首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vitro poly(ADP-ribosyl)ation of seminal ribonuclease   总被引:1,自引:0,他引:1  
The site of in vitro ADP-ribosylation of seminal ribonuclease was determined. Seminal enzyme was found to be a good receptor of [14C]ADP-ribose residues under the reaction conditions used. The recovery of [14C]ADP-ribosylated RNase was about 65% after purification. After tryptic digestion of modified enzyme, a fraction containing [14C]ADP-ribosylated peptides was separated from the others by ion-exchange chromatography on M82 resin. Radioactive peptides were then purified by affinity chromatography on anti-poly(ADP-ribose)IgG-Sepharose. High performance liquid chromatography of a mixture obtained after pronase digestion of purified ADP-ribosylated peptides revealed only one radioactive peptide whose amino acid composition corresponded to a peptide that has equimolar quantities of aspartic acid, serine, and glycine. Carboxypeptidase Y digestion of this peptide showed that its amino acid sequence was Asp-Ser-Gly. Only position 14-16 of seminal RNase corresponded to this sequence. The chemical stability of the ADP-ribose/enzyme linkage indicated that aspartic acid 14 is the modification site in seminal RNase.  相似文献   

2.
A major peptide related to the NH2-terminal fragment (position 1 to 76) of mammalian chromogranin A was isolated from ostrich adenohypophyses following acid-acetone extraction. The complete amino acid sequence of the homogenous peptide was deduced following automatic Edman degradation of the native peptide as well as of CNBr-, tryptic- and Lysobacter-derived peptides. The 76 amino acid sequence is strikingly homologous to bovine (80.3% sequence identity), porcine (79.0%), human (79.0%) and rat (72.4%) corresponding sequences, but much less so to human chromogranin B (22.4%). As this peptide is followed in bovine, porcine and human structure by a pair of basic residues (Lys-Lys), it could conceivably be produced during maturation in secretory granules. Finally, its structure appears to contain two potential amphipathic helices joined by the single disulfide bridge present in all chromogranin A and B molecules.  相似文献   

3.
Beta-(S-Methyl)thioaspartic acid occurs as a posttranslational modification at position 88 in Escherichia coli ribosomal protein S12, a position that is a mutational hotspot resulting in both antibiotic-resistant and antibiotic-sensitive phenotypes. Critical to research designed to determine the biological function of beta-(S-methyl)thioaspartic acid will be the availability of synthetic beta-(S-methyl)thioaspartic acid as well as derivatives designed for peptide incorporation. We report here the synthesis of beta-(S-methyl)thioaspartic acid and derivatives. The installation of the beta-methylthio moiety into the aspartic acid structure was accomplished by electrophilic sulfenylation of N-protected-l-aspartic acid derivatives with 2,4-dinitrophenyl methyl disulfide. Following this key transformation, we were able to prepare protected beta-(S-methyl)thioaspartic acid derivative suitable for peptide coupling.  相似文献   

4.
Amino acid sequence of rhizopuspepsin isozyme pI 5   总被引:2,自引:0,他引:2  
The complete amino acid sequence of an aspartic protease from Rhizopus chinensis, rhizopuspepsin isozyme pI 5, has been determined. Partial sequences were first obtained from the isolated isozyme by a combination of chemical and proteolytic enzyme cleavages, peptide purifications, and Edman degradations. About one-half of the sequence was revealed by this approach. To complete the amino acid sequence, a cDNA library of R. chinensis in pBR322 was constructed. An oligonucleotide probe was synthesized based on the sequence Trp-Trp-Gly-Ile-Thr, and about 40 positive clones were identified by colony hybridization. A clone, 33E2, which had an insert size of about 1.1 kilobase pairs, was found to contain the entire coding region of rhizopuspepsin isozyme pI 5. The sequence of rhizopuspepsin contains 325 amino acid residues. The alignment of the rhizopuspepsin sequence against other aspartic proteases revealed expected homology, with the closest similarity to penicillopepsin which shares 39% identical residues. Porcine pepsin shares about 36% identical residues with rhizopuspepsin.  相似文献   

