have been analyzed in animal tissues under the changes in H+, CO2 and HCO3- concentrations. Basing on a new interpretation of the experimental data and detected regularity in the metabolism, conclusion on the existence of a new acid-base homeostasis system in the tissues has been made. The results of polyamines metabolism investigations in the mammals under the stress have been described. The experimental data make us to believe that changes in polyamines synthesis and ODC activity in particular, is a part of stereotype nonspecific response to any stress impacts and one of the factors of cell metabolic adaptation. Some new data on mechanisms of formation and control of metabolic status of animals in the natural and artificial hibernation have been presented. The key idea is that in the state of hypobiosis the carbon dioxide (HCO3-) appears as a regulatory factor of metabolic adaptation, which is able to realize its action directly via affecting numerous biochemical events. The participation of polyamines in adaptive metabolic response to hybernation factors is suggested. Some peculiarities of ornithine decarboxilase and transglutaminase activity during the different stages of genuine and artificial hypobiosis have been demonstrated.  相似文献   

13.
14.
15.
S M Smith  J L Beard 《Life sciences》1989,45(4):341-347
The effects of two dietary treatments on norepinephrine turnover in iron deficiency were examined. These studies were designed to bridge the gap between previous studies of poor thermoregulation in iron deficiency which used a diet (HMW, Hubbel-Mendel-Wakeman formulation) relatively high in fat (46% of calories) and moderate in carbohydrate (46% of calories) and the more recent studies of thermogenesis in iron deficiency which use the AIN-76 recommended diet which is relatively low in fat (11% of calories) and high in carbohydrate (67% of calories). Iron deficient rats grew less well and had depressed thyroid hormone concentrations regardless of dietary treatment group. The HMW diet significantly increased norepinephrine turnover in heart in iron deficient animals relative to AIN diet but had no effect in controls. Brown adipose tissue norepinephrine turnover was threefold higher in HMW rats fed a low iron diet, and only 67 percent higher in control rats. This study demonstrates that certain modest macronutrient manipulations affect norepinephrine content and turnover more in iron deficient than controls. However, abnormalities in thyroid hormone concentrations persist in iron deficient animals regardless of these dietary treatments.  相似文献   

16.
DnaB is a ring-shaped, hexameric helicase that unwinds the E. coli DNA replication fork while encircling one DNA strand. This report demonstrates that DnaB can also encircle both DNA strands and then actively translocate along the duplex. With two strands positioned inside its central channel, DnaB translocates with sufficient force to displace proteins tightly bound to DNA with no resultant DNA unwinding. Thus, DnaB may clear proteins from chromosomal DNA. Furthermore, while encircling two DNA strands, DnaB can drive branch migration of a synthetic Holliday junction with heterologous duplex arms, suggesting that DnaB may be directly involved in DNA recombination in vivo. DnaB binds to just one DNA strand during branch migration. T7 phage gp4 protein also drives DNA branch migration, suggesting this activity generalizes to other ring-shaped helicases.  相似文献   

17.
18.
Short lived cytokine and proto-oncogene mRNAs are destabilized by an A+U-rich element (ARE) in the 3'-untranslated region. Several regulatory proteins bind to AREs in cytokine and proto-oncogene mRNAs, participate in inhibiting or promoting their rapid degradation of ARE mRNAs, and influence cytokine expression and cellular transformation in experimental models. The tissue distribution and cellular localization of the different AU-rich binding proteins (AUBPs), however, have not been uniformly characterized in the mouse, a model for ARE mRNA decay. We therefore carried out immunoblot and immunohistochemical analyses of the different AUBPs using the same mouse tissues. We show that HuR protein, a major AUBP that stabilizes the ARE mRNAs, is most strongly expressed in the thymus, spleen (predominantly in lymphocytic cells), intestine, and testes. AUF1 protein, a negative regulator of ARE mRNA stability, displayed strong expression in thymus and spleen cells within lymphocytic cells, moderate expression in the epithelial linings of lungs, gonadal tissues, and nuclei of most neurons in the brain, and little expression in the other tissues. Tristetraprolin, a negative regulator of ARE mRNA stability, displayed a largely non-overlapping tissue distribution with AUF1 and was predominantly expressed in the liver and testis. KH-type splicing regulatory protein, a presumptive negative regulator of ARE mRNA stability, was distributed widely in murine organs. These results indicate that HuR and AUF1, which functionally oppose each other, have generally similar distributions, suggesting that the balance between HuR and AUF1 is likely important in control of short lived mRNA degradation, lymphocyte development, and/or cytokine production, and possibly in certain aspects of neurological function.  相似文献   

19.
20.
The molecular mechanisms by which plants sense their micronutrient status, and adapt to their environment in order to ensure a sufficient micronutrient supply, are poorly understood. Zinc is an essential micronutrient for all living organisms. when facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation were recently identified. in this mini-review, we highlight recent progress in understanding the adaptation to zinc deficiency in plants and discuss the future challenges to fully unravel its molecular basis.Key words: adaptation, zinc deficiency, biofortification, molecular regulators, plant nutritionIn an increasingly populated world, agricultural production is an essential element of social development. Agriculture is the primary source of all nutrients required for human life, and nutrient sufficiency is the basis for good health and welfare of the human population.1 Soils with zinc deficiency are widespread in the world, affecting large areas of cultivated soils in India, Turkey, China, Brazil and Australia,2,3 making zinc the most common crop micronutrient deficiency.4 In addition, risk of inadequate zinc diet and zinc malnutrition are estimated to affect one-third of the global human population, i.e., around two billion people.5 Most affected are people living in developing countries, where diets are rich in cereal-based foods. Cereal grains are rich in phytate, which is a potent anti-nutrient, limiting micronutrient bioavailability.6 Zinc deficiency in crop production can be easily ameliorated through zinc fertilization, making agronomic biofortification an important strategy,3 however in the poorer regions, the required infrastructure to provide a reliable supply of zinc fertilizers of sufficient quality, is often not available. In those situations, biofortified crops, in which the zinc status of crops is genetically improved by selective breeding or via biotechnology, offer a rural-based intervention that will more likely reach the population.7 Different traits can be targeted to developing such improved crops, such as plant zinc deficiency tolerance, zinc use efficiency and the accumulation of zinc in edible parts. However, insufficient knowledge on the molecular mechanisms and the regulation of the zinc homeostasis network in plants is a serious bottleneck when pursuing zinc biofortification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号