首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three synthetic polyamine analogs, alpha-methylspermine, and alpha,alpha'-dimethylspermine, were compared with their naturally occurring counterparts, spermidine and spermine, by two different spectral techniques. The interaction of polyamines with oligodeoxynucleotides was measured by circular dichroism in order to monitor the polyamine-induced conversion of right-handed B-DNA to the left-handed Z-form. The methylated analogs were shown to be equally effective as the natural polyamines in inducing the B --> Z transition. The pH dependence of the chemical shift of all carbon atoms in each of the five polyamines was measured by (13)C-NMR spectroscopy. With the exception of expected changes in chemical shift due to the presence of the alpha-methyl substituents, the chemical shifts and pH dependence of all carbon atoms in the three alpha-methyl polyamines were similar to the corresponding naturally occurring polyamines. The combined data indicate that alpha-methyl polyamines have physical properties that are very similar to their natural counterparts. The two metabolically stable polyamine analogs, alpha-methylspermidine and alpha,alpha'-dimethylspermine, are therefore useful surrogates for spermidine and spermine in the study of numerous polyamine-mediated effects in mammalian cell cultures and can be used in such studies without the requirement for coadministration of amine oxidase inhibitors.  相似文献   

2.
We have earlier shown that alpha-methylated spermidine and spermine analogues rescue cells from polyamine depletion-induced growth inhibition and maintain pancreatic integrity under severe polyamine deprivation. However, because alpha-methylspermidine can serve as a precursor of hypusine, an integral part of functional eukaryotic translation initiation factor 5A required for cell proliferation, and because alpha, omega-bismethylspermine can be converted to methylspermidine, it is not entirely clear whether the restoration of cell growth is actually attributable to hypusine formed from these polyamine analogues. Here, we have used optically active isomers of methylated spermidine and spermine and show that polyamine depletion-induced acute cytostasis in cultured cells could be reversed by all the isomers of the methylpolyamines irrespective of whether they served or not as precursors of hypusine. In transgenic rats with activated polyamine catabolism, all the isomers similarly restored liver regeneration and reduced plasma alpha-amylase activity associated with induced pancreatitis. Under the above experimental conditions, the (S, S)- but not the (R, R)-isomer of bismethylspermine was converted to methylspermidine apparently through the action of spermine oxidase strongly preferring the (S, S)-isomer. Of the analogues, however, only (S)-methylspermidine sustained cell growth during prolonged (more than 1 week) inhibition of polyamine biosynthesis. It was also the only isomer efficiently converted to hypusine, indicating that deoxyhypusine synthase likewise possesses hidden stereospecificity. Taken together, the results show that growth inhibition in response to polyamine depletion involves two phases, an acute and a late hypusine-dependent phase.  相似文献   

3.
FAD-dependent polyamine oxidase (PAO; EC 1.5.3.11) is one of the key enzymes in the catabolism of polyamines spermidine and spermine. The natural substrates for the enzyme are N1-acetylspermidine, N1-acetylspermine, and N1,N12-diacetylspermine. Here we report that PAO, which normally metabolizes achiral substrates, oxidized (R)-isomer of 1-amino-8-acetamido-5-azanonane and N1-acetylspermidine as efficiently while (S)-1-amino-8-acetamido-5-azanonane was a much less preferred substrate. It has been shown that in the presence of certain aldehydes, the substrate specificity of PAO and the kinetics of the reaction are changed to favor spermine and spermidine as substrates. Therefore, we examined the effect of several aldehydes on the ability of PAO to oxidize different enantiomers of alpha-methylated polyamines. PAO supplemented with benzaldehyde predominantly catalyzed the cleavage of (R)-isomer of alpha-methylspermidine, whereas in the presence of pyridoxal the (S)-alpha-methylspermidine was preferred. PAO displayed the same stereospecificity with both singly and doubly alpha-methylated spermine derivatives when supplemented with the same aldehydes. Structurally related ketones proved to be ineffective. This is the first time that the stereospecificity of FAD-dependent oxidase has been successfully regulated by changing the supplementary aldehyde. These findings might facilitate the chemical regulation of stereospecificity of the enzymes.  相似文献   

