首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alcohol dehydrogenase (ADH), its isozyme profiles and ethanol concentration in lettuce (Lactuca sativa L.) seedlings subjected to flooding stress were determined. Flooding stress caused increases in ADH activity and ethanol concentration. By 48 h, ADH activity and ethanol concentration in the flooded seedlings increased 3.2- and 7.0-fold, respectively, in comparison with those in non-stressed seedlings. Five electrophoretically separable ADH bands were found in extract of the flooded seedlings, whereas only two or three ADH bands were found in extract of non-stressed seedlings. These results indicate that lettuce ADH may have a system of three-gene and six-isozyme, and the increase in ADH activity in the flooded seedlings may be due to increased synthesis of the enzyme.  相似文献   

2.
The effects of NaCl on putrescine (Put) content and diamine oxidase (DAO) activity in roots of rice seedlings were examined. NaCl treatment lowered the content of Put and increased the activity of DAO in roots. Our current results indicate that Cl is not required for NaCl-induced decline in Put content and increase in DAO activity in roots. Put content in roots of rice seedlings exposed to NaCl is possibly regulated by DAO activity.  相似文献   

3.
Effects of four culture media on callus induction, regeneration and number of plants per unit culture were studied with mature seeds from five indica rice genotypes as explants. Based on the morphology, the calli were classified into four types as I to IV. Type I and type II are most suited to initiate suspension cultures or as target material for transformation. Number of plants regenerated per unit culture, formation of easily dissociating cell clusters and frequency of type I and type II calli were highest on NBKNB medium. Thus NBKNB medium is suitable for in vitro culture of even the hitherto recalcitrant indica genotypes.  相似文献   

4.
水稻萌发耐淹性的遗传分析   总被引:4,自引:0,他引:4  
水稻(Oryza sativa)萌发耐淹性受到复杂的网络调控, 其分子机制不同于苗期耐淹性的相关机制, 萌发耐淹性的强弱影响着直播稻的成苗率。通过对256份水稻核心种质的萌发耐淹性评估, 发现粳稻和籼稻之间的萌发耐淹性差异并不显著, 都存在广泛的遗传变异。利用以粳稻R0380为供体亲本, 籼稻RP2334为轮回亲本的170个高代回交自交系构建含146个分子标记的连锁图谱, 以低氧胚芽鞘长度为性状指标, 通过复合区间作图法检测到影响萌发耐淹性的4个QTLs(quantitative trait loci), 分别定位于第2(2个)、3(1个)和8号(1个)染色体。贡献率最大的QTL为qGS2.2, 其值为17.34%, 增效等位基因来自轮回亲本籼稻RP2334; 其余3个QTLs的增效等位基因均来自供体亲本粳稻R0380, 贡献率分别为12.86%、9.37%和14.60%。  相似文献   

5.
To determine the allelopathic potential of root exudate from early developmental stage of rice (Oryza sativa L), 6-d-old seedlings of eight cultivars were grown with 3-d-old alfalfa (Medicago sativa L.), cress (Lepidium sativum L.) or lettuce (Lactuca sativa L.) seedlings in Petri dishes under controlled condition. All rice cultivars (cv. Norin 8, Kamenoo, Nipponbare, Kinuhikari, Koshihikari, Sasanishiki, Yukihikari and Hinohikari) inhibited growth of roots, shoots and fresh mass of alfalfa, cress and lettuce seedlings. Effectiveness of cv. Koshihikari was the greatest and more than 60% inhibition was recorded in all bioassays, followed by that of cv. Norin 8 of which effectiveness was more than 40%.  相似文献   

6.
Activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) in heated crude extracts from seedlings of the rice cultivars Hitomebore and IR28 was investigated in the presence of proline and betaine. Both solutes retarded the inactivation of the enzyme extracted from the leaves of both cultivars at temperature-stress from 35 to 45 °C. At 50 °C, however, betaine was effective in both cultivars. Stabilization of RuBPCO activity was independent of the added solute from 1 to 2 M concentration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Maize (Zea mays L.) seedlings were exposed to osmotic stress, and alcohol dehydrogenase (ADH) activity and abscisic acid (ABA) concentration were determined. The osmotic stress increased ADH activities in both roots and shoots, whereas the increase was 2-fold greater in roots than the shoots. The stress also increased ABA concentration in both roots and shoots and the increase was greater in the roots than in the shoots.  相似文献   

