首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two isoenzymes of rat liver acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum) EC 3.1.3.2) have been purified to homogeneity, at least one of these for the first time. Both of the rat liver isoenzymes have identical specific activities towards p-nitrophenyl phosphate. Molecular weights of the native enzymes are 92 000 for rat liver isoenzyme I and 93 000 for isoenzyme II, while the subunit molecular weights are 51 000 and 52 000 respectively. Data on substrate specificity and pH dependence are presented for the homogeneous canine prostatic enzyme, which is also isolated as a dimeric enzyme of (native) molecular weight 89 000. Carbohydrate analysis data are presented for canine prostatic acid phosphatase and it is further noted that both isoenzymes of rat liver acid phosphatase are also glycoproteins. The amino acid compositions of the two rat liver isoenzymes are presented together with those of the similar dimeric acid phosphatase of human liver and of canine prostate. Comparison of these results with published data for the amino acid composition of human prostatic acid phosphatase shows substantial similarities. However, significant differences are seen in the amino acid composition of rat liver acid phosphatase isoenzyme I as compared to a previous literature report. Most notably, 17 histidine residues are found per mol of isoenzyme I and 18 for isoenzyme II.  相似文献   

2.
The presence of a Zn2+-dependent acid p-nitrophenyl phosphatase (EC 3.1.3.2) in bovine liver was described. The enzyme was purified to apparent homogeneity and migrates as a single band during electrophoresis on polyacrylamide gel. The enzyme requires Zn2+ ions for catalytic activity, other bivalent cations have little or no effect. The enzyme, of Mr 118,000, optimum pH 6-6.2 and pI 7.4-7.5, was inhibited by EDTA, tartrate, adenine and ATP, but not by fluoride. The common phosphate esters are poor substrates for the enzyme, which hydrolyses preferentially p-nitrophenyl phosphate and o-carboxyphenyl phosphate. The Zn2+-dependent acid p-nitrophenyl phosphatase of bovine liver was different from the high-Mr acid phosphatases previously detected in mammalian tissues.  相似文献   

3.
Using [32P]P-Tyr-IgG and [32P]P-Tyr-casein phosphorylated by pp60v-src as substrates, studies on the phosphotyrosyl-protein phosphatase activity in human prostate gland indicate that it is associated with prostatic acid phosphatase. Evidence to support this conclusion include the following: (a) these two enzymatic activities co-purify to apparent homogeneity; (b) they co-migrated on polyacrylamide gel electrophoresis, ion-exchange and gel filtration chromatographies; (c) the exhibit identical thermostability; and (d) the phosphotyrosyl-protein phosphatase activity is sensitive to inhibition by p-nitrophenyl phosphate and by several classical inhibitors of prostatic acid phosphatase including L(+)-tartrate, molybdate, vanadate and NaF. The purified enzyme exhibits high specificity towards phosphotyrosyl-proteins with little activity towards several phosphoseryl-proteins and phosphothreonyl-proteins examined. The present findings indicate that prostatic acid phosphatase may function in vivo as a phosphotyrosyl-protein phosphatase.  相似文献   

4.
Wysocki P  Strzezek J 《Theriogenology》2006,66(9):2152-2159
The fluid of boar epididymis is characterized by a high activity of acid phosphatase (AcP), which occurs in three molecular forms. An efficient procedure was developed for the purification of a molecular form of epididymal acid phosphatase from boar seminal plasma. We focused on the epididymal molecular form, which displayed the highest electrophoretic mobility. The purification procedure (dialysis, ion exchange chromatography, affinity chromatography and hydroxyapatite chromatography) used in this study gave more than 7000-fold purification of the enzyme with a yield of 50%. The purified enzyme was homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The purified molecular form of the enzyme is a thermostable 50kDa glycoprotein, with a pI value of 7.1 and was highly resistant to inhibitors of acid phosphatase when p-nitrophenyl phosphate was used as the substrate. Hydrolysis of p-nitrophenyl phosphate by the purified enzyme was maximally active at pH of 4.3; however, high catalytic activity of the enzyme was within the pH range of 3.5-7.0. Kinetic analysis revealed that the purified enzyme exhibited affinity for phosphotyrosine (K(m)=2.1x10(-3)M) and was inhibited, to some extent, by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor. The N-terminal amino acid sequence of boar epididymal acid phosphatase is ELRFVTLVFR, which showed 90% homology with the sequence of human, mouse or rat prostatic acid phosphatase. The purification procedure described allows the identification of the specific biochemical properties of a molecular form of epididymal acid phosphatase, which plays an important role in the boar epididymis.  相似文献   

