首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Somatolactin (SL), the latest member of the growth hormone/prolactin family, is a novel pituitary hormone with diverse functions. At present, SL can be identified only in fish but not in tetrapods and its regulation at the pituitary level has not been fully characterized. Using grass carp as a model, we examined the direct effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on SL secretion and synthesis at the pituitary cell level. As a first step, the structural identity of grass carp SL, SLalpha and SLbeta, was established by 5'/3'-rapid amplification of cDNA ends. These two SL isoforms are single-copy genes and are expressed in two separate populations of pituitary cells located in the pars intermedia. In the carp pituitary, PACAP nerve fibers were detected in the nerve tracts of the neurohypophysis and extended into the vicinity of pituitary cells forming the pars intermedia. In primary cultures of grass carp pituitary cells, PACAP was effective in stimulating SL release, cellular SL content, and total SL production. The increase in SL production also occurred with parallel rises in SLalpha and SLbeta mRNA levels. With the use of a combination of molecular and pharmacological approaches, PACAP-induced SL release and SL gene expression were shown to be mediated by pituitary PAC-I receptors. These findings, as a whole, suggest that PACAP may serve as a hypophysiotropic factor in fish stimulating SL secretion and synthesis at the pituitary level. Apparently, PACAP-induced SL production is mediated by upregulation of SLalpha and SLbeta gene expression through activation of PAC-I receptors.  相似文献   

2.
3.
In the goldfish, norepinephrine (NE) inhibits growth hormone (GH) secretion through activation of pituitary alpha(2)-adrenergic receptors. Interestingly, a GH rebound is observed after NE withdrawal, which can be markedly enhanced by prior exposure to gonadotropin-releasing hormone (GnRH). Here we examined the mechanisms responsible for GnRH potentiation of this "postinhibition" GH rebound. In goldfish pituitary cells, alpha(2)-adrenergic stimulation suppressed both basal and GnRH-induced GH mRNA expression, suggesting that a rise in GH synthesis induced by GnRH did not contribute to its potentiating effect. Using a column perifusion approach, GnRH given during NE treatment consistently enhanced the GH rebound following NE withdrawal. This potentiating effect was mimicked by activation of PKC and adenylate cyclase (AC) but not by induction of Ca(2+) entry through voltage-sensitive Ca(2+) channels (VSCC). Furthermore, GnRH-potentiated GH rebound could be alleviated by inactivation of PKC, removal of extracellular Ca(2+), blockade of VSCC, and inhibition of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII). Inactivation of AC and PKA, however, was not effective in this regard. These results, as a whole, suggest that GnRH potentiation of GH rebound following NE inhibition is mediated by PKC coupled to Ca(2+) entry through VSCC and subsequent activation of CaMKII. Apparently, the Ca(2+)-dependent cascades are involved in GH secretion during the rebound phase but are not essential for the initiation of GnRH potentiation. Since GnRH has been previously shown to have no effects on cAMP synthesis in goldfish pituitary cells, the involvement of cAMP-dependent mechanisms in GnRH potentiation is rather unlikely.  相似文献   

4.
Several studies have reported that the PAC(1) receptor (PAC1-R), the specific receptor for PACAP, is expressed at early developmental stages. Here, we describe that the cytosolic Ca(2+) concentration ([Ca(2+)](i)) was increased by PACAP, but not VIP, in a concentration range from 10(-12) to 10(-8) M via the PAC(1)-R in isolated single cells from the rat neural fold. This activation of the cells by PACAP was mimicked by agonists and inhibited by antagonists of the cAMP/PKA and PLC/PKC cascades. These data indicate that PACAP/PAC(1)-R is linked to [Ca(2+)](i) signaling via two G-protein-coupled protein kinase pathways and may thereby play an important role in early neurodevelopment.  相似文献   