5.
A novel aspartic proteinase (EC 3.4.23) from Medicago sativa L. (alfalfa) was purified to homogeneity using Source Q ion-exchange, concanavalin-A Sepharose and pepstatin-A agarose affinity chromatography. The enzyme, M r=33.5 kDa, is monomeric and catalyzes the cleavage of a broad spectrum of peptide bonds of hydrophobic amino acids from pH 2.6 to 6.4. The enzyme is inhibited by pepstatin-A and is consistent with the properties of an aspartic proteinase. The N-terminal amino acid sequence of the protein shows 50 and 40% similarity with the cyprosin and barley aspartic proteinases, respectively.  相似文献   

6.
A novel plasminogen-binding protein has been isolated from human plasma utilizing plasminogen-Sepharose affinity chromatography. This protein copurified with alpha 2 antiplasmin when the plasminogen affinity column was eluted with high concentrations of epsilon-aminocaproic acid (greater than 20 mM). Analysis by sodium dodecyl sulfate suggests this protein has an apparent Mr of 60,000. The amino-terminal amino acid sequence showed no similarity to other protein sequences. Based on the amino-terminal amino acid sequence, oligonucleotide probes were designed for polymerase chain reaction primers, and an approximately 1,800 base pair cDNA was isolated that encodes this Mr 60,000 protein. The deduced amino acid sequence reveals a primary translation product of 423 amino acids that is very similar to carboxypeptidase A and B and consists of a 22-amino acid signal peptide, a 92-amino acid activation peptide, and a 309-amino acid catalytic domain. This protein shows 44 and 40% similarity to rat procarboxypeptidase B and human mast cell procarboxypeptidase A, respectively. The residues critical for catalysis and zinc and substrate binding of carboxypeptidase A and B are conserved in the Mr 60,000 plasminogen-binding protein. The presence of aspartic acid at position 257 of the catalytic domain suggests that this protein is a basic carboxypeptidase. When activated by trypsin, it hydrolyzes carboxypeptidase B substrates, hippuryl-Arg and hippuryl-Lys, but not carboxypeptidase A substrates, and it is inhibited by the specific carboxypeptidase B inhibitor (DL-5-guanidinoethyl)mercaptosuccinic acid. We propose that the Mr 60,000 plasminogen-binding protein isolated here is a novel human plasma carboxypeptidase B and that it be designated pCPB.  相似文献   

7.
A 41-residue peptide (HGA-2) containing a continuous sequence of 35 glutamic and aspartic residues was isolated from non-histone chromosomal protein HMG 2. This highly acidic peptide is compared with a similar peptide (HGA-1) isolated from non-histone chromosomal protein HMG 1.  相似文献   

8.
The nucleotide sequence of the gene (pepA) of a zymogen of an aspartic proteinase from Penicillium janthinellum with a 71% identity in the deduced amino acid sequence to penicillopepsin (which we propose to call penicillopepsin-JT1) has been determined. The gene consists of 60 codons for a putative leader sequence of 20 amino acid residues, a sequence of about 150 nucleotides that probably codes for an activation peptide and a sequence with two introns that codes for the active aspartic proteinase. This gene, inserted into the expression vector pGPT-pyrG1, was expressed in an aspartic proteinase-free strain of Aspergillus niger var. awamori in high yield as a glycosylated form of the active enzyme that we call penicillopepsin-JT2. After removal of the carbohydrate component with endoglycosidase H, its relative molecular mass is between 33,700 and 34,000. Its kinetic properties, especially the rate-enhancing effects of the presence of alanine residues in positions P3 and P2' of substrates, are similar to those of penicillopepsin-JT1, endothiapepsin, rhizopuspepsin, and pig pepsin. Earlier findings suggested that this rate-enhancing effect was due to a hydrogen bond between the -NH- of P3 and the hydrogen bond accepting oxygen of the side chain of the fourth amino acid residue C-terminal to Asp215. Thr219 of penicillopepsin-JT2 was mutated to Ser, Val, Gly, and Ala. Thr219Ser showed an increase in k(cat) when a P3 residue was present in the substrate, which was similar to that of the wild-type, whereas the mutants Thr219Val, Thr219Gly, and Thr219Ala showed no significant increase when a P3 residue was added. The results show that the putative hydrogen bond alone is responsible for the increase. We propose that by locking the -NH- of P3 to the enzyme, the scissile peptide bond between P1 and P1' becomes distorted toward a tetrahedral conformation and becomes more susceptible to nucleophilic attack by the catalytic apparatus without the need of a conformational change in the enzyme.  相似文献   

