首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We have previously shown that Mac-1 and LFA-1 play a cooperative role in slow leukocyte rolling in inflamed vessels, and that, although both have a role in leukocyte adhesion, the contribution from LFA-1 exceeds that of Mac-1. In this study, we used mice deficient in ICAM-1 (ICAM-1(null)) to study the function of ICAM-1 as an endothelial ligand for Mac-1 and LFA-1. The cremaster muscles of these mice were treated with TNF-alpha and prepared for intravital microscopy. We found that the average rolling velocity in venules was not different in ICAM-1(null) mice (4.7 micro m/s) compared with wild-type mice (5.1 micro m/s). Similarly, leukocyte adhesion efficiency in ICAM-1(null) mice (0.11 +/- 0.01 mm) was similar to that in Mac-1(-/-) (0.12 +/- 0.03 mm) mice but significantly increased compared with that in LFA-1(-/-) (0.08 +/- 0.01 mm) mice and significantly reduced from that in wild type (0.26 +/- 0.04 mm). When both LFA-1 and ICAM-1 were blocked, rolling velocity increased, and adhesion efficiency and arrest decreased. However, blocking both Mac-1 and ICAM-1 had no greater effect than either blockade alone. We conclude that endothelial ICAM-1 is the main ligand responsible for slow leukocyte rolling mediated by Mac-1, but not LFA-1.  相似文献   

2.
Leukocyte-specific protein 1 (LSP1) is an intracellular filamentous-actin binding protein which modulates cell motility. The cellular process in which LSP1 functions to regulate motility is not yet identified. In this study, we show that LSP1 negatively regulates fMLP-induced polarization and chemotaxis of neutrophils through its function on adhesion via specific integrins. Using LSP1-deficient (Lsp1(-/-)) mice, we show increased neutrophil migration into mouse knee joints during zymosan-induced acute inflammation, an inflammatory model in which the number of resident synoviocytes are not affected by LSP1-deficiency. In vitro chemotaxis experiments performed by time-lapse videomicroscopy showed that purified Lsp1(-/-) bone-marrow neutrophils exhibit an increased migration rate toward a gradient of fMLP as compared with wild-type neutrophils. This difference was observed when cells migrated on fibrinogen, but not fibronectin, suggesting a role for LSP1 in modulating neutrophil adhesion by specific integrins. LSP1 is also a negative regulator of fMLP-induced adhesion to fibrinogen or ICAM-1, but not to ICAM-2, VCAM-1, or fibronectin. These results suggest that LSP1 regulates the function of Mac-1 (CD11b/CD18), which binds only to fibrinogen and ICAM-1 among the substrates we tested. fMLP-induced filamentous actin polarization is also increased in the absence of LSP1 when cells were layered on fibrinogen, but not on fibronectin. Our findings suggest that the increased neutrophil recruitment in Lsp1(-/-) mice during acute inflammation derives from the negative regulatory role of LSP1 on neutrophil adhesion, polarization, and migration via specific integrins, such as Mac-1, which mediate neutrophil responses to chemotactic stimuli.  相似文献   