5.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a member of the vasoactive intestinal peptide/secretin family. Using microphysiometry, we have found that PACAP acutely (1 min) increased the extracellular acidification rate (ECAR) in GH4C1 cells approximately 40% above basal in a concentration-dependent manner. ECAR, maximally induced by PACAP, can be increased further by thyrotropin-releasing hormone (TRH), indicating that the signalling pathways for these two neuropeptides are not identical. In studies on the mechanism of PACAP-enhanced ECAR, we found that maximum stimulation of the cAMP/PKA pathway by treatment with FSK, or the PKC pathway with PMA, did not inhibit the ECAR response to PACAP. The PKC inhibitor calphostin C and the MAP kinase inhibitor PD98059 had no effect on the ECAR response to PACAP. Furthermore, PACAP induced little or no change in cytosolic Ca(2+) ([Ca(2+)](i)), while TRH induced a large increase in [Ca(2+)](i). However, the tyrosine kinase inhibitor genistein completely blocked PACAP-induced ECAR, suggesting involvement of tyrosine kinase(s). We conclude that PACAP causes an increase in ECAR in GH4C1 rat pituitary cells, which is not dependent on the PKA, PKC, MAP kinase or Ca(2+) signalling pathways, but does require tyrosine kinase activity.  相似文献   

6.
Ca-sensing receptor (CaSR), a member of the G protein-coupled receptor family, regulates the synthesis of parathyroid hormone in response to changes in serum Ca(2+) concentrations. The functions of CaSR in human vascular smooth muscle cells are largely unknown. Here we sought to study CaSR activation and the underlying molecular mechanisms in human aortic smooth muscle cells (HASMC). Extracellular Ca(2+) ([Ca(2+)](o)) dose-dependently increased free cytosolic Ca(2+) ([Ca(2+)](cyt)) in HASMC, with a half-maximal response (EC(50)) of 0.52 mM and a Hill coefficient of 5.50. CaSR was expressed in HASMC, and the [Ca(2+)](o)-induced [Ca(2+)](cyt) rise was abolished by dominant negative mutants of CaSR. The CaSR-mediated increase in [Ca(2+)](cyt) was also significantly inhibited by pertussis toxin, the phospholipase C inhibitor U-73122, or the general protein kinase C (PKC) inhibitor chelerythrine, but not by the conventional PKC inhibitor, G?6976. Depletion of membrane cholesterol by pretreatment with methyl-β-cyclodextrin markedly decreased CaSR-induced increase in [Ca(2+)](cyt). Blockade of TRPC channels with 2-aminoethoxydiphenyl borate, SKF-96365, or La(3) significantly inhibited [Ca(2+)](o) entry, whereas activation of TRPC6 channels with flufenamic acid potentiated [Ca(2+)](o) entry. Neither cyclopiazonic acid nor caffeine or ionomycin had any effect on [Ca(2+)](cyt) in [Ca(2+)](o)-free solutions. TRPC6 and PKCε mRNA and proteins were detected in HASMC, and [Ca(2+)](o) induced PKCε phosphorylation, which could be prevented by chelerythrine. Our data suggest that CaSR activation mediates [Ca(2+)](o) entry, likely through TRPC6-encoded receptor-operated channels that are regulated by a PLC/PKCε cascade. Our study therefore provides evidence not only for functional expression of CaSR, but also for a novel pathway whereby it regulates [Ca(2+)](o) entry in HASMC.  相似文献   

7.
8.
Pituitary adenylate cyclase-activating polypeptide (PACAP) plays a role in mediating growth hormone and gonadotropin release in the teleost pituitary. In the present study, we examined the immunohistochemical relationship between PACAP nerve fibers and prolactin (PRL)- and somatolactin (SL)-producing cells in the goldfish pituitary. Nerve fibers with PACAP-like immunoreactivity (PACAP-LI) were identified in the neurohypophysis in close proximity to cells containing PRL-LI or SL-LI. Several cells with PRL-LI or SL-LI showed PACAP receptor (PAC(1)R)-LI. The cell immunoblot assay method was used to examine the effect of PACAP on PRL and SL release from dispersed goldfish pituitary cells. Treatment with PACAP increased the immunoblot area for PRL- and SL-LI from individual pituitary cells in a dose-dependent manner. The effect of PACAP on the expression of mRNAs for PRL and SL in cultured pituitary cells was also tested. Semiquantitative analysis revealed that the expression of SL mRNA, but not PRL mRNA, was increased significantly by the treatment with PACAP. The effect of PACAP on intracellular calcium mobilization in isolated pituitary cells was also investigated using confocal laser-scanning microscopy. The amplitude of Ca(2+) mobilization in individual cells showing PRL- or SL-LI was increased significantly following exposure of cells to PACAP. These results indicate that PACAP can potentially function as a hypophysiotropic factor mediating PRL and SL release in the goldfish pituitary.  相似文献   

