首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DEK蛋白C末端DNA结合域(简称CDB)是近年新发现的一个DEK蛋白与DNA的结合域,其中含有多个磷酸化位点,与DEK蛋白的功能密切相关。利用原核表达系统表达DEK蛋白的CDB肽段并进行纯化,具体为以pET30a(+)为载体质粒,E.coli BL21(DE3)为宿主细胞,构建重组基因工程菌,以IPTG诱导目的蛋白的表达,用NiNTA纯化的重组蛋白样品来进行SDSPAGE电泳分析,约在10.7kDa处出现明显的特征蛋白条带。凝胶迁移分析证实DEK蛋白C末端DNA结合域与DNA的结合倾向于与超螺旋型DNA相结合,同全长的DEK蛋白与DNA的结合具有类似的特点,表明DEK蛋白C末端DNA结合域在DEK蛋白与DNA的结合中可能具有一定的作用。  相似文献   

2.
利用Bac-to-Bac杆状病毒表达系统表达DEK蛋白并进行纯化。首先以pFastBacI质粒构建重组质粒pFastBacI-DEK,转化DH10Bac大肠杆菌后获得重组穿梭载体Bacmid-DEK,通过脂质体介导转染Sf9细胞产生具有强感染力的重组杆状病毒AcNPV-DEK。用此重组杆状病毒AcNPV-DEK感染Sf9细胞表达His-DEK融合蛋白。在非变性条件下,利用Ni-NTA agarose对表达的His-DEK融合蛋白进行纯化,经SDS-PAGE和Western blotting分析,在50 kDa处出现特异性蛋白条带并证实其为His-DEK融合蛋白。凝胶迁移阻滞实验表明,融合蛋白His-DEK与DNA 的结合具有结构特异性,其与超螺旋型DNA结合活性强于与线性化DNA的结合活性。真核表达并纯化的融合蛋白His-DEK与DNA的结合活性要明显强于原核表达的融合蛋白His-CDB。DEK 蛋白的磷酸化修饰会阻碍其与DNA的结合,而Sf9细胞中表达的融合蛋白His-DEK存在磷酸化修饰,将His-DEK去磷酸化后,其与DNA的结合活性有所提高。  相似文献   

3.
为探讨DNA结合蛋白果蝇Eph激酶(Drosophila Eph kinase,DEK)对人子宫内膜基质蜕膜化的调节作用和途径,该研究采用qPCR(Real-time quantitative polymerase chain reaction)、免疫组化(immunohistochemical)和蛋白印迹(Western blot)分别检测人子宫内膜增生期、分泌期和蜕膜组织中DEK基因和蛋白的表达;利用siRNA抑制基质细胞和蜕膜细胞的DEK,再用细胞流式技术、细胞免疫荧光、qPCR、细胞碱性磷酸酶脂显色和Western blot检测DEK沉默后细胞的变化。结果显示,蜕膜组织中DEK mRNA表达水平低于增生期和分泌期(P0.05),蜕膜组织中DEK蛋白表达水平高于增生期和分泌期(P0.05);抑制基质细胞DEK会使细胞增殖和分化能力降低,从而抑制基质细胞蜕膜化;抑制蜕膜细胞DEK可使细胞凋亡增加,DNA损伤情况加剧,导致蜕膜细胞的维持和发展受到影响。综上,该研究初步证实,DEK可能通过调控细胞蜕膜化而参与胚胎着床过程,其可能途径与其通过调控细胞增殖、分化、凋亡和核损伤有关。  相似文献   

4.
甲醛诱导的磷酸化减弱Tau蛋白与DNA相互作用   总被引:1,自引:0,他引:1  
异常磷酸化Tau蛋白是神经纤维缠结的主要成分,也是老年痴呆的典型病理特征之一.本实验室前期报道了Tau蛋白具有保护DNA的作用,但磷酸化对Tau与DNA相互作用的影响需要进行探索,这对于揭示Tau蛋白异常磷酸化与神经细胞死亡之间的关系具有一定的参考价值.本文采用甲醛孵育N2a细胞,引起了细胞内Tau蛋白的过度磷酸化.实验结果进一步显示,甲醛孵育组的细胞核内磷酸化Tau蛋白与DNA非共定位存在,而对照组细胞核内Tau蛋白与DNA存在一定程度的共定位现象.电泳迁移率实验检测GSK-3β催化的磷酸化Tau蛋白与DNA的结合情况,可以观察到磷酸化减弱了Tau蛋白与DNA的相互结合.这些结果表明,异常磷酸化可以使Tau蛋白丧失对DNA的保护作用,这可能是Tau蛋白异常磷酸化引起DNA损伤甚至细胞死亡的原因之一.  相似文献   