3.
The CD11/18 (LFA-1, Mac-1) molecules participate in neutrophil adhesion to cultured endothelium in vitro and are critical for effective neutrophil localization into inflamed tissues in vivo. More recently, the MEL-14 Ag, which was first defined as a lymphocyte homing receptor, has also been implicated in inflammatory neutrophil extravasation. Here we compare the regulation and function of these adhesion molecules on neutrophils during the in vivo inflammatory response. The MEL-14 Ag is expressed at high levels on bone marrow and peripheral blood neutrophils, but is lost on neutrophils isolated from the thioglycollate-inflamed peritoneal cavity. In contrast, Mac-1 is up-regulated on inflammatory neutrophils and little change is seen in the level of LFA-1 expression. In vitro activation of bone marrow neutrophils with PMA or leukotriene B4 results in a dose dependent increase in Mac-1 and decrease in MEL-14 Ag expression within 1 h after treatment, thus reflecting what is found during inflammation in vivo. Neutrophils activated in vitro or in vivo (MEL-14Low, Mac-1Hi) do not home to inflammatory sites in vivo, correlating with the loss of the MEL-14 Ag and the increased Mac-1 expression. Anti-LFA-1, anti-Mac-1, or MEL-14 antibody given i.v. suppress neutrophil accumulation within the inflamed peritoneum (38%, 30%, and 37% of medium control, respectively) without affecting the levels of circulating neutrophils. However, when FITC-labeled cells are precoated with the mAb and injected i.v., only MEL-14 inhibits extravasation into the inflamed peritoneum (25% of medium control). Finally, in ex vivo adhesion assays of neutrophil binding to high endothelial venules in inflamed-lymph node frozen sections MEL-14 inhibits greater than 90%. anti-LFA-1 20 to 30% and anti-Mac-1 less than 10% of the binding of bone marrow neutrophils to inflamed-lymph node high endothelial venules. These results confirm that both the MEL-14 antigen and Mac-1/LFA-1 are important in neutrophil localization to inflamed sites in vivo, but suggest that their roles in endothelial cell interactions are distinct.  相似文献   

4.
Adult cardiac myocytes express intercellular adhesion molecule (ICAM)-1 in response to cytokine stimulation. This allows stable adhesion of chemotactically stimulated but not unstimulated neutrophils. In the current study, we demonstrated that brief exposure of ICAM-1-expressing cardiac myocytes to H(2)O(2) promoted transient adhesive interactions between myocytes and neutrophils without added chemotactic factors. This transient adhesion differed in two ways from the stable adhesion promoted by exogenous chemotactic factors. It occurred more rapidly, peaking within 15 min, and it was dependent on leukocyte function-associated antigen (LFA)-1 (CD11a/CD18) on the neutrophil interacting with ICAM-1 on the myocyte. In contrast, chemotactic factor-induced adhesion peaked at 60 min and was dependent on Mac-1 (CD11b/CD18). The transient adhesion could be completely inhibited by platelet-activating factor (PAF)-receptor antagonists WEB-2086 and SDZ-64-412. These results indicate that canine neutrophils may utilize both LFA-1 and Mac-1 to adhere to adult cardiac myocytes, with LFA-1 triggered by a PAF-like activity induced in myocytes by H(2)O(2).  相似文献   

5.
It has been shown that Bothrops jararaca venom (BjV) induces a significant leukocyte accumulation, mainly neutrophils, at the local of tissue damage. Therefore, the role of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1), LECAM-1, CD18, leukocyte function-associated antigen-1 (LFA-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) on the BjV-induced neutrophil accumulation and the correlation with release of LTB4, TXA2, tumor necrosis factor-alpha, interleukin (IL)-1 and IL-6 have been investigated. Anti-mouse LECAM-1, LFA-1, ICAM-1 and PECAM-1 monoclonal antibody injection resulted in a reduction of 42%, 80%, 66% and 67%, respectively, of neutrophil accumulation induced by BjV (250 microg/kg, intraperitoneal) injection in male mice compared with isotype-matched control injected animals. The anti-mouse CD18 monoclonal antibody had no significant effect on venom-induced neutrophil accumulation. Concentrations of LTB(4), TXA(2), IL-6 and TNF-alpha were significant increased in the peritoneal exudates of animals injected with venom, whereas no increment in IL-1 was detected. This results suggest that ICAM-1, LECAM-1, LFA-1 and PECAM-1, but not CD18, adhesion molecules are involved in the recruitment of neutrophils into the inflammatory site induced by BjV. This is the first in vivo evidence that snake venom is able to up-regulate the expression of adhesion molecules by both leukocytes and endothelial cells. This venom effect may be indirect, probably through the release of the inflammatory mediators evidenced in the present study.  相似文献   