9.
10.
C. L. Barton  C. Shaw  D. W. Halton  L. Thim 《Peptides》1992,13(6):1159-1163
Neuropeptide Y (NPY) has been isolated from brain extracts of the rainbow trout (Oncorhynchus mykiss) and subjected to structural analyses. Plasma desorption mass spectroscopy estimated the molecular mass of the purified peptide as 4303.9 Da. Automated Edman degradation unequivocally established the sequence of a 36 amino acid residue peptide as: Tyr-Pro-Pro-Lys-Pro-Glu-Asn-Pro-Gly-Glu-Asp-Ala-Pro-Pro-Glu-Glu-Leu-Ala-Lys-Tyr-Tyr-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu-Ile-Thr-Arg-Gln-Arg-Tyr. The molecular mass calculated from this sequence (4304 Da) is consistent with that obtained by mass spectroscopy. The presence of a C-terminal amide was established by radioimmunoassay. Rainbow trout NPY is identical in primary structure to coho salmon (Oncorhynchus kisutch) pancreatic polypeptide (PP). These data may indicate that, in this group of salmonid fishes, a single member of the NPY/PP peptide family is expressed in both neurons and peripheral endocrine cells.  相似文献   

11.
The cyanobacteria produce multi-L-arginyl-poly (aspartic acid), a high molecular weight (Mr=25 000-125 000) branched polypeptide consisting of a poly(aspartic acid) core with L-arginyl residues peptide bonded to each free carboxyl group of the poly(aspartic acid). An enzyme which will elongate Arg-poly(Asp) has been isolated and purified 92-fold from the filamentous cyanobacterium Anabaena cylindrica. The enzyme incorporates arginine and aspartic acid into Arg-poly(Asp) in a reaction which requires ATP, KCl, MgCl2, and a sulfhydryl reagent. The enzymatic incorporation of arginine is dependent upon the presence of L-aspartic acid but not visa versa, a finding which suggests the order of amino acid addition to the branched polypeptide-aspartic acid is added to the core followed by the attachment of an arginine branch. The elongation of Arg-poly(Asp) in-vitro is insensitive to the addition of protein synthesis inhibitors and to the addition of nucleases. These findings support the notion previosly suggested from in-vivo studies that Arg-poly(Asp) is synthesized via a non-ribosomal route and also demonstrate that amino-acetylated transfer-RNAs play no part in at least one step of the biosynthetic mechanism.  相似文献   

12.
A protease was purified 163-fold from Pronase, a commercial product from culture filtrate of Streptomyces griseus, by a series of column chromatographies on CM-Toyopearl (Fractogel), Sephadex G-50, hydroxyapatite, and Z-Gly-D-Phe-AH-Sepharose 4B using Boc-Ala-Ala-Pro-Glu-pNA as a substrate. The final preparation was homogeneous by polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and gel isoelectric focusing. Studies on the substrate specificity with peptide p-nitroanilides revealed that this protease preferentially hydrolyzed peptide bonds on the carbonyl-terminal side of either glutamic acid or aspartic acid. It was most active at pH 8.8 for the hydrolysis of Boc-Ala-Ala-Pro-Glu-pNA. The molecular weight of the protease was estimated to be 20,000 by gel filtration on Sepharose 6B using 6 M guanidine hydrochloride as an eluent, and 22,000 by SDS-PAGE in the presence of 2-mercaptoethanol. The isoelectric point of the enzyme was 8.4. The enzyme was inactivated by diisopropyl phosphofluoridate (DFP) but not by p-chloromercuribenzoate (PCMB) or EDTA.  相似文献   

13.
A full length cDNA for acid phosphatase in rat liver lysosomes was isolated and sequenced. The predicted amino acid sequence comprises 423 residues (48,332 Da). A putative signal peptide of 30 residues is followed by the NH2-terminal sequence of lysosomal acid phosphatase (45,096 Da). The deduced NH2-terminal 18-residue sequence is identical with that determined directly for acid phosphatases purified from the rat liver lysosomal membranes. The primary structure deduced for acid phosphatase contains 9 potential N-glycosylation sites and a hydrophobic region which could function as a transmembrane domain. It exhibits 89% and 67% sequence similarities in amino acids and nucleic acids, respectively, to human lysosomal acid phosphatase. The amino acid sequence of the putative transmembrane segment shows a complete similarity to that of the human enzyme. Northern blot hybridization analysis identified a single species of acid phosphatase mRNA (2.2 kbp in length) in rat liver.  相似文献   