5.
JNK和BAD(bcl-2相关死亡启动子)都是参与细胞凋亡的重要调控蛋白. 然而,二者在功能上的联系及其在细胞凋亡中的相互作用尚未见报导. 本研究证明, BAD可作为JNK的磷酸化底物, 与JNK相互作用, 协同调节紫外线(UV)诱导的细胞凋亡. 蛋白质印迹检测PARP (聚ADP核糖聚合酶)裂解, 以及流式细胞术检测细胞凋亡结果揭示, UV诱导的MEF细胞凋亡依赖JNK的激酶活性. siRNA敲降BAD的蛋白表达,可增加MEF细胞对UV 诱导的细胞凋亡的敏感性. UV处理的野生型MEF细胞抽提液(含JNK激酶活性)可催化GST-BAD底物发生磷酸化修饰, 而UV未处理的细胞抽提液却不能. 结果提示, UV激活的JNK活性可催化BAD磷酸化|体外合成的持续活化的JNK与GST-BAD体外共孵育结合质谱分析证明, JNK 可催化BAD蛋白的Thr-201磷酸化. 提示BAD是JNK的底物. 此外,野生型和T201A突变的BAD质粒转染BAD-/-细胞结果显示, BAD的T201磷酸化可抑制JNK激酶活性及其底物c-Jun的磷酸化, 提示BAD磷酸化对JNK具有负反馈调节作用. 上述结果证明,BAD作为底物可被UV激活的JNK激酶磷酸化|磷酸化BAD反过来又可抑制JNK的激酶活性, 负性调节细胞凋亡. 综上所述, BAD与JNK能够相互影响, 协同调控UV诱导的细胞凋亡.  相似文献   

6.
核不均一核糖核蛋白(heterogeneous nuclear ribonucleoprotein,hnRNPs)是一组RNA结合蛋白,它们与人体健康密切相关,参与肿瘤发生、病毒感染、细胞凋亡等多种病理生理过程的调节.hnRNP U是其中分子量最大的磷酸化蛋白质,对基因的转录、定位和表达特别是性染色体的表观失活过程发挥着重要作用.hnRNP U多以DNA/RNA蛋白复合物形式参与细胞功能调节.  相似文献   

7.
蛋白质酪氨酸磷酸化在抗失巢凋亡的癌细胞中的失调变化   总被引:2,自引:0,他引:2  
失巢凋亡是细胞与细胞外基质脱离发生的一种特定的凋亡方式 . 癌细胞抗失巢凋亡或失巢生存能力可以使之在转移过程中生存 . 业已发现癌细胞失巢生存与 PI3K-PKB/Akt 、 MAPK 这两条重要信号途径有关,但是 PI3K-PKB/Akt 、 MAPK 通路的上游酪氨酸激酶途径还不甚清楚 . 为此设计了一种基于 SH2-pTyr 特异性结合特性的功能性筛选方法,以期发现癌细胞失巢生存相关的酪氨酸磷酸化蛋白质,为最终明确酪氨酸激酶途径提供有力的实验依据 . 实验发现, MDCK 细胞悬浮培养后失巢凋亡,但癌细胞可以失巢生存 . 与这一现象相一致的是,悬浮培养后, MDCK 细胞中一系列 SH2 结合的酪氨酸磷酸化蛋白质水平急剧下降,而癌细胞中蛋白质酪氨酸磷酸化水平并不呈锚着依赖性 . 细胞悬浮培养后,随着培养时间的延长, MDCK 细胞中 Abl S SH2 结合的靶蛋白酪氨酸磷酸化水平逐渐降低,在 H460 肺癌细胞中经过短暂下降后升高, H1792 肺癌细胞随着培养时间的延长, Abl SH2 结合的靶蛋白酪氨酸磷酸化水平逐渐增加 . Fyn SH2 和 Crk SH2 结合的蛋白质分别为 FAK 和 p130Cas ,后者是重要的失巢生存信号 . 这些结果提示,酪氨酸磷酸化蛋白质可能赋予肺癌细胞失巢生存能力 . 结果也表明,功能性 SH2 筛查方法可以有效地发现肿瘤细胞中失巢生存相关的酪氨酸磷酸化蛋白质 .  相似文献   

