首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In the normal fed rat, both 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) synthase and HMG-CoA reductase are found in high concentrations in hepatocytes that are localized periportally. The majority of the liver cells show little or no evidence of either enzyme. Addition of cholestyramine and mevinolin to the diet resulted in all liver cells showing strong positive staining for both HMG-CoA reductase and HMG-CoA synthase. These two drugs increased the hepatic HMG-CoA reductase and HMG-CoA synthase activities 92- and 6-fold, respectively, and also increased the HMG-CoA reductase activity in intestine, heart, and kidney 3- to 15-fold. We used immunofluorescence and avidin-biotin labeled antibody to localize HMG-CoA reductase in the rat intestine. In rats fed a normal diet, the most HMG-CoA reductase-positive cells were the villi of the ileum greater than jejunum greater than duodenum. Crypt cells showed no evidence of HMG-CoA reductase. Addition of cholestyramine and mevinolin to the diet led to a dramatic increase in the concentration of HMG-CoA reductase in the apical region of the villi of the ileum and jejunum and in the crypt cells of the duodenum. Hence these two drugs affected both the relative concentration and distribution of intestinal HMG-CoA reductase. Cholestyramine and mevinolin feeding induced in the liver, but not intestine, whorls of smooth endoplasmic reticulum that were proximal to the nucleus and contained high concentrations of HMG-CoA reductase. Administration of mevalonolactone led to the rapid dissolution of the hepatic whorls within 15 min, at a time when there is little or no change in the mass of HMG-CoA reductase. We conclude that the whorls are present in the livers of rats fed cholestyramine and mevinolin because the cells are deprived of a cellular product normally synthesized from mevalonate.  相似文献   

2.
3-Hydroxy-3-methylglutaryl(HMG)-coenzyme A reductase purified from rat liver in the absence of protease inhibitors is composed of two distinct polypeptides of Mr = 51,000 and 52,500. Antibody raised to enzyme purified from rats fed a diet supplemented with cholestyramine and mevinolin inactivated HMG-CoA reductase. The antibody specifically precipitated a polypeptide of Mr = 94,000 from rat liver cells that had been previously incubated with [35S]methionine. The immunoprecipitation of the 35S-labeled polypeptide of Mr = 94,000 was prevented by addition of unlabeled pure HMG-CoA reductase (Mr = 51,000 and 52,500). Incubation of rat liver cells with mevalonolactone resulted in a decreased activity of HMG-CoA reductase and in a 40% decrease in the rate of incorporation of [35S]methionine into the immunoprecipitable reductase polypeptide of Mr = 94,000. In pulse-chase experiments, mevalonolactone enhanced the rate of degradation of the Mr = 94,000 polypeptide 3-fold. We propose that endogenous microsomal HMG-CoA reductase has a subunit of Mr = 94,000 and that the synthesis and degradation of this polypeptide are regulated by either mevalonolactone or, more likely, a product of mevalonolactone metabolism.  相似文献   

3.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase was purified to homogeneity from rat liver cytoplasm. The active enzyme is a dimer composed of identical subunits of Mr = 53,000. The amino acid composition and the NH2-terminal sequence are presented. Partial cDNA clones for the enzyme were isolated by screening of a rat liver lambda gt11 expression library with antibodies raised against the purified protein. The identity of the clones was confirmed by hybrid selection and translation. When rats were fed diets supplemented with cholesterol, cholestyramine, or cholestyramine plus mevinolin, the hepatic protein mass of cytoplasmic synthase, as determined by immunoblotting, was 25, 160, and 1100%, respectively, of the mass observed in rats fed normal chow. Comparable changes in enzyme activity were observed. Approximately 9-fold increases in both HMG-CoA synthase mRNA mass and synthase mRNA activity were observed when control diets were supplemented with cholestyramine and mevinolin. When rats were fed these two drugs and then given mevalonolactone by stomach intubation, there was a 5-fold decrease of synthase mRNA within 3 h. These results indicate that cytoplasmic synthase regulation occurs primarily at the level of mRNA. This regulation is rapid and coordinate with that observed for HMG-CoA reductase. The chromosomal localization of human HMG-CoA synthase was determined by examining a panel of human-mouse somatic cell hybrids with the rat cDNA probe. Interestingly, the synthase gene resides on human chromosome 5, which has previously been shown to contain the gene for HMG-CoA reductase. Regional mapping, performed by examination of a series of chromosome 5 deletion mutants and by in situ hybridization to human chromosomes indicates that the two genes are not tightly clustered.  相似文献   

