首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of 5,6-dihydroxytryptamine (5,6-DHT), which selectively destroyed serotonin terminals, and p-chlorphenylalanine, which inhibited serotonin synthesis, was studied on the long-term sensitization (LTS) in a snail. The membrane mechanisms were analyzed by measuring electrical characteristics of command neurons of defensive behavior LPa3, RPa3, LPa2, and RPa2. Snails injected with saline served as an active control. It was shown that the injected drugs inhibited the LTS in certain concentrations. A significant increase was observed in the membrane potential and the threshold of the action potential generation in the command neurons after 5,6-DHT injection in the doses of 20 and 30 mg/kg (in comparison with the active control). Sensitization of snails injected with saline solution led to the LTS and decrease in the membrane and threshold potentials of the command neurons. After the LTS, changes in membrane and threshold potentials in snails injected with 5,6-DHT were negligible in comparison with those injected with 5,6-DHT but without the LTS. Neither the LTS nor subsequent learning resulted in a further decrease in membrane and threshold potentials. Thus, the neurotoxin injection led to an increase in excitability of command neurons and their depolarization, and the LDS did not elicit further excitability increase. Since the shifts of the threshold and membrane potentials were the same, it was concluded that the increase in membrane excitability was induced by the depolarizing shift of the membrane potential.  相似文献   

2.
It was found that chronic injection of caffeine to grape snail increases a velocity of elaboration of conditioned defensive reflex. It was shown that after daily injection of caffeine immediately after procedure of learning the conditioned defensive reflex elaborated faster than daily injection before procedure of learning. It has been shown, that chronic injection of caffeine both in naive as well as learned snails led to depolarizing shift of membrane potential and to decrease of threshold potential of command neurons of the defensive behaviour of grape snails. It was also found that addition of caffeine in bath solution led to decrease of threshold of generation of action potential of command neurons both in intact and learned snails. The resting membrane potential of command neurons was not changed.  相似文献   

3.
The role of serotonin in expression of membrane properties of identified neurons was studied during defensive reflex conditioning using the neurotoxic analogue of serotonin 5,6-dihydroxytryptamine (5,6-DHT). The defensive reflex conditioning in snails was destroyed on the second day after second injection of 5,6-DHT. Through the 1st weeks after second injection of 5,6-DHT the snails were learned but worse than snails after injection of saline solution. This result shows the recovery of snail's learning ability within 2 weeks after the second injection of 5,6-DHT. It was found that injection of 5,6-DHT prevented the decrease of membrane and threshold potentials of command neurons during defensive reflex conditioning as compared with the snails injected with 5,6-DHT without learning.  相似文献   

4.
Two groups of rats with different level of motor activities: high- and low-active animals, were distinguished. The blockade of dopamine receptors by haloperidol led to depression of locomotor activity in both groups of rats; in grape snails, haloperidol caused a decrease of the velocity of locomotor responses. In was found that within 5 minutes of intravenous injection of haloperidol the excitability of spinal centers of rats decreased; but in 30 minutes in started restoring. Chronic application of the preparation depressed the effect of posttetanic potentiation of H-response in gastrocnemius muscle of spinal rats. In command neurons of grape snail, chronic injections of haloperidol causes a significant hyperpolarization shift of membrane potential and an increase of threshold of the generation of action potential. It was shown that the selective pharmacological inhibition of dopaminergic system of the brain led to a decrease of excitability in some determined neurons of the snail and spinal motor centers of rats, as well as inhibited the locomotor responses both in vertebrate and in invertebrate animals.  相似文献   

5.
The retention of the long-term sensitization (LTS) of defensive reflex and dynamics of change in electric characteristics (membrane potential (Vm) and action potential generation threshold (Vt)) of command neurons of defensive reflex was studied in a snail during behavioral tests. The membrane mechanisms were analyzed by measuring electrical characteristics of the LPa3, RPa3, LPa2, and RPa2 command neurons on the 1st, 4th, 7th, 10th, and 14th days after the LTS formation and 1 month later. The membrane potential and threshold potential in sensitized snails (-54.1 +/- 2.0 and 24.5 +/- 1.4 microV, respectively) were significantly (p < 0.001) decreased in comparison with the control animals (-60.9 +/- 0.8 and 19.9 +/- 0.6 microV respectively). These changes retained within 14 days after the LTS formation. The results suggest the long-term retention of the increased excitability of command neurons. A month after the LTS formation, the duration of the defensive reflex returned to the initial level and the electric characteristics of command neurons did not significantly differ from the control (-61.1 +/- 2.0 and 19.3 +/- 1.4 microV, respectively).  相似文献   