14.
Biosynthesis of the cyanobacterial nitrogen reserve cyanophycin (multi-L-arginyl-poly-L-aspartic acid) is catalysed by cyanophycin synthetase, an enzyme that consists of a single kind of polypeptide. Efficient synthesis of the polymer requires ATP, the constituent amino acids aspartic acid and arginine, and a primer like cyanophycin. Using synthetic peptide primers, the course of the biosynthetic reaction was studied. The following results were obtained: (a) sequence analysis suggests that cyanophycin synthetase has two ATP-binding sites and hence probably two active sites; (b) the enzyme catalyses the formation of cyanophycin-like polymers of 25-30 kDa apparent molecular mass in vitro; (c) primers are elongated at their C-terminus; (d) the constituent amino acids are incorporated stepwise, in the order aspartic acid followed by arginine, into the growing polymer. A mechanism for the cyanophycin synthetase reaction is proposed; (e) the specificity of the enzyme for its amino-acid substrates was also studied. Glutamic acid cannot replace aspartic acid as the acidic amino acid, whereas lysine can replace arginine but is incorporated into cyanophycin at a much lower rate.  相似文献   

15.
The fruit body of shiitake (Lentinus edodes) produces two acid nucleases, nuclease Le1 and nuclease Le3, both of which are thought to be candidates for the enzyme that produces a flavorful substance, 5'-GMP, and the primary structure of one of the nucleases, nuclease Le1, has been analyzed by both protein chemistry and gene cloning [Biosci. Biotechnol. Biochem. 64, 948-957 (2000)]. In this study the amino acid sequence of nuclease Le3 was analyzed by protein chemistry and gene cloning. Nuclease Le3 is a glycoprotein that contains 280 amino acid residues, and the molecular mass of the protein moiety of nuclease Le3 is 31,045. The nucleotide sequence of the cDNA and genomic DNA encoding nuclease Le3 revealed the presence of an 18-residue putative signal peptide. Nuclease Le3 contains 170, 108, and 98 amino acid residues that are identical to residues of nuclease Le1, nuclease P1, and nuclease S, respectively. The amino acid residues involved in coordination with Zn2+ atoms in nuclease P1 are all conserved in nuclease Le3. Nuclease Le3 contains 9 half-cystine residues, and 7 of them are located in the same positions as in nuclease Le1.  相似文献   

16.
A soybean seed-specific PR-8 chitinase, named Chib2, has a markedly extended C-terminal segment compared to other plant Chib1 homologues of the PR-8 chitinase family known to date. To further characterize the molecular structure and the expression pattern of this chitinase family, we cloned two typical Chib1-similar cDNAs (Chib1-1 and Chib1-2) from soybeans by PCR-cloning techniques. The deduced primary sequence of Chib1-1 chitinase is composed of a signal peptide segment (26 amino acid residues) and a mature 273 amino acid sequence (calculated molecular mass 28,794, calculated pI 3.7). This Chib1-1 enzyme is more than 90% identical to Chib1-2 chitinase but is below 50% identical to Chib2 enzyme. Thus, we confirmed the occurrence of two distinct classes, Chib1 and Chib2 in the plant PR-8 chitinase family. The Chib1 genes, interrupted by one intron, were found to be up-regulated in response to ethylene in stems and leaves, but scarcely expressed in developing soybean seeds. Chib1 chitinases may be responsible for protecting the plant body from various pathogenic attacks.  相似文献   

17.
The cDNA coding for a glutelin-2 protein from maize endosperm has been cloned and the complete amino acid sequence of the protein derived for the first time. An immature maize endosperm cDNA bank was screened for the expression of a beta-lactamase:glutelin-2 (G2) fusion polypeptide by using antibodies against the purified 28 kd G2 protein. A clone corresponding to the 28 kd G2 protein was sequenced and the primary structure of this protein was derived. Five regions can be defined in the protein sequence: an 11 residue N-terminal part, a repeated region formed by eight units of the sequence Pro-Pro-Pro-Val-His-Leu, an alternating Pro-X stretch 21 residues long, a Cys rich domain and a C-terminal part rich in Gln. The protein sequence is preceded by 19 residues which have the characteristics of the signal peptide found in secreted proteins. Unlike zeins, the main maize storage proteins, 28 kd glutelin-2 has several homologous sequences in common with other cereal storage proteins.  相似文献   