8.
ERK信号通道调控大鼠气道平滑肌细胞的增殖与凋亡   总被引:9,自引:0,他引:9  
 为了了解ERK信号通道对正常大鼠气道平滑肌细胞(airway smooth muscle cells, ASMCs)增殖与凋亡的调控. 通过对正常大鼠ASMCs原代培养,4~7代用于实验,以ERK激动剂表皮生长因子(EGF)和抑制剂PD98059干预ASMCs生长,采用RT-PCR和免疫荧光染色观察ASMCs上ERK mRNA和蛋白的表达,MTT法、H-TdR掺入法检测ASMC增殖,Hoechst染色和Annexin-Ⅴ FITC PI双染色法检测细胞凋亡,Western免疫印迹检测ERK1/2、磷酸化ERK1/2和procaspase-3蛋白的表达.结果发现ASMCs上存在ERK mRNA和蛋白的表达,与空白对照组比较,PD98059干预后ASMCs的A490值和细胞DNA合成量均减少(P<0.05),细胞凋亡指数、早期凋亡细胞百分率均增高(P<0.05),ERK1/2、磷酸化ERK1/2表达和ERK活化率均降低, procaspase-3蛋白的表达增高.EGF干预后ASMCs的A490值和细胞DNA合成量均增高(P<0.05),细胞凋亡指数、早期凋亡细胞百分率均下降(P<0.05),ERK1/2、磷酸化ERK1/2表达和ERK活化率均增高, procaspase-3蛋白的表达降低.P+E组无明显差异(P>0.05).ERK信号通道参与大鼠ASMCs增殖和凋亡的调控,ERK对大鼠ASMCs凋亡的调控与procaspase-3蛋白有关,这一发现将有助于对哮喘ASMCs异常增殖调控机制的深入研究.  相似文献   

9.
细胞周期检定点激酶ATM蛋白属于磷酸肌醇3激酶(PI-3K)家族成员,也是哺乳动物细胞BASC高分子蛋白复合物的组成之一。ATM调整由于DNA损伤引发的DNA修复和凋亡通路,该通路主要表现为DNA损伤激活ATM激酶,ATM激酶磷酸化其下游的相应蛋白,使细胞在细胞周期关卡处停滞分裂,主要是G1-S期和G2-M期的阻滞,使损伤的DNA得以修复,当修复失败时,细胞进入凋亡进程。ATM磷酸化的蛋白质很多,如p53,cdc25A,cdc25C等,这些蛋白质对细胞周期关卡调控都非常重要,因此也就证明了ATM在细胞周期调控中的重要作用。  相似文献   

10.
张莹  王建 《生命科学》2007,19(5):501-505
抑癌蛋白p53具有转录激活作用,在细胞应激条件下激活一系列下游靶分子蛋白,发挥其调节细胞周期、细胞凋亡及DNA修复的功能。本文着重叙述了磷酸化、泛素化、乙酰化等不同的翻译后修饰及定位调控与p53活性调节之间的关系、特点和作用。  相似文献   

11.
端粒结合蛋白与端粒长度调控   总被引:2,自引:0,他引:2  
真核细胞端粒DNA序列的丢失与细胞的衰老及凋亡有关.端粒酶的激活可维持端粒长度并使细胞获得无限增殖的能力.端粒结合蛋白则可能通过调节端粒酶或其他相关因子的行为参与对端粒长度的调控.近年有关端粒结合蛋白的研究取得了突破性进展并在此基础上建立了端粒长度调控模型.  相似文献   

12.
细胞凋亡,即细胞程序性死亡,在多细胞生物的发育和稳态调控过程中发挥关键作用.Bcl-2家族蛋白是凋亡过程中的主要调控因子,关于Bcl-2家族蛋白在凋亡过程中的功能及其作用机制一直是研究的热点.已有研究显示Bcl-2家族蛋白不仅作用于线粒体引发凋亡,并且参与了包括对细胞内质网Ca2+的调控、DNA损伤的修复及与自噬的相互...  相似文献   