9.
We investigated signal transduction between receptor-operated Ca(2+) influx (ROCI) and Src-related nonreceptor protein tyrosine kinase (PTK) in rat pancreatic acini. CCK and the Ca(2+) ionophore enhanced the Src-related PTK activity, whereas the high-affinity CCK-A receptor agonists, fibroblast growth factor (FGF), and the protein kinase C (PKC) activator had no or little effect. This increase was abolished by eliminating [Ca(2+)](o), loading of the intracellular Ca(2+) chelator, and administering the PTK inhibitor genistein. While genistein inhibited extracellular Ca(2+) or Mn(2+) entry induced by CCK and carbachol, it did not affect intracellular Ca(2+) release and oscillations. CCK dose-dependently increased the Src phosphotransferase activity, which was abolished by inhibitors of G(q) protein, phospholipase C (PLC), and Src, but not by the calmodulin kinase (CaMK) inhibitor. Intensities of the Src band and amounts of tyrosine phosphorylated Src were enhanced by CCK stimulation. Thus, Src cascades appear to be coupled to the low-affinity CCK-A receptor and utilize G(q)-PLC pathways for their activation, independent of PKC and CaMK cascades. The low-affinity CCK-A receptor regulates ROCI via mediation of Src-related PTK and activates Src pathways to cause [Ca(2+)](o)-dependent pancreatic exocytosis.  相似文献   

10.
We have recently shown that in PC12 cells, pituitary adenylate cyclase-activating polypeptide (PACAP) and NGF synergistically stimulate PACAP mRNA expression primarily via a mechanism involving a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Here we have analyzed p38 MAPK activation by PACAP and the mechanism underlying this action of PACAP in PC12 cells. PACAP increased phosphorylation of p38 MAPK with a bell-shaped dose-response relationship and a maximal effect was obtained at 10(-8) M. PACAP (10(-8) M)-induced p38 MAPK phosphorylation was already evident at 2.5 min, maximal at 5 min, and rapidly declined thereafter. PACAP-induced p38 MAPK phosphorylation was potently inhibited by depletion of Ca(2+) stores with thapsigargin and partially inhibited by the phospholipase C inhibitor U-73122, L-type voltage-dependent calcium channel inhibitors nifedipine and nimodipine, and the Ca(2+) chelator EGTA, whereas the protein kinase C inhibitor calphostin C, the protein kinase A inhibitor H-89, the cAMP antagonist Rp-cAMP, and the nonselective cation channel blocker SKF96365 had no effect. These results indicate that PACAP activates p38 MAPK in PC12 cells through activation of a phospholipase C, mobilization of intracellular Ca(2+) stores, and Ca(2+) influx through voltage-dependent Ca(2+) channels, but not cyclic AMP-dependent mechanisms.  相似文献   