6.
Neutrophil recruitment into lung constitutes a major response to airborne endotoxins. In many tissues endothelial intercellular adhesion molecule-1 (ICAM-1) interacts with lymphocyte function associated antigen-1 (LFA-1) on neutrophils, and this interaction plays a critical role in neutrophil recruitment. There are conflicting reports about the role of ICAM-1 in neutrophil recruitment into lungs. We studied neutrophil recruitment into alveolar space in a murine model of aerosolized LPS-induced lung inflammation. LPS induces at least a 100-fold increase in neutrophil numbers in alveolar space, as determined by flow cytometry of bronchoalveolar lavage fluid. Neutrophil recruitment was reduced by 54% in ICAM-1 null mice and by 45% in LFA-1 null mice. In wild-type mice treated with anti-ICAM-1 and anti-LFA-1 antibodies, there was 51 and 58% reduction in the neutrophil recruitment, respectively. In chimeric mice, generated by the transplantation of mixtures of bone marrows from LFA-1 null and wild-type mice, the normalized recruitment of LFA-1 null neutrophils was reduced by 60% compared with wild-type neutrophils. Neither the treatment of ICAM-1 null mice with a function-blocking antibody to LFA-1 nor the treatment of LFA-1 null mice with anti-ICAM-1 antibody resulted in further reduction in the recruitment compared with untreated ICAM-1 null and LFA-1 null mice. We conclude that ICAM-1 and LFA-1 play critical roles in the recruitment of neutrophils into the alveolar space in aerosolized LPS-induced lung inflammation, and LFA-1 serves as a ligand of ICAM-1 in the lung.  相似文献   

7.
We examined the relative contributions of LFA-1, Mac-1, and ICAM-3 to homotypic neutrophil adhesion over the time course of formyl peptide stimulation at shear rates ranging from 100 to 800 s-1. Isolated human neutrophils were sheared in a cone-plate viscometer and the kinetics of aggregate formation was measured by flow cytometry. The efficiency of cell adhesion was computed by fitting the aggregate formation rates with a model based on two-body collision theory. Neutrophil homotypic adhesion kinetics varied with shear rate and was most efficient at 800 s-1, where approximately 40% of the collisions resulted in adhesion. A panel of blocking Abs to LFA-1, Mac-1, and ICAM-3 was added to assess the relative contributions of these molecules. We report that 1) LFA-1 binds ICAM-3 as its primary ligand supporting homotypic adhesion, although the possibility of other ligands was also detected. 2) Mac-1 binding to an unidentified ligand supports homotypic adhesion with an efficiency comparable to LFA-1 at low shear rates of approximately 100 s-1. Above 300 s-1, however, Mac-1 and not LFA-1 were the predominant molecules supporting cell adhesion. This is in contrast to neutrophil adhesion to ICAM-1-transfected cells, where LFA-1 binds with a higher avidity than Mac-1 to ICAM-1. 3) Following stimulation, the capacity of LFA-1 to support aggregate formation decreases with time at a rate approximately 3-fold faster than that of Mac-1. The results suggest that the relative contributions of beta2 integrins and ICAM-3 to neutrophil adhesion is regulated by the magnitude of fluid shear and time of stimulus over a range of blood flow conditions typical of the venular microcirculation.  相似文献   