4.
We have generated mouse embryonic stem cells with targeted disruption of spermidine/spermine N(1)-acetyltransferase (SSAT) gene. The targeted cells did not contain any inducible SSAT activity, and the SSAT protein was not present. The SSAT-deficient cells proliferated normally and appeared to maintain otherwise similar polyamine pools as did the wild-type cells, with the possible exception of constantly elevated (about 30%) cellular spermidine. As expected, the mutated cells were significantly more resistant toward the growth-inhibitory action of polyamine analogues, such as N(1),N(11)-diethylnorspermine. However, this resistance was not directly attributable to cellular depletion of the higher polyamines spermidine and spermine, as the analogue depleted the polyamine pools almost equally effectively in both wild-type and SSAT-deficient cells. Tracer experiments with [C(14)]-labeled spermidine revealed that SSAT activity is essential for the back-conversion of spermidine to putrescine as radioactive N(1)-acetylspermidine and putrescine were readily detectable in N(1),N(11)-diethylnorspermine-exposed wild-type cells but not in SSAT-deficient cells. Similar experiments with [C(14)]spermine indicated that the latter polyamine was converted to spermidine in both cell lines and, unexpectedly, more effectively in the targeted cells than in the parental cells. This back-conversion was only partly inhibited by MDL72527, an inhibitor of polyamine oxidase. These results indicated that SSAT does not play a major role in the maintenance of polyamine homeostasis, and the toxicity exerted by polyamine analogues is largely not based on SSAT-induced depletion of the natural polyamines. Moreover, embryonic stem cells appear to operate an SSAT-independent system for the back-conversion of spermine to spermidine.  相似文献   

5.
Treatment of rats with spermidine, spermine or sym-norspermidine led to a substantial induction of spermidine/spermine N1-acetyltransferase activity in liver, kidney and lung. The increase in this enzyme, which was determined independently of other acetylases by using a specific antiserum, accounted for all of the increased acetylase activity in extracts from rats treated with these polyamines. Spermine was the most active inducer, and the greatest effect was seen in liver. Liver spermidine/spermine N1-acetyltransferase activity was increased about 300-fold within 6 h of treatment with 0.3 mmol/kg doses of spermine; activity in kidney increased 30-fold and activity in the lung 15-fold under these conditions. The increased spermidine/spermine N1-acetyltransferase activity led to a large increase in the liver putrescine content and a decline in spermidine. These changes are due to the oxidation by polyamine oxidase of the N1-acetylspermidine formed by the acetyltransferase. Our results indicated that spermidine was the preferred substrate in vivo of the acetylase/oxidase pathway for the conversion of the higher polyamines into putrescine. The induction of the spermidine/spermine N1-acetyltransferase by polyamines may provide a mechanism by which excess polyamines can be removed.  相似文献   

6.
A five-step synthesis of alpha-methylspermidine (1,8-diamino-5-azanonane), the first polyamine analogue preventing pathological consequences of spermidine depletion in transgenic rats overproducing spermine/spermidine N'-acetyltransferase, from ethyl 3-aminobutyrate was achieved in a high overall yield.  相似文献   

7.
Summary Variations in level of polyamines and their related enzymes are frequently observed in response to some treatments which affect in a different way male and female. The possibility of a gender-related difference in the oxidation of polyamines was investigated in rats by measuring the activity of polyamine oxidase, a ubiquitous enzyme of vertebrate tissues, which transforms spermine into spermidine and spermidine into putrescine. The study was carried out on thymus, spleen, kidney and liver of young rats of both sexes, and female rats showed a lower polyamine oxidase activity than male rats in all the tissues. We also found higher values of spermidine acetylation in female than male rats in thymus and liver. Owing to these gender-related differences, a higher spermidine N-acetyltransferase/ polyamine oxidase ratio was found in female than in male rats. A second gender-related difference was a higher spermidine/spermine ratio in female than in male, the only exception being the thymus. These basal differences possibly account for the gender-related differences of polyamine metabolic enzyme activities in response to some treatments, including drugs or hormones.  相似文献   

8.
Evidence obtained from experiments with rats and mice is presented suggesting that the naturally occurring amino acids putreanine and N8-(2-carboxyethyl)spermidine, and most probably also related compounds deriving from the polyamines spermidine and spermine by oxidative metabolism, are formed within two anatomical compartments. In the first step polyamines are converted into aldehydes by serum spermine oxidase in the circulation. A certain portion of these aldehydes can be taken up by liver and other organs and transformed by aldehyde dehydrogenase into the corresponding amino acids. Putreanine is not only derived from spermidine, but can also be formed from N8-(2-carboxyethyl)spermidine by oxidative deamination, catalysed by serum spermine oxidase, and subsequent spontaneous elimination of acrolein.  相似文献   

9.
The activities of catalase, polyamine oxidase, diamine oxidase, ornithine decarboxylase, and peroxisomal β-oxidation were assayed in homogenates from liver and small intestinal mucosa of rats which had been fed either a diet very low in polyamines or a diet containing five times the levels of dietary polyamines (putrescine, spermine, and spermidine) found in a standard rat diet. In rats fed the high polyamine diet, hepatic activities of catalase and polyamine oxidase were significantly decreased. Levels of the other activities were unchanged, except that intestinal ornithine decarboxylase was decreased. In rats treated simultaneously with clofibrate, the high polyamine diet restored activities of catalase, ornithine decarboxylase, and polyamine oxidase back to levels found in rats fed the low polyamine diet. The expected increase in activity of peroxisomal β-oxidation was observed, although this was somewhat diminished in rats fed the high polyamine diet. Intestinal diamine oxidase activity was stimulated by clofibrate, particularly in rats fed the high polyamine diet. For the duration of the experiment (20 days), levels of putrescine, spermine, and spermidine in blood remained remarkably constant irrespective of treatment, suggesting that polyamine homeostasis is essentially independent of dietary supply of polyamines. It is suggested that intestinal absorption/metabolism of polyamines is of significance in this respect. Treatment with clofibrate appeared to alter polyamine homeostasis.  相似文献   