5.
The enzymatic properties of acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) encoded by PHO3 gene in Saccharomyces cerevisiae, which is repressed by thiamin and has thiamin-binding activity at pH 5.0, were investigated to study physiological functions. The following results led to the conclusion that thiamin-repressible acid phosphatase physiologically catalyzes the hydrolysis of thiamin phosphates in the periplasmic space of S. cerevisiae, thus participating in utilization of the thiamin moiety of the phosphates by yeast cells: (a) thiamin-repressible acid phosphatase showed Km values of 1.6 and 1.7 microM at pH 5.0 for thiamin monophosphate and thiamin pyrophosphate, respectively. These Km values were 2-3 orders of magnitude lower than those (0.61 and 1.7 mM) for p-nitrophenyl phosphate; (b) thiamin exerted remarkable competitive inhibition in the hydrolysis of thiamin monophosphate (Ki 2.2 microM at pH 5.0), whereas the activity for p-nitrophenyl phosphate was slightly affected by thiamin; (c) the inhibitory effect of inorganic phosphate, which does not repress the thiamin-repressible enzyme, on the hydrolysis of thiamin monophosphate was much smaller than that of p-nitrophenyl phosphate. Moreover, the modification of thiamin-repressible acid phosphatase of S. cerevisiae with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide resulted in the complete loss of thiamin-binding activity and the Km value of the modified enzyme for thiamin monophosphate increased nearly to the value of the native enzyme for p-nitrophenyl phosphate. These results also indicate that the high affinity of the thiamin-repressible acid phosphatase for thiamin phosphates is due to the thiamin-binding properties of this enzyme.  相似文献   

6.
Summary The effect of cortisol on rabbit erythrocyte and reticulocyte acid phosphatase was studied. Isoenzymic form I (slow) was activated by cortisol, and protected towards inhibition by phosphate and fluoride. Incubation of isoenzyme III (fast) preparation with cortisol resulted in decrease of the enzyme activity and its affinity for substrate. The inhibition of form III by phosphate and fluoride was accelerated in the presence of cortisol. Form II, if present, was unaffected by cortisol. Reticulocyte isoenzymes I and III were less affected by cortisol than the erythrocyte enzymes.Abbreviations RBC red blood cells - AcP acid phosphatase - p-NPP p-nitrophenyl phosphate  相似文献   

7.
The major secreted isoenzyme of human prostatic acid phosphatase (PAcP) (EC 3.1.3.2), which catalyses p-nitrophenyl phosphate (PNPP) hydrolysis at acid pH values, was found to have phosphotyrosyl protein phosphatase activity since it dephosphorylated three different phosphotyrosine-containing protein substrates. Several lines of evidence are presented to show that the phosphotyrosyl phosphatase and PAcP are the same enzyme. A highly purified PAcP enzyme preparation which contains a single N-terminal peptide sequence was used to test for the phosphotyrosyl phosphatase activity. Both activities comigrated during gel filtration by high performance liquid chromatography. Phosphotyrosyl phosphatase activity and PNPP acid phosphatase activity exhibited similar sensitivities to different effectors. Both phosphatase activities showed the same thermal stability. Specific anti-PAcP antibody reacted to the same extent with both phosphatase activities. PNPP acid phosphatase activity was competitively inhibited by the phosphotyrosyl phosphatase substrate. To characterize further the phosphotyrosyl phosphatase activity, the Km values using different phosphoprotein substrates were determined. The apparent Km values for phosphorylated angiotensin II, anti-pp60src immunoglobulin G and casein were in the nM range for phosphotyrosine residues, which was about 50-fold lower than the Km for phosphoserine residues in casein.  相似文献   

