首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of recombinant proteins as inclusion bodies in bacteria is one of the most efficient ways to produce cloned proteins, as long as the inclusion bodies can be successfully refolded. In this study, the different parameters were investigated and optimized on the refolding of denatured lipase. The maximum lipase activity of 5000 U/L was obtained after incubation of denatured enzyme in a refolding buffer containing 20 mM Tris–HCl (pH 7.0), 1 mM Ca2+ at 20 °C. Then, the refolded lipase was purified to homogeneity by anion exchange chromatography. The purified refolded lipase was stable in broad ranges of temperatures and pH values, as well as in a series of water-miscible organic solvents. In addition, some water-immiscible organic solvents, such as petroleum ether and isopropyl ether, could reduce the polarity and increase the nonpolarity of the refolding system. The results of Fourier transform infrared (FT-IR) microspectroscopy were the first to confirm that lipase refolding could be further improved in the presence of organic solvents. The purified refolded lipase could enantioselectively hydrolyze trans-3-(4-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM]. These features render the lipase attraction for biotechnological applications in the field of organic synthesis and pharmaceutical industry.  相似文献   

2.
Abstract

The present work describes the enzymatic properties of Penicillium chrysogenum lipase and its behavior in the presence of organic solvents. The temperature and pH optima of the purified lipase was found to be 55?°C and pH 8.0 respectively. The lipase displayed remarkable stability in both polar and non-polar solvents upto 50% (v/v) concentrations for 72?h. A structural perspective of the purified lipase in different organic solvents was gained by using circular dichroism and intrinsic fluorescence spectroscopy. The native lipase consisted of a predominant α-helix structure which was maintained in both polar and non-polar solvents with the exception of ethyl butyrate where the activity was decreased and the structure was disrupted. The quenching of fluorescence intensity in the presence of organic solvents indicated the transformation of the lipase microenviroment P. chrysogenum lipase offers an interesting system for understanding the solvent stability mechanisms which could be used for rationale designing of engineered lipase biocatalysts for application in organic synthesis in non-aqueous media.  相似文献   

3.
脂肪酶是重要的工业用酶,在食品加工、生物柴油的合成等领域具有广泛的应用。但是在应用中有机溶剂对脂肪酶具有一定的毒性,因此获得耐有机溶剂的脂肪酶基因并实现高效表达是脂肪酶规模化应用的前提。本研究应用PCR技术首次从耐有机溶剂脂肪酶产生菌腐生葡萄球菌M36基因组DNA中扩增得到脂肪酶Ⅲ基因lip3(GenBank AccessionNo.FJ979867),其编码区长度为741bp,编码247个氨基酸,推测蛋白分子量大小为31.6kD。它与腐生葡萄球菌lip3推测的基因(GenBank AccessionNo.AP008934)只有83%的同源性。将该基因与大肠杆菌表达载体pET-DsbA连接,转化大肠杆菌EscherichiacoliBL21(DE3)获得重组菌株BL21(DE3)/pET-DsbA-lip3,在pH8、25oC条件下,OD600为1.0时用0.4mmol/LIPTG诱导12h酶活达到25.8U/mL。重组酶在甲醇、正己烷、异辛烷、正庚烷等有机溶剂中具有较好的耐性。lip3基因的克隆及在大肠杆菌中有效表达的研究为进一步进行基因工程改造和脂肪酶应用奠定了基础。  相似文献   