8.
Neutrophil recruitment during acute inflammation is triggered by G-protein-linked chemotactic receptors that in turn activate beta(2) integrin (CD18), deemed a critical step in facilitating cell capture and arrest under the shear force of blood flow. A conformational switch in the I domain allosteric site (IDAS) and in CD18 regulates LFA-1 affinity for endothelial ligands including intercellular adhesion molecule 1 (ICAM-1). We examined the dynamics of CD18 activation in terms of the efficiency of neutrophil capture of ICAM-1, and we correlated this with the membrane topography of 327C, an antibody that recognizes the active conformation of CD18 I-like domain. Adhesion increased in direct proportion to chemotactic stimulus rising 7-fold over a log range of interleukin-8 (IL-8). A threshold dose of approximately 75 pm IL-8, corresponding to ligation of only approximately 10-100 receptors, was sufficient to activate approximately 20,000 CD18 and a rapid boost in the capture efficiency on ICAM-1. This was accompanied by a rapid redistribution of active LFA-1, but not Mac-1, into membrane patches, a necessary component for optimum adhesion efficiency. Shear-resistant arrest on a monolayer of ICAM-1 was reversed within minutes of chemotactic stimulation correlating with a shift from high to low affinity CD18 and dispersal of patches of active CD18. Mobility of active CD18 into high avidity patches was dependent on phosphatidylinositol 3-kinase activity and not F-actin polymerization. The data reveal that the number of chemotactic receptors bound and the topography and lifetime of high affinity LFA-1 tightly regulate the efficiency of neutrophil capture on ICAM-1.  相似文献   

9.
To exit blood vessels, most (~80%) of the lumenally adhered monocytes and neutrophils crawl toward locations that support transmigration. Using intravital confocal microscopy of anesthetized mouse cremaster muscle, we separately examined the crawling and emigration patterns of monocytes and neutrophils in blood-perfused unstimulated or TNF-α-activated venules. Most of the interacting cells in microvessels are neutrophils; however, in unstimulated venules, a greater percentage of the total monocyte population is adherent compared with neutrophils (58.2 ± 6.1% versus 13.6 ± 0.9%, adhered/total interacting), and they crawl for significantly longer distances (147.3 ± 13.4 versus 61.8 ± 5.4 μm). Intriguingly, after TNF-α activation, monocytes crawled for significantly shorter distances (67.4 ± 9.6 μm), resembling neutrophil crawling. Using function-blocking Abs, we show that these different crawling patterns were due to CD11a/CD18 (LFA-1)- versus CD11b/CD18 (Mac-1)-mediated crawling. Blockade of either Mac-1 or LFA-1 revealed that both LFA-1 and Mac-1 contribute to monocyte crawling; however, the LFA-1-dependent crawling in unstimulated venules becomes Mac-1 dependent upon inflammation, likely due to increased expression of Mac-1. Mac-1 alone was responsible for neutrophil crawling in both unstimulated and TNF-α-activated venules. Consistent with the role of Mac-1 in crawling, Mac-1 block (compared with LFA-1) was also significantly more efficient in blocking TNF-α-induced extravasation of both monocytes and neutrophils in cremaster tissue and the peritoneal cavity. Thus, mechanisms underlying leukocyte crawling are important in regulating the inflammatory responses by regulating the numbers of leukocytes that transmigrate.  相似文献   

10.
ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18)   总被引:13,自引:0,他引:13       下载免费PDF全文
《The Journal of cell biology》1990,111(6):3129-3139
While the leukocyte integrin lymphocyte function-associated antigen (LFA)-1 has been demonstrated to bind intercellular adhesion molecule (ICAM)-1, results with the related Mac-1 molecule have been controversial. We have used multiple cell binding assays, purified Mac- 1 and ICAM-1, and cell lines transfected with Mac-1 and ICAM-1 cDNAs to examine the interaction of ICAM-1 with Mac-1. Stimulated human umbilical vein endothelial cells (HUVECs), which express a high surface density of ICAM-1, bind to immunoaffinity-purified Mac-1 adsorbed to artificial substrates in a manner that is inhibited by mAbs to Mac-1 and ICAM-1. Transfected murine L cells or monkey COS cells expressing human ICAM-1 bind to purified Mac-1 in a specific and dose-dependent manner; the attachment to Mac-1 is more temperature sensitive, lower in avidity, and blocked by a different series of ICAM-1 mAbs when compared to LFA-1. In a reciprocal assay, COS cells cotransfected with the alpha and beta chain cDNAs of Mac-1 or LFA-1 attach to immunoaffinity- purified ICAM-1 substrates; this adhesion is blocked by mAbs to ICAM-1 and Mac-1 or LFA-1. Two color fluorescence cell conjugate experiments show that neutrophils stimulated with fMLP bind to HUVEC stimulated with lipopolysaccharide for 24 h in an ICAM-1-, Mac-1-, and LFA-1- dependent fashion. Because cellular and purified Mac-1 interact with cellular and purified ICAM-1, we conclude that ICAM-1 is a counter receptor for Mac-1 and that this receptor pair is responsible, in part, for the adhesion between stimulated neutrophils and stimulated endothelial cells.  相似文献   