11.
The sensing of extracellular Ca(2+) concentration ([Ca(2+)](o)) and modulation of cellular processes associated with acute or sustained changes in [Ca(2+)](o) are cell-type specific and mediated by the calcium sensing receptor (CaR). [Ca(2+)](o) signalling requires protein kinase C (PKC), but the identity and role of PKC isoforms in CaR-mediated responses remain unclear. Here we show that high [Ca(2+)](o) activated PKC-alpha and PKC- in parathyroid cells and in human embryonic kidney (HEK293) cells overexpressing the CaR (HEK-CaR) and that this response correlated with the CaR-dependent activation of mitogen-activated protein kinases ERK1/2. Activation of ERK1/2 by acute high [Ca(2+)](o) required influx of Ca(2+)through Ni(2+)-sensitive Ca(2+)channels and phosphatidylinositol-dependent phospholipase C-beta activity. Inhibition of PKC by co-expression of dominant-negative (DN) mutants of PKC-alpha or - with the CaR attenuated sustained ERK1/2 activation. Overexpression of a PKC phosphorylation site (T888A) mutant CaR in HEK293 cells showed that this site was important for ERK1/2 activation at high [Ca(2+)](o). Activation of ERK1/2 by high [Ca(2+)](o) was not necessary for the [Ca(2+)](o)-regulated secretion of parathyroid hormone (PTH) in dispersed bovine parathyroid cells. These data suggest that the CaR-mediated [Ca(2+)](o) signal leading to regulated PTH secretion that requires diacylglycerol-responsive PKC isoforms is not mediated via the ERK pathway.  相似文献   

12.
Current scientific literature generally attributes the vasoconstrictor effects of [Arg(8)]vasopressin (AVP) to the activation of phospholipase C (PLC) and consequent release of Ca(2+) from the sarcoplasmic reticulum. However, half-maximal activation of PLC requires nanomolar concentrations of AVP, whereas vasoconstriction occurs when circulating concentrations of AVP are orders of magnitude lower. Using cultured vascular smooth muscle cells, we previously identified a novel Ca(2+) signaling pathway activated by 10-100 pM AVP. This pathway is distinguished from the PLC pathway by its dependence on protein kinase C (PKC) and L-type voltage-sensitive Ca(2+) channels (VSCC). In the present study, we used isolated, pressurized rat mesenteric arteries to examine the contributions of these different Ca(2+) signaling mechanisms to AVP-induced vasoconstriction. AVP (10(-14)-10(-6) M) induced a concentration-dependent constriction of arteries that was reversible with a V(1a) vasopressin receptor antagonist. Half-maximal vasoconstriction at 30 pM AVP was prevented by blockade of VSCC with verapamil (10 microM) or by PKC inhibition with calphostin-C (250 nM) or Ro-31-8220 (1 microM). In contrast, acute vasoconstriction induced by 10 nM AVP (maximal) was insensitive to blockade of VSCC or PKC inhibition. However, after 30 min, the remaining vasoconstriction induced by 10 nM AVP was partially dependent on PKC activation and almost fully dependent on VSCC. These results suggest that different Ca(2+) signaling mechanisms contribute to AVP-induced vasoconstriction over different ranges of AVP concentration. Vasoconstrictor actions of AVP, at concentrations of AVP found within the systemic circulation, utilize a Ca(2+) signaling pathway that is dependent on PKC activation and can be inhibited by Ca(2+) channel blockers.  相似文献   

13.
The endozepine triakontatetraneuropeptide (TTN) induces intracellular calcium ([Ca(2+)](i)) changes and is chemotactic for human neutrophils (PMNs). Because interleukin-8 (IL-8) production is Ca(2+) dependent and can be induced by chemotactic stimuli, we have investigated the ability of TTN to induce IL-8 production in PMNs, as well as the signal transduction mechanisms involved. Our results show that TTN increases IL-8 release and IL-8 mRNA expression in a concentration- and time-dependent fashion, and these effects are prevented by the Ca(2+) chelator BAPTA-AM. TTN-induced [Ca(2+)](i) changes and IL-8 mRNA expression are sensitive to pertussis toxin, to the phospholipase C (PLC) inhibitor U73122 (but not to its inactive analogue U73343) and to the protein kinase C (PKC) inhibitor calphostin C. It is therefore suggested that TTN-induced IL-8 production in human PMNs results from a G protein-operated, PLC-activated [Ca(2+)](i) rise, and PKC contributes to this effect. These findings further support the possible role of TTN in the modulation of the inflammatory processes.  相似文献   