4.
Microorganisms associated with marine sponges are potential resources for marine enzymes. In this study, culture-independent metagenomic approach was used to isolate lipases from the complex microbiome of the sponge Ircinia sp. obtained from the South China Sea. A metagenomic library was constructed, containing 6568 clones, and functional screening on 1 % tributyrin agar resulted in the identification of a positive lipase clone (35F4). Following sequence analysis 35F4 clone was found to contain a putative lipase gene lipA. Sequence analysis of the predicted amino acid sequence of LipA revealed that it is a member of subfamily I.1 of lipases, with 63 % amino acid similarity to the lactonizing lipase from Aeromonas veronii (WP_021231793). Based on the predicted secondary structure, LipA was predicted to be an alkaline enzyme by sequence/structure analysis. Heterologous expression of lipA in E. coli BL21 (DE3) was performed and the characterization of the recombinant enzyme LipA showed that it is an alkaline enzyme with high tolerance to organic solvents. The isolated lipase LipA was active in the broad alkaline range, with the highest activity at pH 9.0, and had a high level of stability over a pH range of 7.0–12.0. The activity of LipA was increased in the presence of 5 mM Ca2+ and some organic solvents, e.g. methanol, acetone and isopropanol. The optimum temperature for the activity of LipA is 40 °C and the molecular weight of LipA was determined to be ~30 kDa by SDS-PAGE. LipA is an alkaline lipase and shows good tolerance to some organic solvents, which make it of potential utility in the detergent industry and enzyme mediated organic synthesis. The result of this study has broadened the diversity of known lipolytic genes and demonstrated that marine sponges are an important source for new enzymes.  相似文献   

5.
A new approach in biotechnological processes is to use lipase modified with polyethylene glycol(PEG) which has both hydrophilic and hydrophobic properties. The PEG-lipase is soluble in organic solvents such as benzene and chlorinated hydrocarbons and exhibits high enzymic activity in organic solvents. The PEG-lipase catalyses the reverse reaction of hydrolysis in organic solvents; ester synthesis and ester exchange reactions. The PEG-lipase can also be conjugated to magnetite (Fe3O4). The magnetic lipase catalyses ester synthesis in organic solvents and can be readily recovered by magnetic force without loss of enzymic activity.  相似文献   

6.
An extracellular lipase producing isolate Staphylococcus sp. MS1 was optimized for lipase production and its biocatalytic potential was assessed. Medium with tributyrin (0.25 %) and without any exogenous inorganic nitrogen source was found to be optimum for lipase production from Staphylococcus sp. MS1. The optimum pH and temperature for lipase production were found to be pH 7 and 37 °C respectively, showing lipase activity of 37.91 U. It showed good lipase production at pH 6–8. The lipase was found to be stable in organic solvents like hexane and petroleum ether, showing 98 and 88 % residual activity respectively. The biotransformation using the concentrated enzyme in petroleum ether resulted in the synthesis of fatty acid methyl esters like methyl oleate, methyl palmitate and methyl stearate. Thus, the lipase under study has got the potential to bring about transesterification of oils into methyl esters which can be exploited for various biotechnological applications.  相似文献   

7.
Immobilization of enzymes on some solid supports has been used to stabilize enzymes in organic solvents. In this study, we evaluated applications of genetically immobilized Rhizopus oryzae lipase displayed on the cell surface of Saccharomyces cerevisiae in organic solvents and measured the catalytic activity of the displayed enzyme as a fusion protein with alpha-agglutinin. Compared to the activity of a commercial preparation of this lipase, the activity of the new preparation was 4.4 x 10(4)-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate and 3.8 x 10(4)-fold higher in an esterification reaction with palmitic acid and n-pentanol (0.2% H2O). Increased enzyme activity may occur because the lipase displayed on the yeast cell surface is stabilized by the cell wall. We used a combination of error-prone PCR and cell surface display to increase lipase activity. Of 7,000 colonies in a library of mutated lipases, 13 formed a clear halo on plates containing 0.2% methyl palmitate. In organic solvents, the catalytic activity of 5/13 mutants was three- to sixfold higher than that of the original construct. Thus, yeast cells displaying the lipase can be used in organic solvents, and the lipase activity may be increased by a combination of protein engineering and display techniques. Thus, this immobilized lipase, which is more easily prepared and has higher activity than commercially available free and immobilized lipases, may be a practical alternative for the production of esters derived from fatty acids.  相似文献   