11.
In infected tissues, leukocyte recruitment is mediated by interactions between adhesion molecules, expressed on activated vascular endothelial cells, and ligands present on circulating cells. We evaluated the inflammatory response and the expression of cellular adhesion molecules (ICAM-1, VCAM-1, CD18, LFA-1 and Mac-1) in lungs of BALB/c mice infected with Paracoccidioides brasiliensis conidia. When compared with uninfected animals, infected mice had a significant increase in the inflammatory response during the first 4 days, peaking 2-3 days post-challenge, 40.3% vs. 0.0% and 41.8% vs. 0.7%, respectively. This inflammatory infiltrate was composed mainly of neutrophils and macrophages with a few eosinophils and lymphocytes. An increase in the intensity of immunofluorescence (IF) for ICAM-1 was also observed during days 1-4. ICAM-1 was present in bronchiolar epithelium, type II pneumocytes, and macrophages, as well as on vascular endothelium. The control animals presented ICAM-1 constitutively. In infected mice, VCAM-1 was only observed on vascular endothelium during the first 2 days, with some macrophages expressing this molecule throughout the study periods. CD18 and Mac-1 but not LFA-1 were expressed with a high intensity on neutrophils and macrophages present in the inflammatory infiltrate. In addition, we observed a significant decrease in Colony forming units (CFUs) after the first 2 days post-challenge. These findings suggest that during these early stages, up-regulation of ICAM-1, VCAM-1, CD18 and Mac-1 expression occurs, participating in the inflammatory process and as such, in the pathogenesis of paracoccidioidomycosis (PCM).  相似文献   

12.
TNF-alpha can incite neutrophil-mediated endothelial cell damage and neutrophil H2O2 release. Both effects require adherent neutrophils. Using specific mAb, we showed in this in vitro study that the CD18 beta 2-chain and the CD11b alpha M-chain of the CD11/CD18 integrin heterodimer have a major role in both TNF-alpha-induced neutrophil-mediated detachment of human umbilical vein endothelial cells and H2O2 release by TNF-alpha-activated human neutrophils. In contrast to anti-CD18 mAb, which consistently prevented neutrophil activation, anti-CD11a mAb and two of three anti-CD11b mAb did not reduce endothelial cell detachment and neutrophil H2O2 release, although they decreased neutrophil adhesion to human umbilical vein endothelial cells. mAb 904, directed against the bacterial LPS binding region of CD11b, reduced endothelial cell detachment for about 40% and neutrophil H2O2 release for more than 50%, demonstrating that CD11b/CD18 is engaged in TNF-induced neutrophil activation. Dependence on CD11b/CD18 could not be overcome by CD18-independent anchoring of neutrophils via PHA. Additionally, neither induction of increased expression of the endothelial cell adhesion molecules ICAM-1 and ELAM-1, nor subsequent addition of specific mAb, influenced endothelial cell injury or H2O2 release by TNF-activated neutrophils. Interaction with ICAM-1 and ELAM-1 therefore appears not to induce additional activation of TNF-stimulated neutrophils. These studies suggest that a specific, CD11b/CD18-mediated signal, instead of adherence only, triggers toxicity of TNF-activated neutrophils.  相似文献   