8.
Effects of NaCl (0.1 – 0.2 M) alone or in combination with 1 mM arginine on growth and endogenous polyamine (PA) content have been observed in two cultivars of rice differing in NaCl stress tolerance. The germination, seedlings fresh mass and water content decreased with increase in salinity in both the cultivars. This inhibition was partially alleviated by application of arginine. Cv. CSR-27 exhibited relatively better germination than cv. Bas-370 at different salinities. Total PA content increased in both the cultivars under NaCl stress alone and in combination with arginine. Putrescine to spermidine and spermine ratio was higher in NaCl-treated seedlings being more in cv. Bas-370 as compared to cv. CSR-27 and the ratio reversed to almost control level when arginine was applied along with NaCl.  相似文献   

9.
10.
11.
The effect of submergence of air-grown rice seedlings (Oryza sativa L. var. Sasanishiki) on coleoptile growth and ultrastructure, extensibility and chemical composition of the cell walls was investigated. The lag-time between start of submergence and the onset of the enhancement of growth was less than 4 h. The growth response was associated with a drastic thinning of the cell walls and an increase in wall extensibility. At the outer epidermal wall of both air-grown and submerged coleoptiles electron-dense (osmiophilic) particles were detected. During submergence, the net accumulation of cellulose and hemicellulose was reduced, but the increase in pectic substances was unaffected. Submergence caused an 80% inhibition of the net accumulation of wall-bound phenolics (ferulic- and diferulic acid) compared with air-grown controls. The osmotic concentration of the tissue saps was not affected by submergence. Our results support the hypothesis that rapid coleoptile elongation under water is caused by an inhibition of the formation of phenolic cross-links between matrix polysaccharides via diferulate, which results in a mechanical stiffening of the cell walls in the air-grown coleoptile.  相似文献   

12.
The effects of submergence on chlorophyll (Chl) a fluorescence were compared in seven Oryza sativa (L.) cultivars, namely FR 13A, Khoda, Khadara, Kalaputia (tolerant), Sabita, and Hatipanjari (avoiding type), and IR 42 (susceptible). Seedlings were submerged for 4 d under complete darkness. Oxygen concentration of flood water decreased with the period of submergence with concomitant increase in concentration of carbon dioxide. Submergence caused diminution in the amount of total Chl. Genotypic differences were observed for Chl content and survival percentage. Quantification of the Chl a fluorescence transients (JIP-test) revealed large cultivar differences in the response of photosystem 2 (PS2) to submergence. The kinetics of Chl a fluorescence rise showed complex changes in the magnitudes and rise of O-J, J-I, and I-P phases caused by submergence. The selective suppression of the J-I phase of fluorescence especially after 2 d of submergence provided evidence for weakened electron donation from the oxygen evolving complex whereas under severe submergence stress (4 d) both O-J and J-I steps were suppressed greatly with highly suppressed P-step, which resulted in lowering of variable fluorescence. Grouping probability or energetic connectivity between PS2 obtained through JIP-test from the data after 2 d of submergence showed a direct relation with survival percentage, i.e. fluorescence measurements contained the information of the survival chance of a plant under submerged conditions. The information could be used in identifying the submergence tolerant cultivars when the damage is not very severe.  相似文献   

13.
Ammonium ion accumulation in detached rice leaves treated with phosphinothricin (PPT), an inhibitior of glutamine synthetase (GS), was investigated in the light and darkness. PPT treatment increased NH4 + content and induced toxicity in rice leaves in the light but not in darkness, suggesting the importance of light in PPT-induced NH4 + toxicity in detached rice leaves. PPT treatment in the light resulted in a decrease of activities of the cytosolic form of GS and the chloroplastic form of GS. The photosynthetic electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea reduced NH4 + accumulation induced by PPT in the light. In darkness, PPT-induced NH4 + accumulation and toxicity were observed in the presence of glucose or sucrose.  相似文献   

14.
The effects of aluminum on lipid peroxidation and activities of antioxidative enzymes were investigated in detached rice leaves treated with 0 to 5 mM AlCl3 at pH 4.0 in the light. AlCl3 enhanced the content of malondialdehyde but not the content of H2O2. Superoxide dismutase activity was reduced by AlCl3, while catalase and glutathione reductase activities were increased. Peroxidase and ascorbate peroxidase activities were increased only after prolonged treatment, when toxicity occurred. The results give evidence that Al treatment caused oxidative stress and in turn, it caused lipid peroxidation.  相似文献   