10.
Polyamine degradation was studied in the small intestine from rats fed on a polyamine-supplemented diet. Lactalbumin diet was given to Hooded-Lister rats, with or without 5 mg rat(-1) day(-1) of putrescine or spermidine for 5 days. Polyamine oxidase activity increased with putrescine and spermidine in the diet, whereas spermidine/spermine N(1)-acetyltransferase and diamine oxidase activities were unchanged. We also studied the calcium-dependent and -independent tissue transglutaminase activities, since they can modulate intestinal polyamine levels. Both types of enzymes increased in the cytosolic fraction after putrescine (about 65%) or spermidine (80-100%). Our results indicate that exogenous polyamines stimulate intestinal polyamine oxidase and tissue transglutaminase activities, probably to prevent polyamine accumulation, when other pathways of polyamine catabolism (acetylation and terminal catabolism) are not activated.  相似文献   

11.
The anti-tumor agent methylglyoxal bis(guanylhydrazone) was found to be a competitive inhibitor of spermidine/spermine N1-acetyltransferase with a Ki of about 8 microM. Treatment of rats with this drug lead to a very large increase in the total amount of spermidine/spermine N1-acetyltransferase in liver, kidney and spleen. The total increase as measured using a specific antiserum amounted to 700-fold in liver and 100-fold in kidney within 18 h of treatment with 80 mg/kg doses. At least part of this induction was due to a pronounced increase in the half-life of the acetyltransferase which increased from 15 min to more than 12 h. The very large increase in the amount of the enzyme is likely to overwhelm the direct inhibition, and a net increase in the acetylation of polyamines by this enzyme would be expected to occur after treatment with methylglyoxal bis(guanylhydrazone). The acetylated polyamines are known to be rapidly degraded by polyamine oxidase producing putrescine. Direct evidence that a substantial part of the increase in the content of putrescine in the liver of rats treated with methylglyoxal bis(guanylhydrazone) occurs via the induction of this acetylase/oxidase pathway was obtained. These results indicate that methylglyoxal bis(guanylhydrazone) affects cellular polyamine levels not only by means of its inhibitory effect on S-adenosylmethionine decarboxylase and diamine oxidase but also by the induction of spermidine/spermine N1-acetyltransferase. They also raise the possibility that the enormous increase in this enzyme which occurs with higher doses may contribute to the very severe toxicity of methylglyoxal bis(guanylhydrazone).  相似文献   

12.
Activation of polyamine catabolism through the overexpression of spermidine/spermine N1-acetyltransferase (SSAT) in transgenic rodents does not only lead to distorted tissue polyamine homeostasis, manifested as striking accumulation of putrescine, appearance N1-acetylspermidine and reduction of tissue spermidine and/or spermine pools, but likewise creates striking phenotypic changes. The latter include loss of hair, lipoatrophy and female infertility. Forced expression of SSAT modulates skin, prostate and intestinal carcinogenesis, induces acute pancreatitis and blocks early liver regeneration. Although many of these features are directly attributable to altered tissue polyamine pools, some of them are more likely related to the greatly accelerated flux of the polyamines caused by activated catabolism and compensatorily enhanced biosynthesis.  相似文献   

13.
We recently generated a transgenic rat model for acute pancreatitis, which was apparently caused by a massive depletion of pancreatic polyamines spermidine and spermine due to inducible activation of their catabolism (Alhonen, L., Parkkinen, J. J., Kein?nen, T., Sinervirta, R., Herzig, K. H., and J?nne, J. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 8290-8295). When subjected to partial hepatectomy, these animals showed striking activation of polyamine catabolism at 24 h postoperatively with a profound decrease in hepatic spermidine and spermine pools and failure to initiate liver regeneration. Here we show that pancreatitis in this model could be totally prevented, as judged by histopathology and plasma alpha-amylase activity, by administration of 1-methylspermidine, a metabolically stable analogue of spermidine. Similarly, the analogue, given prior to partial hepatectomy, restored early liver regeneration in the transgenic rats, as indicated by a dramatic increase in the number of proliferating cell nuclear antigen-positive hepatocytes from about 1% to more than 40% in response to the drug. The present results suggest that the extremely high concentration of spermidine in the pancreas, in fact the highest in the mammalian body, may have a critical role in maintaining organ integrity. The failure to initiate liver regeneration in the absence of sufficient hepatic polyamine pools similarly indicates that polyamines are required for proper commencement of the regenerative process.  相似文献   