18.
Zeng XC  Li WX  Peng F  Zhu ZH 《IUBMB life》2000,49(3):207-210
Based on the amino acid sequence of a bradykinin-potentiating peptide (Bpp) (peptide K-12) from scorpion Buthus occitanus, a full-length cDNA sequence encoding the precursor of a novel venom peptide (named BmKbpp) related to this Bpp, has been isolated and analyzed. The cDNA encodes a precursor of 72 amino acid residues, including a signal peptide of 22 residues and an extra Arg-Arg-Arg tail at the C-terminal end of the precursor, which have to be removed in the processing step. The C-terminal region (21 residues) of the precursor is homologous (57% identical) with the sequence of peptide K-12. Thus, according to the primary structure of the BmKbpp precursor, there may be a propeptide between the signal peptide and the putative mature BmKbpp at the C-terminal region of the precursor.  相似文献   

19.
An active-site peptide containing an aspartic acid implicated in catalysis has been isolated and sequenced from two Streptococcus sobrinus extracellular glucosyltransferases: sucrose:1,3-alpha-D-glucan 3-alpha-D-glucosyltransferase (GTase-I) and sucrose:1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase (GTase-S). The sequenced peptides, tagged with radiolabeled glucose, were isolated from a pepsin digest of a stabilized glucosylenzyme complex prepared by rapidly denaturing a reaction of enzyme and radiolabeled sucrose. The glucosyl linkage had previously been characterized as a beta-anomer bound to an active-site carboxyl group. Purified GTase-I and GTase-S glucosyl-peptides had the following similar but not identical sequences: GTase-I, Asp-Ser-Ile-Arg-Val-Asp-Ala-Val-Asp; and GTase-S, Asp-Gly-Val-Arg-Val-Asp-Ala-Val-Asp. Each has 3 aspartic acids as potential sites of glucose conjugation, but the relevant residue was not identified in sequence analysis because the highly base-labile glucosyl bond was cleaved in the first sequence cycle. As an alternative, the GTase-I glucosyl-peptide was partially digested at the N terminus with cathepsin C and at the C terminus with carboxypeptidase P. Analysis of the truncated products by fast atom bombardment mass spectrometry localized the glucosyl group to Asp-6 i the GTase-I peptide. In the native enzyme, this sequence is found near the N terminus, well-removed from the glucan-binding site located on a 60-kDa domain at the C terminus. The catalysis-dependent method of incorporating a glucosyl label implicates the aspartic acid as the residue involved in stabilizing an oxocarbonium ion transition state. The peptide segment is highly conserved and homologous to a peptide from sucrase-isomaltase labeled by site-directed irreversible inhibition and peptide segments common to a broad array of alpha-glucosidases and related transferases.  相似文献   

20.
Primary structure of sensory rhodopsin I, a prokaryotic photoreceptor.   总被引:17,自引:4,他引:13       下载免费PDF全文
The gene coding for sensory rhodopsin I (SR-I) has been identified in a restriction fragment of genomic DNA from the Halobacterium halobium strain L33. Of the 1014 nucleotides whose sequence was determined, 720 belong to the structural gene of SR-I. In the 5' non-coding region two putative promoter elements and a ribosomal binding site have been identified. The 3' flanking region bears a potential terminator structure. The SR-I protein moiety carries no signal peptide and is not processed at its N terminus. The C terminus, however, lacks the last aspartic acid residue encoded by the gene. Analysis of the primary structure of SR-I reveals no consistent homology with the eukaryotic photoreceptor rhodopsin, but 14% homology with the halobacterial ion pumps, bacteriorhodopsin (BR) and halorhodopsin (HR). Residues conserved in all three proteins are discussed with respect to their contribution to secondary structure, retinal binding and ion translocation. The aspartic acid residue which mediates in BR the reprotonation of the Schiff base (D96) is replaced in SR-I by a tyrosine (Y87). This amino acid replacement is proposed to be of crucial importance in the evolution of the slow-cycling photosensing pigment SR-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号