4.
5.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase from rat liver microsomes has been purified to apparent homogeneity with recoveries of approximately 50%. The enzyme obtained from rats fed a diet supplemented with cholestyramine had specific activities of approximately 21,500 nmol of NADPH oxidized/min/mg of protein. After amino acid analysis a specific activity of 31,000 nmol of NADPH oxidized/min/mg of amino acyl mass was obtained. The s20,w for HMG-CoA reductase was 6.14 S and the Stokes radius was .39 nm. The molecular weight of the enzyme was 104,000 and the enzyme subunit after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 52,000. Antibodies prepared against the homogeneous enzyme specifically precipitated HMG-CoA reductase from crude and pure fractions of the enzyme. Incubation of rat hepatocytes for 3 h in the presence of lecithin dispersions, compactin, or rat serum resulted in significant increases in the specific activity of the microsomal bound reductase. Immunotitrations indicated that in all cases these increases were associated with an activated form of the reductase. However activation of the enzyme accounted for only a small percentage of the total increase in enzyme activity; the vast majority of the increase was apparently due to an increase in the number of enzyme molecules. In contrast, when hepatocytes were incubated with mevalonolactone the lower enzyme activity which resulted was primarily due to inactivation of the enzyme with little change in the number of enzyme molecules. Immunotitrations of microsomes obtained from rats killed at the nadir or peak of the diurnal rhythm of 3-hydroxy-3-methylglutaryl-CoA reductase indicated that the rhythm results both from enzyme activation and an increased number of reductase molecules.  相似文献   

6.
7.
8.
At 1-2 h after intragastric administration of ketoconazole, a cytochrome P-450 inhibitor, to rats, there was a 50-60% decrease in the activity of hepatic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase. Inhibition reached a maximum at 6-12 h after the drug was given, but after 24 h enzyme activity was stimulated by 60%. The rates of synthesis of hepatic non-saponifiable lipids in vivo showed a similar time-dependent pattern of change. During the first few hours after drug administration, the hepatic cytochrome P-450-dependent metabolism of lanosterol was suppressed in vivo. However, 24 h after treatment, this activity was stimulated, an effect which was also observed by pre-treatment of the rats with the drug for several days. Suppression of hepatic HMG-CoA reductase and lanosterol 14 alpha-demethylase activities was accompanied by a relative increase in the accumulation of labelled polar sterols in the liver in vivo. In the intestine, ketoconazole also resulted in a rapid decline in the rate of synthesis of non-saponifiable lipids and an inhibition of lanosterol 14 alpha-demethylation in vivo. However, in contrast with the liver, there was no stimulation of non-saponifiable lipid synthesis after 24 h.  相似文献   

9.
Mouse mammary carcinoma FM3A cells, which are able to grow in a serum-free medium, have novel characteristics that could be valuable in biochemical and somatic cell genetic studies. In FM3A cells grown in the presence of serum, both sterol synthesis and the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the major rate-limiting enzyme in the cholesterol biosynthetic pathway, were strongly suppressed by human low density lipoprotein (LDL). The addition of LDL (50 micrograms protein/ml) resulted in a 50% decrease in the reductase activity within 3 h and a 95% reduction after 24 h. Similarly, over 90% suppression of the reductase activity was obtained by the addition of LDL or mevalonolactone when the cells were grown on a serum-free medium. ML-236B (compactin), a specific inhibitor of HMG-CoA reductase, inhibited sterol synthesis from [14C]acetate by 80% at 1 microM. Reductase activity in FM3A cells was increased by 2.5- to 5-fold when the cells were treated with ML-236B (at 0.26-2.6 microM for 24 h). Thus, in FM3A cells, HMG-CoA reductase activity responded well to LDL, as is observed in human skin fibroblasts. Along with other novel features of this cell line, the present observations indicate that FM3A cells should be useful in biochemical and somatic cell genetic analysis of cholesterol metabolism, especially as regards the regulation of HMG-CoA reductase activity.  相似文献   