8.
QR Johnson  RB Nellas  T Shen 《Biochemistry》2012,51(31):6238-6245
Understanding how organic solvent-stable proteins can function in anhydrous and often complex solutions is essential for the study of the interaction of protein and molecular immiscible interfaces and the design of efficient industrial enzymes in nonaqueous solvents. Using an extremophilic lipase from Pseudomonas aeruginosa as an example, we investigated the conformational dynamics of an organic solvent-tolerant enzyme in complex solvent milieux. Four 100-ns molecular dynamics simulations of the lipase were performed in solvent systems: water, hexane, and two mixtures of hexane and water, 5% and 95% (w/w) hexane. Our results show a solvent-dependent structural change of the protein, especially in the region that regulates the admission of the substrate. We observed that the lipase is much less flexible in hexane than in aqueous solution or at the immiscible interface. Quantified by the size of the accessible channel, the lipase in water has a closed-gate conformation and no access to the active site, while in the hexane-containing systems, the lipase is at various degrees of open-gate state, with the immiscible interface setup being in the widely open conformation ensembles. The composition of explicit solvents in the access channel showed a significant influence on the conformational dynamics of the protein. Interestingly, the slowest step (bottleneck) of the hexane-induced conformational switch seems to be correlated with the slow dehydration dynamics of the channel.  相似文献   

9.
An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.  相似文献   

10.
交联酶晶体制备及其稳定性的研究   总被引:3,自引:0,他引:3  
酶制剂已经广泛应用在化学工艺、医学、农业、食品工业和化学分析等各个领域中,但酶的明显弱点是稳定性差,特别是应用于有机合成的酶还要耐受有机溶剂的变性作用等,所以酶的稳定化研究越来越引起重视。脂肪酶由于其在疏水环境的特殊催化作用,被广泛应用于有机合成中。...  相似文献   

11.
Resolution of (R)- and (S)-dropropizine which is an antitussive and central sedative therapeutic agent in high optical and chemical yields was achieved by lipases of Pseudomonas cepacia supported on ceramic particles (lipase PS-C) and on diatomite (lipase PS-D) with oxime esters in organic solvents. The influence of several factors (lipase source, structural variations in oxime esters, the amount of lipase and its recyclability) on the enantioselectivity have been investigated. Different properties were used to describe the solvents, namely the hydrophobicity (quantified by log P) and the dielectic constant (epsilon). This enzymatic acylation using oxime esters was significant as only (S)-dropropizine and (R)-dropropizine monoacetate was obtained. (R)-Dropropizine monoacetate was chemically hydrolyzed to obtain (R)-dropropizine. The highest enantioselectivity was observed when O-acetyl benzophenone oxime was used. This enzymatic resolution provides a versatile method for getting the pure enantiomers of dropropizine by effectively optimizing the various reaction parameters.  相似文献   

12.
Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ~20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]‐HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active‐site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein.  相似文献   

13.
Among several lipase-producing actinomycete strains screened, Amycolatopsis mediterranei DSM 43304 was found to produce a thermostable, extracellular lipase. Culture conditions and nutrient source modification studies involving carbon sources, nitrogen sources, incubation temperature and medium pH were carried out. Lipase activity of 1.37 ± 0.103 IU/ml of culture medium was obtained in 96 h at 28°C and pH 7.5 using linseed oil and fructose as carbon sources and a combination of phytone peptone and yeast extract (5:1) as nitrogen sources. Under optimal culture conditions, the lipase activity was enhanced 12-fold with a twofold increase in lipase specific activity. The lipase showed maximum activity at 60°C and pH 8.0. The enzyme was stable between pH 5.0 and 9.0 and temperatures up to 60°C. Lipase activity was significantly enhanced by Fe3+ and strongly inhibited by Hg2+. Li+, Mg2+ and PMSF significantly reduced lipase activity, whereas other metal ions and effectors had no significant effect at 0.01 M concentration. A. mediterranei DSM 43304 lipase exhibited remarkable stability in the presence of a wide range of organic solvents at 25% (v/v) concentration for 24 h. These features render this novel lipase attractive for potential biotechnological applications in organic synthesis reactions.  相似文献   