13.
PTEN基因诱导人胚肾293细胞凋亡和细胞周期停滞   总被引:1,自引:0,他引:1  
为了研究抑癌基因PTEN过表达对HEK293细胞凋亡和细胞周期停滞的作用,以野生型PTEN和PTEN突变子(T910G)表达质粒分别转染无PTEN表达的人胚肾293细胞,采用细胞质梯度DNA方法检测细胞凋亡,以流式细胞仪分析细胞周期.发现PTEN过表达能够诱导人胚肾293细胞质中出现梯度DNA,293细胞发生凋亡,PTEN过表达改变细胞周期分布,G0/G1期细胞增加13%,S期细胞下降15%.PTEN突变子对细胞凋亡和G1细胞停滞的影响略弱于野生型PTEN.PTEN基因过表达明显下调血小板衍生生长因子(PDGF)诱导的蛋白激酶B(PKB)和p42,p44-促分裂原活化蛋白激酶(MAPK)磷酸化水平,PTEN突变子对p42,p44-MAPK磷酸化水平的调节作用略弱于野生型PTEN.PTEN通过抑制细胞增殖,诱导细胞凋亡而影响细胞生长.  相似文献   

14.
神经元凋亡的离体模型及其检测技术   总被引:1,自引:0,他引:1  
近年来,随着细胞凋亡研究的深入,神经元凋亡与神经退变病的关系愈发引人注目,已建立多种神经元凋亡的离体模型.多种因素如营养剥夺、自由基、谷氨酸、低钙及β-淀粉样蛋白等均可诱发神经元凋亡.凋亡的检测,可先从酶或蛋白质的变化判断神经元的损伤情况,再结合形态学观察,最后通过DNA电泳等确证.  相似文献   

15.
核基质结合区 (MAR)是真核生物中能与核基质结合的DNA片段.MAR通过与特异的MAR结合蛋白相互作用,在提高转基因表达水平、降低转基因个体之间表达水平差异以及染色体包装等方面具有重要的调控作用.目前,已在不同物种分离MAR结合蛋白,分别为核基质成分、核仁蛋白、组蛋白、叶绿体蛋白等,它们在调控基因表达、细胞发育、细胞凋亡、染色体包装等方面具有重要的功能.本文综述了目前分离出的MAR结合蛋白及其功能,并对MAR-结合蛋白研究作一展望.  相似文献   

16.
Artemis是1个具有多种生物学功能的磷酸化蛋白,它在基因毒性应激引发的细胞周期检测点调控中起重要作用,但其调控机制知之甚少.为了探讨UVC等DNA复制阻滞应激引发的Artemis磷酸化及蛋白表达水平对细胞周期蛋白E的调控作用和调控机制.首先以Western印迹方法检测Artemis S516-645A突变细胞和Artemis表达降低细胞的细胞周期蛋白E的表达水平,发现ArtemisS516-645A突变细胞和多种Artemis siRNA转染细胞的细胞周期蛋白E表达水平均高于对照细胞.在此基础上,为分析细胞周期蛋白E表达受调控的分子机制,在稳定表达各种磷酸化状态Artemis的HEK-293细胞中导入外源性启动子转录驱动的细胞周期蛋白E表达质粒,发现表达Artemis S516-645A突变体的细胞中外源性的细胞周期蛋白E蛋白表达水平也高于野生型细胞.进一步的研究发现在Artemis蛋白表达降低的细胞中与泛素结合的细胞周期蛋白E减少而蛋白稳定性增加.本研究还发现Artemis蛋白对细胞周期蛋白E的调控过程是不依赖于p53和p21表达的.这些结果表明,Artemis S516-645A突变和Artemis表...  相似文献   

17.
蛋白磷酸酶2A(protein phosphatase 2A,PP2A)是蛋白磷酸酶家族的主要成员,在蛋白质可逆磷酸化过程中与蛋白激酶一样起着举足轻重的作用。自然界存在很多天然毒素可特异性地作用于PP2A从而影响体内蛋白质的可逆磷酸化,其中微囊藻毒素由于急性肝毒性和强促癌活性日益引起关注。尽管确切的机制仍未探明,但从目前的研究来看,微囊藻毒素产生毒性的机制可能与其引起细胞氧化应激、DNA损伤、细胞骨架的破坏以及诱导细胞凋亡相关。而PP2A在氧化应激、DNA损伤修复及维持细胞骨架稳态中起着重要作用,并能调控凋亡相关激酶CaMKII和Bcl-2家族蛋白,这对更好地理解微囊藻毒素LR如何通过影响PP2A而产生毒作用提供了新思路。  相似文献   