10.
11.
In order to clarify the reason why pravastatin, a 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitor, did not show hypocholesterolemic effects in rats, the changes of various parameters affecting the serum cholesterol levels by pravastatin were determined in rats and rabbits, as a comparison. In rabbits, pravastatin administration at 50 mg/kg for 14 days decreased serum and liver cholesterol by 40% and 8%, respectively. The hepatic LDL receptor activity was increased 1.7-fold, and VLDL cholesterol secretion was decreased. Cholesterol 7α-hydroxylase activity was not changed. In contrast, in rats, serum cholesterol was increased by 14% at 50 mg/kg and 27% at 250 mg/kg for 7 days, respectively. At 250 mg/kg, liver cholesterol was significantly increased by 11%. Under these conditions, neither the hepatic LDL receptor activity nor cholesterol 7α-hydroxylase was changed, and VLDL cholesterol secretion was increased. At 250 mg/kg, net cholesterol synthesis in rat liver was increased after 7 days of consecutive administration. These results imply that in rats, stimulated net cholesterol synthesis caused the increase of liver cholesterol followed by the increase of VLDL cholesterol secretion, and resulted in the raise of plasma cholesterol. Although hepatic HMG-CoA reductase was induced almost the same fold in both animals at 50 mg/kg, the induced HMG-CoA reductase activity in rats might overcome the inhibitory capability of pravastatin, resulting in an increase of net cholesterol synthesis, but not in rabbits. This overresponse to pravastatin in rats might cause the lack of hypocholesterolemic effects of this drug.  相似文献   

12.
The fraction of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase in the dephosphorylated (active) form in rat liver in vivo was measured after various experimental treatments of animals. Intraperitoneal injection of glucose (to raise serum insulin concentrations) into rats 4 h into the light phase (L-4) resulted in a transient (30 min) increase in the expressed (E)/total (T) activity ratio of HMG-CoA reductase without any change in total activity (obtained after complete dephosphorylation of the enzyme). Conversely, intravenous injection of guinea-pig anti-insulin serum into rats 4 h into the dark phase (D-4) significantly depressed the E/T ratio within 20 min. Intravenous injection of glucagon into normal rats at this time point did not affect the degree of phosphorylation of the enzyme, in spite of a 10-fold increase in hepatic cyclic AMP concentration induced by the hormone treatment. A 3-fold increase in the concentration of the cyclic nucleotide induced by adrenaline infusion was similarly ineffective in inducing any change in expressed or total activities of hepatic HMG-CoA reductase. However, when insulin secretion was inhibited, either by the induction of streptozotocin-diabetes or by simultaneous infusion of somatostatin, glucagon treatment was able to depress the expressed activity of HMG-CoA reductase (i.e. it increased the phosphorylation of the enzyme). Therefore insulin appears to have a dominant role in the regulation of the phosphorylation state of hepatic HMG-CoA reductase. In apparent corroboration of this suggestion, short-term 4 h food deprivation of animals before D-4 resulted in a marked decrease in the E/T activity ratio of reductase, which was not affected further by an additional 8 h starvation. By contrast, the total activity of the enzyme was not significantly affected by 4 h starvation, but was markedly diminished after 12 or 24 h starvation. Longer-term starvation also produced a chronic increase in the degree of phosphorylation of the enzyme. These results are discussed in relation to the role of reversible phosphorylation in the control of hepatic HMG-CoA reductase activity in vivo.  相似文献   

13.
The effects of dietary administration (0.1% in diet for 8 days) of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one on the levels of activity of cytosolic acetoacetyl coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, and microsomal HMG-CoA reductase in liver have been studied in male Sprague-Dawley rats. Significant increases in the levels of activity of acetoacetyl-CoA thiolase and of HMG-CoA synthase were observed. The levels of microsomal HMG-CoA reductase activity were increased, relative to pair-fed control animals, in three experiments and increased, relative to ad libitum control animals, in one of three experiments. When compared with other agents for which the primary mode of action is an inhibition of the intestinal absorption of cholesterol, the magnitude of the increases in the levels of hepatic microsomal HMG-CoA reductase activity in the 15-ketosterol-fed rats was considerably smaller. In view of the previously described marked activity of the 15-ketosterol in the inhibition of the intestinal absorption of cholesterol, as well as its known effects in lowering HMG-CoA reductase activity in mammalian cells in culture, it is proposed that the 15-ketosterol may suppress the elevated levels of hepatic microsomal HMG-CoA reductase activity induced by the reduced delivery of cholesterol to liver as a consequence of the inhibition of the intestinal absorption of cholesterol.  相似文献   