13.
Neutrophils and T cells play an important role in host protection against pulmonary infection caused by Streptococcus pneumoniae. However, the role of the integrins in recruitment of these cells to infected lungs is not well understood. In this study we used the twin approaches of mAb blockade and gene-deficient mice to investigate the relative impact of specific integrins on cellular recruitment and bacterial loads following pneumococcal infection. We find that both Mac-1 (CD11b/CD18) and α(4)β(1) (CD49d/CD29) integrins, but surprisingly not LFA-1 (CD11a/CD18), contribute to two aspects of the response. In terms of recruitment from the circulation into lungs, neutrophils depend on Mac-1 and α(4)β(1), whereas the T cells are entirely dependent on α(4)β(1). Second, immunohistochemistry results indicate that adhesion also plays a role within infected lung tissue itself. There is widespread expression of ICAM-1 within lung tissue. Use of ICAM-1(-/-) mice revealed that neutrophils make use of this Mac-1 ligand, not for lung entry or for migration within lung tissue, but for combating the pneumococcal infection. In contrast to ICAM-1, there is restricted and constitutive expression of the α(4)β(1) ligand, VCAM-1, on the bronchioles, allowing direct access of the leukocytes to the airways via this integrin at an early stage of pneumococcal infection. Therefore, integrins Mac-1 and α(4)β(1) have a pivotal role in prevention of pneumococcal outgrowth during disease both in regulating neutrophil and T cell recruitment into infected lungs and by influencing their behavior within the lung tissue itself.  相似文献   

14.
M B Lawrence  T A Springer 《Cell》1991,65(5):859-873
Rolling of leukocytes on vascular endothelial cells, an early event in inflammation, can be reproduced in vitro on artificial lipid bilayers containing purified CD62, a selectin also named PADGEM and GMP-140 that is inducible on endothelial cells. Neutrophils roll on this selectin under flow conditions similar to those found in postcapillary venules. Adhesion of resting or activated neutrophils through the integrins LFA-1 and Mac-1 to ICAM-1 in a lipid bilayer does not occur at physiologic shear stresses; however, static incubation of activated neutrophils allows development of adhesion that is greater than 100-fold more shear resistant than found on CD62. Addition of a chemoattractant to activate LFA-1 and Mac-1 results in the arrest of neutrophils rolling on bilayers containing both CD62 and ICAM-1. Thus, at physiologic shear stress, rolling on a selectin is a prerequisite for activation-induced adhesion strengthening through integrins.  相似文献   

15.
We report that a subpopulation (10%) of the Mac-1 (CD1 1b/CD18) molecules on activated neutrophils mediates adhesion to ICAM-1 and fibrinogen. We describe a novel mAb (CBRM1/5) that binds to an activation-specific neoepitope on a subset of Mac-1 molecules on neutrophils and monocytes after stimulation with chemoattractants or phorobol esters but does not recognize Mac-1 on resting myeloid cells. CBRM1/5 immunoprecipitates a subpopulation of Mac-1 molecules from detergent lysates of neutrophils, binds to immunoaffinity-purified Mac- 1, and localizes to the I domain on the alpha chain of Mac-1. Because CBRM1/5 recognizes a fraction of Mac-1 on activated neutrophils, but still blocks Mac-1-dependent adhesion to fibrinogen and ICAM-1, we suggest that only a small subset of Mac-1 molecules is competent to mediate adhesion.  相似文献   