6.
The serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) appears to affect invertebrate systems differently from vertebrate ones. The basis for toxicity in vertebrates appears to involve the intraneuronal actions of monoamine oxidase (MAO) upon the toxin. In insects, MAO is not present in appreciable amounts. In this study, we demonstrate that in vitro 5.7-DHT competitively inhibits the uptake of [3H]serotonin by serotonergic neurohaemal areas. The apparent KM increases from 4.9 × 10−7 to 1.7 × 10−6 M. This neurotoxin also causes a significant release of previously accumulated [3H]serotonin in nominally Ca2+-free saline. While 5,7-DHT does not affect the uptake of [3H]tryptophan, it reduces the subsequent synthesis of [3H]serotonin. In vivo, the tissues appear to have recovered 2 weeks after toxin treatment, as determined by immunohistochemistry. At 24 h, 1 week and 2 weeks after injection, the tissues are able to take up and release [3H]serotonin normally. 1 and 2 weeks after injection, insects ingest a normal-sized blood meal, a behaviour acutely disrupted by 5,7-DHT treatment. The results of this and other invertebrate studies suggest that 5,7-DHT does not destroy serotonergic neurons, as it does in vertebrates. 5,7-DHT may be a more useful tool to study the functions of serotonin in invertebrates as one may transiently affect serotonin stores.  相似文献   

7.
1. Dialysed serotonergic neurons were identified, isolated from the ganglia of 5,6-dihydroxytryptamine (5,6-DHT) treated snail, Helix pomatia L. Twenty-four to 40 days after injection of 5,6-DHT into the animal, serotonergic neurons show a specific brown pigmentation, which stays there for several weeks. After protease digestion (0.5–1.0 mg/ml for 10–12 min) the labelled neurons can be easily separated. This method ensures the reliable identification of serotonergic neurons for intracellular dialysis.2. We showed that isolated serotonergic neurons maintain their membrane characteristics, and ion-currents can be registered under voltage clamp, just as from neurons of untreated animals. The threshold concentration of serotonin (10 −7 M) and the survival time of pigment labelled dissociated cells were the same as for the control cells.3. Following 5-HT application, the voltage activated Ca-currents were either increased or decreased, depending on the neuron used.4. The different responses are probably caused by different receptors on the cell membrane or by the presence of different types of Ca-channels.5. The deactivation time constant of the Ca-current, calculated from the tail current, was also altered in the pigment labelled neuron following serotonin treatment.  相似文献   

8.
Reaction of long-term sensitization (LTS) of defensive reflex was elaborated in the snail. It was accompanied by a considerable increase of the time of closing of pneumostome. The results show that LTS is preserved for more than two week and may be a model of long-term memory.  相似文献   

9.
On the level of snail command neurones of the defensive behaviour an increase was revealed of the amplitude of summary EPSP recorded in command neurones in response to nerve stimulation, an increase of probability of appearance of action potential in the reaction and, under certain conditions, a significant decrease of habituation speed at rhythmic (0.1 Hz) nerve stimulation against the background of peptide. The latter effect was found during comparison of groups of neurones--control neurones and those to which the peptide was presented before the first series of stimulation in the test, i. e. without preliminary elaboration of habituation. The decrease of the speed of habituation concerned both the amplitude of summary EPSP and the probability of action potential appearance in the reaction. All these changes against the background of vasopressin analogue may be the basis of the increase of spike reactions of command neurones of the defensive behaviour and thus the basis of the initiation or the increase of behavioural defensive reactions. The obtained effects were not protracted and took place only in the presence of the peptide in the extracellular medium.  相似文献   