8.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

9.
Diphosphonates are known to inhibit bone resorption in tissue culture and in experimental animals. This effect may be due to their ability to inhibit the dissolution of hydroxyapatite crystals, but other mechanisms may be important. Since lysosomal enzymes have implicated in the process of bone resorption, we have examined the effect of several phosphonates and of a polyphosphate (P20,2) on lysosomal hydrolases derived from rat liver and rat bone. Dichloromethylene diphosphonate strongly inhibited acid beta-glycerophosphatase (EC 3.1.3.2) and acid p-nitrophenyl phosphatase (EC 3.1.3.2) and to a lesser degree (in descending order) acid pyrophosphatase (EC 3.1.3.-), arylsulfatase A (EC 3.1.6.1), deoxyribonuclease II(EC 3.1.4.6) and phosphoprotein phosphatase (EC 3.1.3.16) of rat liver. Inhibition of acid p-nitrophenyl phosphatase and arylsulfatase A was competitive. Ethane-1-hydroxy-1, 1-diphosphonate did not inhibit any of these enzymes, except at high concentrations. Neither dichloromethylene diphosphonate nor ethane-1-hydroxy-1, 1-diphosphonate had any effect on beta-glucuronidase (EC 3.2.1.31), arylesterase (EC 3.1.1.2) and cathepsin D (EC 3.4.23.5). Of several other phosphonates tested only undec-10-ene-1-hydroxy-1, 1-diphosphonic acid inhibited acid p-nitrophenyl phosphatase strongly, the polyphosphate (P20, I) had little effect. Acid p-nitrophenyl phosphatase in rat calvaria extract behaved in the same way as the liver enzyme and was also strongly inhibited by dichloromethylene diphosphonate, but not by ethane-1-hydroxy-1, 1-diphosphonate. It is suggested that the inhibition of bone resorption by dichloromethylene diphosphonate might be due in part to a direct effect of this diphosphonate on lysosomal hydrolases.  相似文献   

10.
Acid phosphatase activity (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) increased during the first 24 h of maize (Zea mays) seed germination. The enzyme displayed a pH optimum of 4.5-5.5. Catalytic activity in vitro displayed a linear time course (60 min) and reached its half maximum value at 0.47 mM p-nitrophenyl phosphate (pNPP). Phosphatase activity towards phosphoamino acids was greatest for phosphotyrosine. The phosphatase activity was strongly inhibited by ammonium molybdate, vanadate and NaF and did not require divalent cations for the catalysis. The temperature optimum for pNPP hydrolysis was 37 degrees C. Under the same conditions, no enzyme activity was detected with phytic acid as substrate. Western blotting of total homogenates during seed germination revealed proteins/polypeptides that were phosphorylated on tyrosine residues; a protein of approximately 14 kDa is potentially a major biological substrate for the phosphatase activity. The results presented in this study suggest that the acid phosphatase characterized under the tested conditions is a member of the phosphotyrosine phosphatase family.  相似文献   

11.
Acid phosphatase-1 (orthophosphoric monoester phosphohydrolase, acid optimum, EC 3.1.3.2), the major phosphatase in adult Drosophila melanogaster, has been purified to apparent homogeneity. The final product is a glycoprotein homodimer with a subunit molecular weight of about 50,000, as measured by its electrophoretic mobility in denaturing conditions on polyacrylamide gels containing sodium dodecyl sulfate. It has a turnover number of 1720 1-naphthyl phosphate molecules hydrolyzed/s by each acid phosphatase-1 molecule at 37 degrees C, pH 5.0. An average fly contains about 5 ng of enzyme. Pure acid phosphatase-1 displays heterogeneity in isoelectric focusing, with a major band at pH 5.3. The enzyme hydrolyzes a wide variety of phosphate monoesters, including AMP, glucose 6-phosphate, ATP, choline phosphate, or phosphoproteins. The maximum reaction rates are different for all substrates, and some substrates appear to inhibit the reaction at high substrate concentrations. The Michaelis constants for 1-naphthyl phosphate and p-nitrophenyl phosphate are 79 microM and 68 microM, respectively, at pH 5.0 and 37 degrees C. The optimum pH level for 1-naphthyl phosphate is 4.5. Acid phosphatase-1 is inhibited by L(+)-tartrate (but not D(-)-tartrate), phosphate, and fluoride. The reaction rate increases 2.1-fold for every 10 degrees C rise in temperature. Above 48 degrees C, the rate of thermal denaturation is greater than the rate of the enzyme reaction.  相似文献   