14.
A strain named DS9 excreting organic solvent-stable lipase was screened and later identified asBacillus subtilis based on its phenotypes, biochemical test, and 16S rRNA gene sequence. Strain DS9 grows well on the medium with 10% (v/v) organic solvent with log P values equal to or above 2.5. The organic solvent-tolerant lipase excreted by strain DS9 had a wider tolerance for organic solvents. The relative activity of the lipase was above 60% at 37 °C, 200 rpm, 30 min in the present of 25% (v/v) organic solvents such as 1-butanol, hexanol, benzene, and toluene. The lipase was not only stable but also activated by n-hexane, xylene, heptane, isooctane, and n-decane. The optimal pH and temperature were 8.0 and 40 °C, respectively. Both the organic solvent-tolerant microorganism and the organic solvent-stable lipase produced by this strain could be used as a biocatalyst for application in non-aqueous biocatalysis.  相似文献   

15.
Immobilization of enzymes on some solid supports has been used to stabilize enzymes in organic solvents. In this study, we evaluated applications of genetically immobilized Rhizopus oryzae lipase displayed on the cell surface of Saccharomyces cerevisiae in organic solvents and measured the catalytic activity of the displayed enzyme as a fusion protein with α-agglutinin. Compared to the activity of a commercial preparation of this lipase, the activity of the new preparation was 4.4 × 104-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate and 3.8 × 104-fold higher in an esterification reaction with palmitic acid and n-pentanol (0.2% H2O). Increased enzyme activity may occur because the lipase displayed on the yeast cell surface is stabilized by the cell wall. We used a combination of error-prone PCR and cell surface display to increase lipase activity. Of 7,000 colonies in a library of mutated lipases, 13 formed a clear halo on plates containing 0.2% methyl palmitate. In organic solvents, the catalytic activity of 5/13 mutants was three- to sixfold higher than that of the original construct. Thus, yeast cells displaying the lipase can be used in organic solvents, and the lipase activity may be increased by a combination of protein engineering and display techniques. Thus, this immobilized lipase, which is more easily prepared and has higher activity than commercially available free and immobilized lipases, may be a practical alternative for the production of esters derived from fatty acids.  相似文献   

16.
An extracellular lipase catalyzing the synthesis of macrocyclic lactones in anhydrous organic solvents was purified to homogeneity from Pseudomonas nov. sp. 109, and characterized. The lipase showed a pI of 5.3 on isoelectric focusing and a Mr of 29,000 +/- 1,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With respect to substrate specificity, optimum chain length for acyl moiety varied depending on the type of reaction catalyzed: C18 in monomer lactone formation, C11 or shorter in dimer lactone formation, and C8 in ester hydrolysis. The amino-terminal 19 amino acid residues of the purified lipase were determined as Ser-Thr-Tyr-Thr-Gln-Thr-Lys-Tyr-Pro-Ile-Val-Leu-Ala-His-Gly-Met-Leu-Gly- Phe, and the gene encoding the lipase was identified by hybridization to a synthetic 20-nucleotide probe, cloned, and sequenced. Nucleotide sequence analysis predicted a 311-amino acid open reading frame, a putative ribosome-binding site, and a 26-amino acid sequence at the amino terminus of the sequence that is not found in the mature protein. This 26-amino acid sequence has many of the characteristics common to known signal peptides. The lipase gene encoded a sequence of Val-Asn-Leu-Ile-Gly-His-Ser-His-Gly-Gly which is very well conserved among lipases, and showed 38-40% overall homology to the amino acid sequences of lipases from Pseudomonas fragie and Pseudomonas cepacia, but showed little homology to those of other lipases, suggesting that some structural features are required for catalyzing macrocyclic lactone synthesis in organic solvents and are restricted to lipases of the Pseudomonas origin.  相似文献   