14.
Previous studies have shown that human fetal adrenal gland from 17- to 20-week-old fetuses expressed pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, which were localized on chromaffin cells. The aim of the present study was to identify PACAP receptor isoforms and to determine whether PACAP can affect intracellular calcium concentration ([Ca(2+)](i)) and catecholamine secretion. Using primary cultures and specific stimulation of chromaffin cells, we demonstrate that PACAP-38 induced an increase in [Ca(2+)](i) that was blocked by PACAP (6-38), was independent of external Ca(2+), and originated from thapsigargin-insensitive internal stores. The PACAP-triggered Ca(2+) increase was not affected by inhibition of PLC beta (preincubation with U-73122) or by pretreatment of cells with Xestospongin C, indicating that the inositol 1,4,5-triphosphate-sensitive stores were not mobilized. However, forskolin (FSK), which raises cytosolic cAMP, induced an increase in Ca(2+) similar to that recorded with PACAP-38. Blockage of PKA by H-89 or (R(p))-cAMPS suppressed both PACAP-38 and FSK calcium responses. The effect of PACAP-38 was also abolished by emptying the caffeine/ryanodine-sensitive Ca(2+) stores. Furthermore, treatment of cells with orthovanadate (100 microm) impaired Ca(2+) reloading of PACAP-sensitive stores indicating that PACAP-38 can mobilize Ca(2+) from secretory vesicles. Moreover, PACAP induced catecholamine secretion by chromaffin cells. It is concluded that PACAP-38, through the PAC(1) receptor, acts as a neurotransmitter in human fetal chromaffin cells inducing catecholamine secretion, through nonclassical, recently described, ryanodine/caffeine-sensitive pools, involving a cAMP- and PKA-dependent phosphorylation mechanism.  相似文献   

15.
Regulation of muscle cell Ca(2+) metabolism by 1, 25-dihydroxy-vitamin D(3) [1,25(OH)(2)D(3)] is mediated by the classic nuclear mechanism and a fast, nongenomic mode of action that activates signal transduction pathways. The role of individual protein kinase C (PKC) isoforms in the regulation of intracellular Ca(2+) levels ([Ca(2+)](i)) by the hormone was investigated in cultured proliferating (myoblasts) and differentiated (myotubes) chick skeletal muscle cells. 1,25(OH)(2)D(3) (10(-9) M) induced a rapid (30- to 60-s) and sustained (>5-min) increase in [Ca(2+)](i) which was markedly higher in myotubes than in myoblasts. The effect was suppressed by the PKC inhibitor calphostin C. In differentiated cells, PKC activity increased in the particulate fraction and decreased in cytosol to a greater extent than in proliferating cells after 5-min treatment with 1,25(OH)(2)D(3). By Western blot analysis, these changes were correlated to translocation of the PKC alpha isoform from cytosol to the particulate fraction, which was more pronounced in myotubes than in myoblasts. Specific inhibition of PKC alpha activity using antibodies against this isoform decreased the 1, 25(OH)(2)D(3)-induced [Ca(2+)](i) sustained response associated with Ca(2+) influx through voltage-dependent calcium channels. Neomycin, a phospholipase C (PLC) inhibitor, blocked its effects on [Ca(2+)](i), PKC activity, and translocation of PKC alpha. Exposure of myotubes to 1,2-dioleyl-rac-glycerol (1,2-diolein), also increased [Ca(2+)](i), PKC activity, and the amount of PKC alpha associated with the particulate fraction. Changes in [Ca(2+)](i) induced by diolein were inhibited by calphostin C and nifedipine. The results indicate that PKC alpha activation via PLC-catalyzed phosphoinositide hydrolysis is part of the mechanism by which 1, 25(OH)(2)D(3) regulates muscle intracellular Ca(2+) through modulation of the Ca(2+) influx pathway of the Ca(2+) response to the sterol.  相似文献   