10.
On Wistar rats characteristics were studied of investigating behaviour in the open field, of learning of conditioned food-reinforced reaction and also of BA and their metabolites content in various brain structures under local intracerebral injections of specific neurotoxins; 6-hydroxydopamine (6-OHDA) and 5,7-dihydroxytryptamine (5,7-DHT), abolishing correspondingly catecholaminergic and serotoninergic terminals. Bilateral injection of 6-OHDA in the neocortex led to a weakening of rats investigating activity in the open field and to an increase of the time of fulfillment of the forming of conditioned food-reinforced reaction. Administration of 5,7-DHT was accompanied by an increase of the investigating behaviour in the open field and a reduction of the duration of the forming of conditioned reaction. Administration of 6-OHDA to the neocortex caused a lowering of catecholamines level in the frontal area of the neocortex and the hippocampus. Analogous administration of 5,7-DHT elicited simultaneously with a deep level lowering of 5-HT and its metabolite in these structures, a change of catecholamines content which testifies to a lesser specificity of the neurotoxin 5,7-DHT in comparison with 6-OHDA. Structures lesion of serotoninergic and catecholaminergic systems of the frontal cortex and the hippocampus brought about by a local administration of 6-OHDA and 5,7-DHT in the neocortex was accompanied by differently directed changes in animals behaviour.  相似文献   

11.
Temperature dependence of lung respiration, defensive behavior and locomotion of Lymnaea stagnalis snail was studied. At the temperature in the range of 4-6 degrees C the rates of locomotion and respiration were reduced (as compared to control temperature of 14-16 degrees C), whereas defensive reactions were much more intense. Vice versa, the temperature rise to 24-26 degrees C activates respiration and locomotion but inhibits defensive behavior. It is suggested that the observed changes in Lymnaea behavior result from temperature-dependent reactions of neurons underlying these activities.  相似文献   

12.
Abstract: Spontaneous oxygen consumption by 5,6- and 5,7-DHT (dihydroxytryptamine), related indoleethylamines, and 6-hydroxydopamine and oxygen consumption by these compounds in the presence of rat liver mitochondria were measured by the polarographic oxygen electrode technique. 5,6- and 5,7-DHT react with oxygen at very different rates (2.7 nmol O2/min and 33.4 nmol O2/min, respectively) when incubated in buffer, pH 7.2, at a concentration of 1 mm and with different kínetic characteristics. While the oxidation of 5,7-DHT obeys a reaction of second-order type, the oxidation of 5,6-DHT is more complex and characterized by autocatalytic promotion. Coloured quinoidal oxidation products appeared during the degradation of both indoleamines. Glutathione, ascorbate, dithiothreitol, cysteine, albumin, and superoxide dismutase partially prevented 5,6- and 5,7-DHT from oxidative destruction. Catalase saved oxygen only in the case of 5,6-DHT by recycling of O2 released from near-stoichiometrically formed H2O2 during oxidation of 5,6-DHT: 5,7-DHT did not generate H2O2 in measurable amounts. Oxygen consumption rates of 5,6- and 5,7-DHT were enhanced after addition of rat liver mitochondria to the incubation medium; this resulted in an accelerated formation of quinoidal products. This stimulatory effect on the oxidation rates of both 5,6- and 5,7-DHT was blocked by cyanide, but not rotenone, and was abolished by boiling of the mitochondria fraction. The observed increase in oxygen consumption in the presence of mitochondria was found not to be influenced by monoamine oxidase-dependent deamination of 5,6- and 5,7-DHT. It is postulated that 5,6- and 5,7-DHT are capable of participating in the electron transfer of the mitochondrial respiration chain beyond complex III. Results obtained in determinations of ADP:0 ratios in respiratory control experiments exclude a possible interference of 5,6-DHT, 5,7-DHT, and 6-OH-DA with phosphorylating sites. During the activated state of respiration, no signs of electron transfer inhibition by 5,6- and 5,7-DHT were detectable. A comparison and evaluation of the autoxidation rates of various hydroxylated indoleethylamines, of their affinity to the 5-HT transport sites, and their neurotoxic potency in vivo reveals that interaction of these compounds with oxygen at restricted reaction velocity is a prerequisite for efficient toxicity in monoaminergic neurons following active accumulation in these neurons via the high-affinity uptake systems.  相似文献   