16.
Previously, we found polymorphonuclear neutrophils (PMNs) increased melanoma cell extravasation under flow conditions (Intl J Cancer 106: 713–722, 2003). In this study, we characterized the effect of hydrodynamic shear on PMN-facilitated melanoma extravasation using a novel flow-migration assay. The effect of shear stress and shear rate on PMN-facilitated melanoma extravasation was studied by increasing the medium viscosity with dextran to increase shear stress independently of shear rate. Under fixed shear rate conditions, melanoma cell extravasation did not change significantly. In contrast, the extravasation level increased at a fixed shear stress but with a decreasing shear rate. PMN-melanoma aggregation and adhesion to the endothelium via 2-integrin/intracellular adhesion molecule-1 (ICAM-1) interactions were also studied. Lymphocyte function-associated molecule-1 (LFA-1; CD11a/CD18) influenced the capture phase of PMN binding to both melanoma cells and the endothelium, whereas Mac-1 (CD11b/CD18) affected prolonged PMN-melanoma aggregation. Blockage of E-selectin or ICAM-1 on the endothelium or ICAM-1 on the melanoma surface reduced PMN-facilitated melanoma extravasation. We have found PMN-melanoma adhesion is correlated with the inverse of shear rate, whereas the PMN-endothelial adhesion correlated with shear stress. Interleukin-8 (IL-8) also influenced PMN-melanoma cell adhesion. Functional blocking of the PMN IL-8 receptors, CXCR1 and CXCR2, decreased the level of Mac-1 upregulation on PMNs while in contact with melanoma cells and reduced melanoma extravasation. We have found PMN-facilitated melanoma adhesion to be a complex multistep process that is regulated by both microfluid mechanics and biology. neutrophil; melanoma; shear stress; shear rate; 2-integrins; intracellular adhesion molcule-1; CXCR1/2; adhesion; migration  相似文献   

17.
Attachment of tumor cells to the endothelium (EC) under flow conditions is critical for the migration of tumor cells out of the vascular system to establish metastases. Innate immune system processes can potentially promote tumor progression through inflammation dependant mechanisms. White blood cells, neutrophils (PMN) in particular, are being studied to better understand how the host immune system affects cancer cell adhesion and subsequent migration and metastasis. Melanoma cell interaction with the EC is distinct from PMN-EC adhesion in the circulation. We found PMN increased melanoma cell extravasation, which involved initial PMN tethering on the EC, subsequent PMN capture of melanoma cells and maintaining close proximity to the EC. LFA-1 (CD11a/CD18 integrin) influenced the capture phase of PMN binding to both melanoma cells and the endothelium, while Mac-1 (CD11b/CD18 integrin) affected prolonged PMN-melanoma aggregation. Blocking E-selectin or ICAM-1 (intercellular adhesion molecule) on the endothelium or ICAM-1 on the melanoma surface reduced PMN-facilitated melanoma extravasation. Results indicated a novel finding that PMN-facilitated melanoma cell arrest on the EC could be modulated by endogenously produced interleukin-8 (IL-8). Functional blocking of the IL-8 receptors (CXCR1 and CXCR2) on PMN, or neutralizing soluble IL-8 in cell suspensions, significantly decreased the level of Mac-1 up-regulation on PMN while communicating with melanoma cells and reduced melanoma extravasation. These results provide new evidence for the complex role of hemodynamic forces, secreted chemokines, and PMN-melanoma adhesion in the recruitment of metastatic cancer cells to the endothelium in the microcirculation, which are significant in fostering new approaches to cancer treatment through anti-inflammatory therapeutics.  相似文献   

18.
The red cell ICAM-4/LW blood group glycoprotein, which belongs to the family of intercellular adhesion molecules (ICAMs), has been reported to interact with CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) beta(2) integrins. To better define the basis of the ICAM-4/beta(2) integrin interaction, we have generated wild-type, domain-deleted and mutated recombinant chimeric ICAM-4-Fc proteins and analyzed their interaction in a cellular adhesion assay with LFA-1 and Mac-1 L-cell stable transfectants. We found that monoclonal antibodies against CD11a, CD11b, CD18, or LW(ab) block adhesion of transfectant L-cells to immobilized ICAM-4-Fc protein and that the ICAM-4/beta(2) integrin interaction was highly sensitive to the presence of the divalent cations Ca(2+) and Mg(2+). Deletion of individual Ig-domains D1 or D2 of the extracellular part of ICAM-4 showed that LFA-1 binds to the first Ig-like domain, whereas the Mac-1 binding site encompassed both the first and the second Ig-like domains. Based on the crystal structure of ICAM-2, we propose a model for the Ig-like domains D1 and D2 of ICAM-4. Accordingly, by site-directed mutagenesis of 22 amino acid positions spread out on all faces of the ICAM-4 molecule, we identified four exposed residues, Leu(80), Trp(93), and Arg(97) on the CFG face and Trp(77) on the E-F loop of domain D1 that may contact LFA-1 as part of the binding site. However, the single and double mutants R52E and T91Q on the CFG face of domain D1, which correspond to the key residues Glu(34) and Gln(73) for ICAM-1 binding to LFA-1, had no effect on LFA-1 binding. In contrast, all mutants on the CFG face of domain D1 and residues Glu(151) and Thr(154) in the C'-E loop of the domain D2 seem to play a dominant role in Mac-1 binding. These data suggest that the binding site for LFA-1 on ICAM-4 overlaps but is distinct from the Mac-1 binding site.  相似文献   