14.
The possible role of HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (the rate-controlling enzyme of cholesterol biosynthesis) in regulating the rate of dolichyl phosphate biosynthesis in rat liver was investigated. Rats were either fasted 48 h or fed diets supplemented with the drug cholestyramine. The activity of HMG-CoA reductase was 5000-fold greater in liver from cholestyramine-fed rats as compared to fasted rats. The activity of dolichyl phosphate synthetase, the prenyl transferase responsible for the biosynthesis of dolichyl phosphate from farnesyl pyrophosphate and isopentenyl pyrophosphate, was similar in both nutritional conditions and was markedly less active than HMG-CoA reductase even in the fasted state. Acetate incorporation into cholesterol was 2200-fold greater in liver slices from cholestyramine-fed rats as compared to fasted rats. By contrast, acetate incorporation into dolichyl phosphate was only 6-fold higher. Further studies suggested that the levels of farnesyl pyrophosphate and isopentenyl pyrophosphate are several hundred-fold greater in liver from cholestyramine-treated rats. From these results, it is concluded that the rate of dolichyl phosphate biosynthesis in rat liver is not regulated by the activity of HMG-CoA reductase but is probably regulated at the level of dolichyl phosphate synthetase.  相似文献   

15.
Hepatic and serum levels of cholesterol precursors were analyzed in rats under basal (control) conditions and when cholesterol synthesis was activated by feeding 1% squalene or 5% cholestyramine. Exogenous squalene stimulated the activity of acyl-coenzyme A:cholesterol acyltransferase (ACAT) but strongly inhibited the activity of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase; cholestyramine did not affect ACAT but increased HMG-CoA reductase several-fold, indicating enhanced production of endogenous squalene. Activation of cholesterol synthesis by the two methods markedly increased the hepatic and serum contents of cholesterol precursor sterols. However, the sterol profiles were clearly different. Thus, exogenous squalene raised most significantly (up to 109-fold) free and esterified methyl sterols, and less so (up to 2-fold) demethylated C27 sterols (desmosterol and cholestenols) and also esterified cholesterol. Activation of endogenous squalene production by cholestyramine was associated with a depletion of esterified cholesterol and by a marked, up to 8-fold, increase of the free demethylated sterol precursor levels, whereas the increase of methyl sterols, up to 5-fold, was less conspicuous than during the squalene feeding. The changes were mostly insignificant for esterified sterols. The altered serum sterol profiles were quite similar to those in liver. Serum cholestenols and especially their portion of total serum precursor sterols were closely correlated with the hepatic activity of HMG-CoA reductase.  相似文献   

16.
The regulation of hepatic cholesterol and lipoprotein metabolism was studied in the ethinyl estradiol-treated rat in which low density lipoprotein (LDL) receptors are increased many fold. Cholesterol synthesis was reduced at both its diurnal peak and trough by ethinyl estradiol. The diurnal variation in 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was abolished, whereas that for acyl coenzyme A: cholesterol acyltransferase (ACAT) was retained. LDL receptor number did not vary diurnally. Feeding these animals a cholesterol-rich diet for 48 h suppressed cholesterol synthesis and reductase activities to levels similar to those found in cholesterol-fed control animals, but ACAT activity was unaffected. LDL receptors were reduced about 50%. Intravenously administered cholesterol-rich lipoproteins suppressed HMG-CoA reductase and LDL receptors in 2 h but had a variable effect on ACAT activity. Intragastric administration of mevalonolactone reduced reductase and increased acyltransferase activity but had little effect on LDL receptors when given 2 or 4 h before death. Although animals fed a cholesterol-rich diet before and during ethinyl estradiol treatment became hypocholesterolemic, free and esterified cholesterol concentrations in liver were high as was ACAT activity. HMG-CoA reductase was inhibited to levels found in control animals fed the cholesterol-rich diet. LDL receptors were increased to a level about 50% of that reached in animals receiving a control diet and ethinyl estradiol. These data demonstrate that key enzymes of hepatic cholesterol metabolism and hepatic LDL receptors respond rapidly to cholesterol in the ethinyl estradiol-treated rat. Furthermore, estradiol increases LDL receptor activity several fold in cholesterol-loaded livers.  相似文献   