15.
Role of lipid peroxidation and antioxidative enzymes (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase and glutathione reductase) in water stress-promoted senescence of detached rice leaves was investigated. The senescence was followed by measuring the decrease in protein content. Increased lipid peroxidation was closely correlated with senescence in water stressed leaves. Decrease in superoxide dismutase activity was evident 8 h after beginning of water stress. However, decreased catalase, peroxidase, and ascorbate peroxidase activity was observed only when senescence was observed. Glutathione reductase was not affected by water stress. Free radical scavengers retarded water stress-enhanced senescence.  相似文献   

16.
The relation between abscisic acid (ABA) and proline accumulation was investigated in detached rice (Oryza sativa L.) leaves. In darkness, proline content increased about 2-, 2,5- and 6-fold after 24, 48 and 72 h. ABA content reached maximum after 48 h. In the light, proline content remained almost unchanged until 48 h and subsequently increased slightly. ABA content in the light was lower than in darkness, but the maximum was also after 48 h. During 12-h exposure to decreased air humidity, proline content gradually increased, but ABA content increased about 25-fold after 4 h and declined thereafter. Exogenous application of ABA resulted in an increase in proline content in detached rice leaves under both light and darkness.  相似文献   

17.
The effects of copper on the activity of ascorbic acid oxidasc (AAO) in detached rice leaves under both light and dark conditions and in etiolated rice seedlings were investigated. CuSO4 increased AAO activity in detached rice leaves in both light and darkness, however, the induction in darkness was higher than in the light. In the absence of CuSO4, irradiance (40 μmol m-2 s-1) resulted in a higher activity of AAO in detached rice leaves than dark treatment. Both CuSO4 and CuCl2 increased AAO activity in detached rice leaves, indicating that AAO is activated by Cu. Sulfate salts of Mg, Mn, Zn and Fe were ineffective in activating AAO in detached leaves. CuSO4 was also observed to increase AAO activity in the roots but not in shoots of etiolated rice seedlings. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
When rice seedlings grown for 10 and 20 days were subjected to in vitro drought stress of −0.5 and −2.0 MPa for 24 h, an increase in the concentration of superoxide anion (O2.−), increased level of lipid peroxidation and a decrease in the concentration of total soluble protein and thiols was observed in stressed seedlings compared to controls. The concentration of H2O2 as well as ascorbic acid declined with imposition of drought stress, however glutathione (GSH) concentration declined only under severe drought stress. The activities of total superoxide dismutases (SODs) as well as ascorbate peroxidase (APX) showed consistent increases with increasing levels of drought stress, however catalase activity declined. Mild drought stressed plants had higher guaiacol peroxidase (GPX) and chloroplastic ascorbate peroxidase (c-APX) activity than control grown plants but the activity declined at the higher level of drought stress. The activities of enzymes involved in regeneration of ascorbate i.e. monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were higher in drought stressed plants compared to controls. Results suggest that drought stress induces oxidative stress in rice plants and that besides SOD, the enzymes of ascorbate-glutathione cycle, which have not been studied in detail earlier under stressful conditions, appear to function as important component of antioxidative defense system under drought stress.  相似文献   

19.
Submergence of air-grown rice seedlings (Oryza sativa L. var. Sasanishiki) induces elongation of the coleoptile. We investigated whether rapid underwater extension is associated with a loss of starch. After 1 d of submergence the starch content was reduced by 70%. This loss of reserve carbohydrate was accompanied by a 38% increase in the concentration of glucose in the cell sap of the coleoptiles. The submerged (starch-depleted) coleoptiles had a slower negative gravitropism than the air-grown controls, although the rate of elongation in the horizontal position was not impaired. We conclude that the submergence-induced mobilization of starch provides substrates and osmotica for the rapidly growing cells. In addition, our results indicate that a full complement of starch is necessary for normal gravitropism in the rice coleoptile.  相似文献   

20.
Ability of metabolic adaptation in upland and lowland rice (Oryza sativa L.) seedlings to flooding stress was compared. Flooding stress increased alcohol dehydrogenase (ADH) activity and ethanol concentration in shoots and roots of the upland and lowland rice seedlings. The difference in ADH activity and ethanol concentration in shoots between the upland and lowland rice was not apparent. However, both ADH activity and ethanol concentration in roots of the lowland rice were 2-fold greater than those in roots of the upland rice, suggesting that flooding-induction of ethanolic fermentation in lowland rice roots may be significantly greater than that in the upland rice roots. Since flooding often causes the anaerobic conditions in rooting zone than aerial part of plants and ethanolic fermentation is essential to survive in the anaerobic conditions, the ability of metabolic adaptation in lowland rice seedlings to flooding stress may be greater than that in upland rice seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号