13.
Intraperitoneal injections of either melatonin (MEL) or chlorpromazine (CPZ) significantly lowered preferred body temperature (Tb) of bullsnakes, Pituophis melanoleucus. Multiple comparison procedures showed that Tb for both MEL and CPZ treatments differed significantly from both the injected and non-injected control groups. However, Tb for MEL treatments did not differ from those of CPZ treatments (t=0.471; df=12; P=0.646), indicating that each drug has a similar effect on thermal selection. Our results obtained from time-course experiments support earlier experiments where a repeated measures design was used to test treatment effects of MEL and CPZ on thermal selection. However, we further show that injected controls (saline and ethanol injection) do not differ from non-injected controls (no injection) for both MEL and CPZ experiments. Although there are no differences between Tb of snakes receiving MEL or CPZ, time-course analyses indicate that the duration of thermoregulatory responses differ between MEL and CPZ treatments. This indicates that CPZ treatments may be more effective in increasing the amount of time required for individuals to return to normal preferred Tb or set temperature (Tset). The initial duration of thermoregulatory responses to the first injection of MEL differed significantly from the second injection. There were no differences in the duration of thermoregulatory responses between the first and second injections of CPZ. There are no data for the metabolic half-life of MEL in ectothermic vertebrates. Our study provides some information regarding the time-course of thermoregulatory responses to elevated levels of MEL via intraperitoneal injections of either MEL or CPZ, a metabolic antagonist of MEL.  相似文献   

14.
Dopamine application in concentration of 10(-5)-10(-6) M into saline around the snail CNS leads to decrease of excitability of LPa7 neurone which is presynaptic in relation to defensive behaviour command neurones, and to decrease of amplitude of monosynaptic excitatory postsynaptic potential (EPSP) in the command neurones elicited by intracellular stimulation of LPa7 neurone. Besides, the dopamine causes a decrease of summated EPSP amplitude in the studied neurones in response to intestinal nerve stimulation (70% in average), a change of rest potential towards hyperpolarization for 6-8 mV, a reduction of the command neurones input resistance (20% in average). The described influences can lead to a general increase of the threshold of defensive system reaction to stimulation. Dopamine action on the defensive behaviour command neurones is significantly weakened in serotonine presence. Against the dopamine background, the efficiency of serotonine influence on the value of EPSP in command neurones in response to testing stimulus is reduced. According to the obtained data, a conclusion is made that interrelation of dopamine and serotonine concentrations can be a base for formation of behaviour choice in snail.  相似文献   

15.
在大鼠蓝斑注射5.6-DHT 以破坏其5-HT 末梢,然后观察电针镇痛效应的变化。动物分注药组和对照组,注药组在注射5.6-DHT 后7天,针刺镇痛效应比注药前显著下降。与此同时,蓝斑内的5-HT 末梢发生变性,产生逆行性荧光积累,从荧光积累的末梢走向来看,蓝斑内被5.6-DHT 损毁的5-HT 末梢主要来源于中缝背核。随着蓝斑内5-HT 末梢的变性,脑桥区5-HT 含量下降,下降率达27%P<0.01。对照组动物,蓝斑内5-HT 末梢保持正常,其镇痛效应与注药前相比也无明显改变。鉴于一般认为蓝斑核的活动削弱针刺镇痛效应,以上结果提示,在电针镇痛过程中,支配蓝斑的5-HT 神经末梢,对该核 NA 能神经元可能有抑制性影响。  相似文献   

16.
Recent work has shown that intracerebral injections of 5,6-dihydroxytryptamine (5,6-DHT) lead to a fairly selective and long lasting depletion of 5-HT in the rat CNS (BAUMGARTEN, BJORKLUND, LACHENMAYER, NOBIN and STENEVI, 1971; DALY, FUXE and JONSSON, 1973). This effect appears to result from a degeneration of the serotonin-containing neurons (BAUMGARTEN and LACHENMAYER, 1972a). 5,6-DHT does, however, to a lesser extent affect both NA and dopamine (DA) containing nerve terminals (BAUMGARTEN et al., 1971). In an attempt, therefore, to find compounds having a more specific toxic action we have investigated several other hydroxylated tryptamines. In order to obtain information about the differential affinities of these analogues for neuronal uptake sites we have examined their effects on the uptake of [3H]5-HT and (±)-[3H]NA into synaptosomes in homogenates of rat hypothalamus and of [3H]DA uptake into a similar preparation from the rat corpus striatum. It is known that the uptake of these putative transmitters in rat brain homogenates is predominantly into the synaptosome fraction (KANNENGIESSER, HUNT and RAYNAUD, 1973; COYLE and SNYDER, 1969).  相似文献   