19.
It has previously been shown that during degranulation Mac-1 (CD11b/CD18)--a glycoprotein that plays a central role in neutrophil adhesion-is up-regulated on PMN surfaces. It has been assumed that this quantitative change in adhesion Ag expression on the cell surface would in turn lead to increased cellular adhesiveness. In contrast, we found that at an incubation temperature of 16 degrees C, stimulated neutrophil adhesion to plastic tissue culture dishes in the presence of FMLP (2.5 x 10(-6) M), TNF (10 ng/ml), or PAF (1 x 10(-4) M) occurred without cellular degranulation or Mac-1 surface up-regulation as measured cytofluorometrically. As shown by functional inhibition studies employing monoclonal antibodies 60.3 (anti-CD18) and 60.1 (anti-CD11b), adhesion at 16 degrees C, where no CD11b/CD18 up-regulation was seen, is mediated by CD11b/CD18 just as it is at 37 degrees C, where degranulation and CD11b/CD18 up-regulation could be demonstrated. The physiologic importance of these findings was underscored by experiments done on endothelial monolayers, which showed that PMN association with endothelial cells is absolutely independent from the quantitative up-regulation of Mac-1 on PMN surfaces. When neutrophils were stimulated at 37 degrees C by endotoxin, an agent that does not induce aggregation (a form of intercellular adhesion), Mac-1 surface expression increased only after cells had become adherent, whereas cells held in suspension to prevent cell-substrate adhesion neither degranulated nor up-regulated their Mac-1 surface expression. Thus, not only is adherence independent of degranulation and Mac-1 cell surface up-regulation, but both degranulation and Mac-1 surface up-regulation appear to depend on the process of adhesion. Correspondingly, incubation of neutrophils with antibodies 60.1 and 60.3 inhibited not only adhesion of cells stimulated with FMLP at 37 degrees C but degranulation as well. These results indicate that Mac-1 influences degranulation as well as it controls adhesion not by its mere quantity on the cell surface, but rather by an yet undefined molecular modulation.  相似文献   

20.
P-selectin and intercellular adhesion molecule-1 (ICAM-1) mediate early interaction and adhesion of neutrophils to coronary endothelial cells and myocytes after myocardial ischemia and reperfusion. In the present study, we examined the physiological consequences of genetic deletions of ICAM-1 and P-selectin in mice. In wild-type mice, after 1 h of ischemia followed by reperfusion, neutrophil influx into the area of ischemia was increased by 3 h with a peak at 24 h and a decline by 72 h. ICAM-1/P-selectin-deficient mice showed a significant reduction in neutrophils by immunohistochemistry or by myeloperoxidase activity at 24 h but no significant difference at 3 h. Infarct size (area of necrosis/area at risk) assessed 24 h after reperfusion was not different between wild-type and deficient mice after 30 min and 1 h of occlusion. Mice with a deficiency in both ICAM-1 and P-selectin have impaired neutrophil trafficking without a difference in infarct size due to myocardial ischemia-reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号