17.
A lipase gene (lip3) was cloned from the Pseudomonas aeruginosa strain LST-03 (which tolerates organic solvents) and expressed in Escherichia coli. The cloned sequence includes an ORF consisting of 945 nucleotides, encoding a protein of 315 amino acids (Lip3 lipase, 34.8 kDa). The predicted Lip3 lipase belongs to the class of serine hydrolases; the catalytic triad consists of the residues Ser-137, Asp-258, and His-286. The gene cloned in the present study does not encode the LST-03 lipase, a previously isolated solvent-stable lipase secreted by P. aeruginosa LST-03, because the N-terminal amino acid sequence of the Lip3 lipase differs from that of the LST-03 lipase. Although the effects of pH on the activity and stability of the Lip3 lipase, and the temperature optimum of the enzyme, were similar to those of the LST-03 lipase, the relative activity of the Lip3 lipase at lower temperatures (0–35°C) was higher than that of the LST-03 lipase. In the absence of organic solvents, the half-life of the Lip3 lipase was similar to that of the LST-03 lipase. However, in the presence of most of the organic solvents tested in this study (the exceptions were ethylene glycol and glycerol), the stability of the Lip3 lipase was lower than that of the LST-03 lipase.Communicated by H. Ikeda  相似文献   

18.
Psychrotropic Bacillus sphaericus producing solvent stable cold-active lipase upon growth at low temperature was isolated from Gangotri glacier. Optimal parameters for lipase production were investigated and the strain was able to produce lipase even at 15 °C. An incubation period of 48 h and pH 8 was found to be conducive for cold-active lipase production. The addition of trybutyrin as substrate and lactose as additional carbon source increased lipase production. The enzyme was purified up to 17.74-fold by ammonium sulphate precipitation followed by DEAE cellulose column chromatography. The optimum temperature and pH for lipase activity were found to be 15 °C and 8.0, respectively. The lipase was found to be stable in the temperature range 20–30 °C and the pH range 6.0–9.0. The protein retained more than 83 % of its initial activity after exposure to organic solvents. The lipase exhibited significant stability in presence of acetone and DMSO retaining >90 % activity. The enzyme activity was inhibited by 10 mM CuSO4 and EDTA but showed no loss in activity after incubation with other metals or inhibitors examined in this study.  相似文献   

19.
A novel lipase gene from an organic solvent degradable strain Pseudomonas fluorescens JCM5963 was cloned, sequenced, and overexpressed as an N-terminus His-tag fusion protein in E. coli. The alignment of amino acid sequences revealed that the protein contained a lipase motif and shared a medium or high similarity with lipases from other Pseudomonas strains. It could be defined as a member of subfamily I.1 lipase. Most of the recombinant proteins expressed as enzymatically active aggregates soluble in 20 mM Tris–HCl buffer (pH 8.0) containing sodium deoxycholate are remarkably different from most subfamily I.1 and I.2 members of Pseudomonas lipases expressed as inactive inclusion body formerly described in E. coli. The recombinant lipase (rPFL) was purified to homogeneity by Ni-NTA affinity chromatography and Sephacryl S-200 gel filtration chromatography. The purified lipase was stable in broad ranges of temperatures and pH values, with the optimal temperature and pH value being 55 °C and 9.0, respectively. Its activity was found to increase in the presence of metal ions such as Ca2+, Sn2+ and some non-ionic surfactants. In addition, rPFL was activated by and remained stable in a series of water-miscible organic solvents solutions and highly tolerant to some water-immiscible organic solvents. These features render this novel lipase attraction for biotechnological applications in the field of organic synthesis and detergent additives.  相似文献   

20.
A potent bacterium for lipase production was isolated from soil and identified as Pseudomonas species. It produced lipase constitutively. A mutant of this strain with a lipase productivity 3.25-fold higher was obtained by treatment with ultraviolet (UV) and nitrosoguanidine (NTG). Its fermentation condition was optimized to a lipase yield of 87.5 U/ml. The lipase had maximum activity at pH 9.0 and 45 degrees C. It was stable at pHs from 7.0 to 11.0 and below 60 degrees C. The effects of metal ions, surfactants and bile salts were also studied. The lipase was 1,3-specific. In organic solvents, the thermal stability of the lipase was significantly enhanced. Its optimum temperature was also slightly increased. The optimum water activity was found between 0.5 and 0.6. The lipase was successfully applied in organic phase to catalyze the glycerolysis of palm oil for monoglyceride (MG) production, and the enantioselective esterification of (R,S)-2-octanol. The enantioselectivity of the lipase could be enhanced substantially by treatment with an amphipathic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号