12.
Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.  相似文献   

13.
The effect of phosphorus deficiency on the activity of acid phosphatase of the first, second and third leaves of maize plants was followed. The supernatant obtained by centrifuging the homogenate of plant tissue at 1500 ×g was further centrifuged at 18 000 ×g, the sediment marked as fraction II and the supernatant as fraction III. Acid phosphatase activity of fraction II of the first to third leaves was for the whole period of culture higher in plants grown in the nutrient solution without phosphate. In fraction III this relation was established in the first leaf, after 3 days of culture in the second leaf and after 5 days in the third leaf. In all leaves higher enzyme activity was unambiguously determined in fraction III when compared with fraction II. Higher acid phosphatase activity was established in those leaves which were younger in their development, particularly in the first days of culture. With the ageing of leaves the enzyme activity decreased.  相似文献   

14.
The presence of alkaline phosphatase (EC 3.1.3.1) activity has been demonstrated in nuclei of rat ventral prostate. This enzyme activity remained after washing of isolated nuclei with 0.5% Triton X-100; an acid phosphatase initially present with the nuclear fraction was removed by this treatment. The nuclear alkaline phosphatase, examined by utilizing p-nitrophenyl phosphate as substrate, had a pH optimum of 9.5-10.3, and a broad substrate specificity: p-nitrophenyl phosphate greater than phosphothreonine greater than beta-glycerophosphate greater than phosphoserine. The nuclear phosphatase was sensitive to denaturation by heat or urea treatments and was also inhibited by Pi, L-phenylalanine, homoarginine, dithiothreitol, and EDTA. The EDTA-inhibited enzyme was maximally reactivated by Zn2+, although Mg2+, or Ca2+ were also effective at somewhat higher concentrations. Orchiectomy of adult rats resulted in an increase in the nuclear alkaline phosphatase activity (2-3-fold at 24 or 48 h postorchiectomy). A decline in the protein: DNA ratio also occurred following orchiectomy, but the increase in phosphatase specific activity was evident whether expressed per unit of protein or per unit of DNA. Testosterone replacement following orchiectomy abolished the increase in nuclear phosphatase activity. The results suggest that the prostatic nuclear alkaline phosphatase may be involved in events related to inactivation of the prostate nucleus following androgen deprivation.  相似文献   

15.
Sopina VA 《Tsitologiia》2001,43(7):701-707
Activity and thermoresistance of acid phosphatase were determined in supernatant of Amoeba proteus homogenates using 1-naphthyl phosphate (pH 4.0) and p-nitrophenyl phosphate (pH 5.5). Although tartrate-resistant and tartrate-sensitive acid phosphatases hydrolyse both substrates, the former mainly hydrolyses p-nitrophenyl phosphate and the latter 1-naphthyl phosphate. A decrease in the activity of the total and tartrate-sensitive acid phosphatases, when using 1-naphthyl phosphate, and of the total and tartrate-resistant acid phosphatases, when using p-nitrophenyl phosphate, was found in amoebae acclimated to 10 degrees C (10 degrees-amoebae) compared to those acclimated to 25 degrees C (25 degrees-amoebae). Using 1-naphthyl phosphate, the thermoresistance of the total acid phosphatase was lower in 10 degrees-amoebae than in 25 degrees-amoebae, but the thermostability of tartrate-resistant enzyme was the same in both groups of amoebae. Using p-nitrophenyl phosphate, the thermoresistance of the total and tartrate-resistant acid phosphatases was lower (the latter only slightly) in 10 degrees-amoebae than in 25 degrees-amoebae. It is suggested that at least with the use of 1-naphthyl phosphate a decrease in thermostability of the total acid phosphatase may be due to a decrease in thermoresistance of tartrate-sensitive enzyme. The results obtained confirm the author's previous data on the activity and thermostability of electrophoretic forms of acid phosphatase using 2-naphthyl phosphate in 10- and 25 degrees-amoebae (Sopina, 2001). It is the first case of discovering a correlation between changes in primary cell thermoresistance of amoebae cultured at different temperatures and changes in the activity and thermostability of acid phosphatase in their homogenates, with the number of electrophoretic forms of this enzyme and their mobility being permanent.  相似文献   