17.
1. 5,6-dihydroxytryptamine (5,6-DHT) or a lesion of the raphe centralis superior (RCS) cause significant decreases in the serotonin (5-HT) content and significant increases in the tyrosine hydroxylase activity in the locus coeruleus (LC) of the rat. This suggests that noradrenaline (NA) synthesis is controlled by serotonin-containing neurons in the raphe system via their terminals in the LC. 2. Radioautography after intraventricular infusion of tritiated serotonin (3H-5-HT) and biochemical determinations of endogenous 5-HT content showed an almost complete disappearance of serotoninergic axonal varicosities and content in the LC region 10-15 days after intraventricular administration of 75 micrograms of 5,6-DHT. Two to 4 months after neurotoxin administration, 5-HT fibers had regrown in the LC but, contrary to the normal innervation pattern, the majority of them invaded the medial most portion of the nucleus and the adjacent subependymal region. The LC region regained almost all of its endogenous 5-HT content in the same time period. 3. Functional recuperation of these 5-HT fibers was demonstrated by the fact that the RCS had, after regeneration, the same functional control on NA synthesis as in the normal animal.  相似文献   

18.
It has been recently shown that intraventricular or systemic injection of neuropeptide Y (NPY) can produce a decrease in plasma luteinizing hormone (LH) levels in castrated rats of both sexes. In order to evaluate the physiological role of NPY in the regulation of LH secretion in the female rat, we proceeded to immunoneutralization experiments using specific antibodies to NPY. Injection of 0.5 ml antiserum to NPY produce a 20-fold increase of LH plasma levels, whereas injection of preimmune serum did not modify the plasma concentrations of LH. To investigate the possibility that catecholamines or serotonin might be involved in the effect of NPY in LH secretion, castrated rats were treated with alpha-methylparatyrosine (alpha-MPT), an inhibitor of catecholamine biosynthesis, or received an i.c.v. injection of the neurotoxin 5-7-dihydroxytryptamine (5,7-DHT) prior to the intraventricular injections of NPY. The pretreatment with alpha-MPT could not prevent the decrease of plasma LH induced by NPY injection whereas the pretreatment with 5,7-DHT reversed the effect of NPY injection. The anatomical connection between LH-releasing hormone (LHRH) and NPY neuronal systems were also investigated using double immunostaining technique. It appeared that NPY endings are in apposition to LHRH cell bodies in the preoptic area in proximity to the organum vasculosum of the lamina terminalis (OVLT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In snails changes of defensive and alimentary behaviour and of reactions of command and modulator neurones of these kinds of behaviour were studied during elaboration of sensitization. After a single action of 50% chinine solution on mollusc's head, a short-term (during 50-70 min) and long-term (hours or days) facilitation was found of animals defensive reactions and responses of command neurones of defensive behaviour to tactile and chemical sensory stimuli. Alimentary behaviour of the snails and reactions of modulator neurones of alimentary behaviour to carrot juice presentation were inhibited in sensitized animals. Dynamics differences of defensive responses to tactile and chemical stimuli in the same sensitized animals were observed. Short-term responses facilitation under sensitization correlated chiefly with depolarization of the membrane potential of defensive behaviour neurones and with an increase of plasmatic membrane excitability. Prolonged facilitation of responses was due mainly to a change of effectiveness of synaptic transmission. The described model of sensitization elaboration can be a base for studying of molecular-cellular mechanisms, underlying the learning.  相似文献   

20.
The immediate and long-term effects of the selective serotonergic neurotoxin 5,7-dihydroxytryp-tamine (5,7-DHT) on rat striatal serotonergic neurons were examined after its intracerebroventricular administration using in vivo voltammetry. Extracellular concentration of 5-hydroxyindoles increased immediately following intracerebroventricular 5,7-DHT injection (200 g in 24 l, 18 min), peaked at 1.5-2 h, and returned to normal by 4 h. 5,7-DHT diffused to the contralateral striatum in detectable amounts 9 to 12 min after the start of injection and returned to basal levels by 1.5 h. Three to 6 days after 5,7-DHT lesions, 5-hydroxytryptophan administration produced an increase in striatal 5-hydroxyindoles that was greater than that produced in pre-lesioned rats. This effect was maximal at 14 to 17 days post-lesion, and remained even after 50 days. The short-term effect of 5,7-DHT may be attributable to increased serotonin release, inhibition of uptake, or monoamine oxidase inhibition. The long-term effect of 5,7-DHT lesions may attributable to increased synthesis of serotonin or decreased reuptake in remaining serotonergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号