17.
The contribution of the low density lipoprotein (LDL) receptor to the removal of chylomicron remnants was determined in vitro and in vivo by using interventions that up- or down-regulate the LDL receptor but not the LDL receptor-related protein (LRP). In vitro, chylomicron remnants and beta-very low density lipoprotein (VLDL) bind to the LDL receptor on endosomal membranes; their binding can be competed by LDL and beta-VLDL and the binding capacity is greatly augmented in membranes from estradiol-treated rats. Likewise, estradiol treatment almost doubled the removal of chylomicron remnants during a single pass through perfused rat livers. However, in vivo the removal of chylomicron remnants and beta-VLDL was very rapid even in untreated rats so that the effect of the stimulation by estradiol was barely detectable when trace amounts of lipoproteins were injected. Yet, when saturating doses of either lipoprotein were injected, the effect of estradiol treatment on the removal of chylomicron remnants and beta-VLDL was readily disclosed. In rats fed a diet containing lard, cholesterol, and bile acids, removal of chylomicron remnants or beta-VLDL was significantly retarded. Likewise, perfused livers from diet-fed rats removed only a mean of 16% of chylomicron remnants during a single passage as compared to 29% in livers from control animals. Also, when large doses of beta-VLDL had been infused into rats for 4 h, in subsequent perfusions of the livers the removal of chylomicron remnants was decreased to 11%. From these results it is concluded that the LDL receptor mediates the hepatic removal of a major fraction of chylomicron remnants and beta-VLDL.  相似文献   

18.
The early premalignant liver provides a model in which to study metabolic alterations that may be permissive for the development of full malignancy. Although there are biochemical changes in this model, there are no detectable morphological ones when compared with a normal, fully differentiated liver. The maintenance of cholesterol homeostasis, essential for proper functioning of mammalian cells, is known to be altered in malignancy. We used the ethionine-induced premalignant liver model to study the effects of the premalignant state on cellular parameters involved in the maintenance of hepatic cholesterol homeostasis. Cholesterol synthesis was elevated about twofold in the livers of rats treated with ethionine as was the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, its rate limiting enzyme. There was no change in reductase activation state. Acyl coenzyme A:cholesterol acyl-transferase (ACAT) was decreased about 30%, and cholesterol 7 alpha-hydroxylase, about 50%. There was no significant change in neutral cholesteryl ester hydrolase activity, but acid hydrolase activity was decreased. There was little change in low density lipoprotein receptor protein as determined by immunoblotting. Biliary lipid secretion was in the normal range when expressed per gram liver; however, bile flow was doubled. The ethionine-fed animals were mildly hypocholesterolemic and had an altered serum lipoprotein pattern. Cholesterol synthesis and HMG-CoA reductase activity exhibited decreased sensitivities to inhibition by dietary cholesterol when compared to control livers. However, sensitivity to intragastrically administered mevalonolactone was not altered. Although ACAT activity was increased by mevalonolactone administration to levels similar to those in untreated animals, it was not increased in the ethionine-fed animals by feeding cholesterol. The ethionine-induced premalignant liver responded to ethinyl estradiol treatment in a manner similar to that of the control, i.e., profound hypolipidemia, increased low density lipoprotein receptors, decreased reductase activity, and increased cholesterol esterification. Thus, these livers retained their estrogen responsiveness. Taken together, the data demonstrate that the major elements involved in maintaining hepatic cholesterol homeostasis are present in the premalignant liver, although in some cases at levels that are different from the control. However, the susceptibility to regulation was altered in these livers to suggest markedly decreased availability of cholesterol of exogenous origin to the regulatory compartment(s). Further, coupling of the different elements involved in maintenance of hepatic cholesterol homeostasis appeared to have been changed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号