18.
为了探讨过表达N 乙酰氨基葡萄糖转移酶Ⅴ (GnT Ⅴ )后 772 1细胞侵袭、迁移等行为改变的机制 ,检测了GnT Ⅴ 772 1及pcDNA3 772 1两组细胞中与恶性表型密切相关的粘着斑激酶 (focalad hesionkinase ,FAK)、PTEN蛋白、蛋白激酶B(PKB)等重要信号分子的表达水平 ,同时测定了 2组细胞非贴壁依赖生长的能力 .利用Western印迹方法检测FAK、PTEN、PKB的表达或磷酸化水平 .利用poly hema使细胞非贴壁生长 ,2组细胞悬浮无血清培养 2 0h ,采用流式细胞仪方法检测细胞的失巢凋亡 (anoikis) .研究发现 ,转染GnT Ⅴ后的肝癌细胞的FAK表达无明显变化 ,FAK的酪氨酸磷酸化水平增高 70 %;而PTEN的表达下降了 4 9%;PKB的磷酸化增加 2 0 0 %;pcDNA3 772 1细胞已有明显凋亡 ,而转染GnT Ⅴ的 772 1细胞未发生凋亡 .结果提示 ,转染GnT Ⅴ后的肝癌细胞迁移力增强 ,可能与其FAK的磷酸化程度升高 ,激酶活力增强有关 ;而能逃逸失巢凋亡是因为PTEN的表达下降 ,PTEN蛋白的磷酸酶活性降低 ,细胞Akt PKB磷酸化水平保持在较高水平 .  相似文献   

19.
为了探讨过表达N 乙酰氨基葡萄糖转移酶Ⅴ (GnT Ⅴ )后 772 1细胞侵袭、迁移等行为改变的机制 ,检测了GnT Ⅴ 772 1及pcDNA3 772 1两组细胞中与恶性表型密切相关的粘着斑激酶 (focalad hesionkinase ,FAK)、PTEN蛋白、蛋白激酶B(PKB)等重要信号分子的表达水平 ,同时测定了 2组细胞非贴壁依赖生长的能力 .利用Western印迹方法检测FAK、PTEN、PKB的表达或磷酸化水平 .利用poly hema使细胞非贴壁生长 ,2组细胞悬浮无血清培养 2 0h ,采用流式细胞仪方法检测细胞的失巢凋亡 (anoikis) .研究发现 ,转染GnT Ⅴ后的肝癌细胞的FAK表达无明显变化 ,FAK的酪氨酸磷酸化水平增高 70 %;而PTEN的表达下降了 4 9%;PKB的磷酸化增加 2 0 0 %;pcDNA3 772 1细胞已有明显凋亡 ,而转染GnT Ⅴ的 772 1细胞未发生凋亡 .结果提示 ,转染GnT Ⅴ后的肝癌细胞迁移力增强 ,可能与其FAK的磷酸化程度升高 ,激酶活力增强有关 ;而能逃逸失巢凋亡是因为PTEN的表达下降 ,PTEN蛋白的磷酸酶活性降低 ,细胞Akt PKB磷酸化水平保持在较高水平 .  相似文献   

20.
为了探讨酸性鞘磷脂水解酶 (ASM)和MAPK信号通路在UVA诱导的细胞凋亡中的作用 ,用DNA梯形条带 (DNAladder)和荧光显微镜鉴定细胞凋亡 ,Western印迹分析MAPK信号通路的激活情况 .结果显示 :①经UVA照射 ,正常的淋巴母细胞JY出现严重的细胞凋亡 ,而ASM遗传性缺陷的淋巴母细胞MS1 4 1 8出现轻微凋亡 ;给予ASM特异性抑制剂NB6 ,UVA诱导的JY细胞凋亡明显减轻 ,表明UVA诱导的细胞凋亡依赖于ASM .②UVA照射后 ,磷酸化ERK含量在MS1 4 1 8细胞中明显升高 ,在JY细胞中受到抑制 ;UVA照射前给予NB6 ,JY细胞中磷酸化ERK含量上升 ,表明ASM能抑制ERK的激活 .③UVA照射后 ,磷酸化JNK含量在MS1 4 1 8细胞中几乎没有变化 ,而在JY细胞中含量升高 ;UVA照射前给予NB6 ,JY细胞中磷酸化JNK含量没有明显升高 ,表明ASM激活JNK通路 .④NB6对UVA激活的p38MAPK信号通路没有影响 ,表明p38的激活与ASM关系不大 .研究表明 ,UVA诱导的细胞凋亡是通过激活ASM、激活JNK信号通路并抑制ERK信号通路来完成的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号