16.
Acid phosphatase has been demonstrated ultrastructurally in 3T3 and SV40-3T3 mouse cells using sodium beta-glycerophosphate and p-nitrophenyl phosphate as substrate. The former substrate only demonstrates the enzyme in lysosomes and elements of the Golgi apparatus while the latter demonstrates it in the cisternae of the endoplasmic reticulum and in the cell surface as well as at lysosomal sites. The significance of surface acid phosphatase activity is discussed in terms of sublethal autolysis.  相似文献   

17.
Tetrahymena pyriformis contains an enzyme which hydrolyzed dolichyl phosphate. This activity was solubilized from lyophilized samples of this organism and was relatively stable when stored frozen. The soluble enzyme preparation had an acid pH optimum and hydrolyzed both dolichyl and phytanyl phosphates at equivalent rates. The polyprenylphosphate phosphatase activity was compared with the acid phosphatases which hydrolyzed p-nitrophenyl phosphate and marked differences were found. Dolichyl phosphate hydrolysis required Mg2+ for maximum activity while the bulk of the phosphatase activity was not effected by the absence of this ion. Other differences were that the polyprenylphosphate phosphatase was relatively insensitive to inhibitors such as tartrate and vanadium oxide sulfate which had a pronounced effect on the rate of p-nitrophenyl phosphate hydrolysis. The two activities also appeared to have different subcellular distributions. The polyprenylphosphate phosphatase was markedly inhibited by ethoxy formic anhydride, a reagent which is active against enzymes containing a histidine residue at their active site, while p-nitrophenyl phosphate hydrolysis was unaffected. The polyprenylphosphate phosphatase may be important in regulating the level of dolichyl phosphate in T. pyriformis and thus the rate of glycoprotein synthesis. It is also a useful tool which is capable of liberating dolichol from dolichyl phosphate under mild conditions which will permit the further characterization of the polyprenols.  相似文献   

18.
The carbethoxylation of prostatic acid phosphatase (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) was accompanied by modification of histidine residues and the inactivation of the enzyme. These findings are consistent with photoinactivation experiments described earlier (Rybarska, J. and Ostrowski, W (1974) Acta Biochim, Polon. 21, 377--390). Prostatic acid phosphatase was phosphorylated at alkaline pH using p-nitrophenyl [32P]phosphate as substrate. Phosphoryl enzyme is stable in alkaline solutions and undergoes dephosphorylation at acidic pH. After hydrolysis of phosphoryl enzyme in strong alkaline solution, a single phosphoryl amino acid was isolated from hydrolyzate and identified as the tau-phosphohistidine.  相似文献   

19.
《Phytochemistry》1986,25(2):351-357
Acid phosphatase (EC 3.1.3.2) from sunflower seed was purified 1800-fold to homogeneity using both conventional and affinity chromatographic methods. The purified enzyme was a mixture of two enzyme forms distinguishable by polyacrylamide gel electrophoresis (PAGE). Gel exclusion chromatography, which did not distinguish between the two forms, gave an apparent M, of 103 000. Preparative PAGE permitted the separation of the two forms, and SDS-PAGE showed that they contained equivalent peptide subunits of apparent M, 56 000 and 52 000. Amino acid analysis indicated that both enzyme forms have similar amino acid compositions. Data on substrate specificity and pH dependence is presented. The kinetic constants for hydrolysis of p-nitrophenyl phosphate as catalysed by sunflower seed acid phosphatase were independent of pH in the range 3-5. The enzyme was competitively inhibited by inorganic phosphate and non-competitively inhibited by phosphomycin.  相似文献   

20.
Acid and alkaline phosphosphatase activities of subcellular fractions isolated from rat gastric muscle and vas deferens by differential centrifugation, sucrose density gradient and cation-induced aggregation methods were studied using p-nitrophenyl phosphate as the substrate. Alkaline phosphatase and a large portion of acid phosphatase activities were found to be of plasmalemmal origin. Acid and alkaline phosphatase activities were different in the effect of Mg2+, fluoride, vanadate, EDTA and resistance to heat inactivation suggesting that these two phosphatase activities were not expressed by the same enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号