16.
Yanagida K  Yaekura K  Arima T  Yada T 《Peptides》2002,23(1):135-142
The present study examined whether a sustained increase in cytosolic Ca(2+) concentration ([Ca(2+)](i)) causes glucose-insensitivity in beta-cells and whether it could be modulated by pituitary adenylate cyclase-activating polypeptide (PACAP), a pancreatic insulinotropin. Rat single beta-cells were cultured for 2 days with sustained increases in [Ca(2+)](i), followed by determination of the [Ca(2+)](i) response to glucose (8.3 mM) as monitored with fura-2. High K(+) (25 mM) produced sustained increases in [Ca(2+)](i) in beta-cells, which were inhibited by nifedipine, a Ca(2+) channel blocker. After culture with high K(+), the incidence and amplitude of [Ca(2+)](i) responses to glucose were markedly reduced. This glucose-insensitivity was prevented by the presence of nifedipine or PACAP-38 (10(-13) M and 10-9) M) in high K(+) culture. PACAP-38 attenuated high K(+)-induced [Ca(2+)](i) increases. In conclusion, sustained increases in [Ca(2+)](i) induce glucose-insensitivity (Ca(2+) toxicity in beta-cells) and it is prevented by PACAP possibly in part due to its Ca(2+)-reducing capacity.  相似文献   

17.
It is well established that pituitary adenylate cyclase-activating polypeptide (PACAP) can stimulate catecholamine biosynthesis and secretion in adrenal chromaffin cells. Recent studies from this laboratory demonstrated that PACAP pretreatment inhibits nicotine (NIC)-induced intracellular Ca(2+) transients and catecholamine secretion in porcine adrenal chromaffin cells. Mechanistically, this effect is mediated by protein kinase C (PKC), and based on indirect evidence, is thought to primarily target voltage-gated Ca(2+) channels. The present study used whole-cell patch-clamp analysis to test this possibility more directly in rat chromaffin cells. Consistent with the porcine data, pretreatment with PACAP or with phorbol ester [phorbol myristate acetate (PMA)] significantly suppressed NIC-induced intracellular Ca(2+) transients and catecholamine secretion in rat chromaffin cells. Exposure to PACAP and PMA significantly reduced peak Ca(2+) current in rat cells. The effects of both PACAP and PMA on Ca(2+) current could be blocked by treating cells with the PKC inhibitor staurosporine. Exposure to selective channel blockers demonstrated that rat chromaffin cells contain L-, N- and P/Q-type Ca(2+) channels. PACAP pretreatment significantly reduced Ca(2+) current gated through all three channel subtypes. These data suggest that PACAP can negatively modulate NIC-induced catecholamine secretion in both porcine and rat adrenal chromaffin cells.  相似文献   

18.
19.
Gastrin-releasing peptide (GRP) and its amphibian homolog, bombesin, are potent secretogogues in mammals. We determined the roles of intracellular free Ca(2+) ([Ca(2+)](i)), protein kinase C (PKC), and mitogen-activated protein kinases (MAPK) in GRP receptor (GRP-R)-regulated secretion. Bombesin induced either [Ca(2+)](i) oscillations or a biphasic elevation in [Ca(2+)](i). The biphasic response was associated with peptide secretion. Receptor-activated secretion was blocked by removal of extracellular Ca(2+), by chelation of [Ca(2+)](i), and by treatment with inhibitors of phospholipase C, conventional PKC isozymes, and MAPK kinase (MEK). Agonist-induced increases in [Ca(2+)](i) were also inhibited by dominant negative MEK-1 and the MEK inhibitor, PD89059, but not by an inhibitor of PKC. Direct activation of PKC by a phorbol ester activated MAPK and stimulated peptide secretion without a concomitant increase in [Ca(2+)](i). Inhibition of MEK blocked both bombesin- and phorbol 12-myristate 13-acetate-induced secretion. GRP-R-regulated secretion is initiated by an increase in [Ca(2+)](i); however, elevated [Ca(2+)](i) is insufficient to stimulate secretion in the absence of activation of PKC and the downstream MEK/MAPK pathways. We demonstrated that the activity of MEK is important for maintaining elevated [Ca(2+)](i) levels induced by GRP-R activation, suggesting that MEK may affect receptor-regulated secretion by modulating the activity of Ca(2+)-sensitive PKC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号