14.
A method for the simultaneous determination of polyamines (putrescine, spermidine, and spermine) by ionspray ionization-mass spectrometry was modified to determine (15)N-labeled polyamines together with unlabeled polyamines using (13)C,(15)N double-labeled polyamines as internal standards. This technique permitted the use of (15)N-labeled polyamines as tracer compounds to follow polyamine biosynthesis, interconversion, and absorption. The method was used to examine the organ distribution of orally administered (15)N-labeled polyamines in rats. Each (15)N-labeled polyamine was taken up by the three organs tested: the small intestine, liver, and kidney. The uptake of (15)N-labeled spermidine was greater than that of (15)N-labeled spermine and putrescine. Administration of a mixture of (15)N-labeled polyamines was useful for determining the disposition of each (15)N-polyamine absorbed from the intestinal tract.  相似文献   

15.
The responses of human umbilical-vein vascular endothelial cells in culture to the naturally occurring polyamines spermine, spermidine and putrescine, their acetyl derivatives and oxidation products were examined. In the absence of human polyamine oxidase, exposure of cells to polyamines (up to 160 microM) had no adverse effects. In the presence of polyamine oxidase, spermine and spermidine were cytotoxic, but putrescine was not. Acetylation of the aminopropyl group of spermidine or both aminopropyl groups of spermine prevented this cytotoxicity. The amino acids corresponding to the polyamines, representing a further stage of oxidation, were also without effect. The cytotoxic effects were irreversible. Use of bovine serum amine oxidase in place of the human enzyme gave qualitatively similar results.  相似文献   

16.
Summary. Glucocorticoids are potent anti-inflammatory and immunosuppressive agents. As endogenous inhibitors of cytokine synthesis, glucocorticoids suppress immune activation and uncontrolled overproduction of cytokines, preventing tissue injury. Also, polyamine spermine is endogenous inhibitor of cytokine production (inhibiting IL-1, IL-6 and TNF synthesis). The idea of our work was to examine dexamethasone effects on the metabolism of polyamines, spermine, spermidine and putrescine and polyamine oxidase activity in liver and spleen during sensitization of guinea pigs. Sensitization was done by application of bovine serum albumin with addition of complete Freund’s adjuvant. Our results indicate that polyamine amounts and polyamine oxidase activity increase during immunogenesis in liver and spleen. Dexamethasone application to sensitized and unsensitized guinea pigs causes depletion of polyamines in liver and spleen. Dexamethasone decreases polyamine oxidase activity in liver and spleen of sensitized guinea pigs, increasing at the same time PAO activity in tissues of unsensitized animals.  相似文献   

17.
1. Treatment of mice and rats with the polyamine oxidase inhibitor N1,N4-bis-(2,3-butadienyl)-1,4-butanediamine (MDL 72527) causes a gradual accumulation of spermine in the circulation and a decrease of spermidine concentration. 2. Spermine is mainly localized in the red blood cells. 3. Co-administration of 2-(difluoromethyl)ornithine and MDL 72527 enhances considerably the rate and extent of spermine accumulation in the circulation. 4. It is assumed that the increased rate of spermine accumulation by the two drugs is due to the enhancement of cell death, i.e. spermine accumulation is the result of its release into the circulation from dying cells, not due to physiological release. 5. After discontinuation of polyamine oxidase inhibition spermine appears to be gradually transformed into spermidine by red blood cell polyamine oxidase, obviously without transformation into N1-acetylspermine.  相似文献   

18.
The acetylating enzyme, spermidine/spermine N1-acetyltransferase, participates in polyamine homeostasis by regulating polyamine export and catabolism. Previously, we reported that overexpression of the enzyme in cultured tumor cells and mice activates metabolic flux through the polyamine pathway and depletes the N1-acetyltransferase coenzyme and fatty acid precursor, acetyl-CoA. Here, we investigate this possibility in spermidine/spermine N1-acetyltransferase transgenic mice in which the enzyme is systemically overexpressed and in spermidine/spermine N1-acetyltransferase knock-out mice. Tissues of the former were characterized by increased N1-acetyltransferase activity, a marked elevation in tissue and urinary acetylated polyamines, a compensatory increase in polyamine biosynthetic enzyme activity, and an increase in metabolic flux through the polyamine pathway. These polyamine effects were accompanied by a decrease in white adipose acetyl- and malonyl-CoA pools, a major (20-fold) increase in glucose and palmitate oxidation, and a distinctly lean phenotype. In SSAT-ko mice, the opposite relationship between polyamine and fat metabolism was observed. In the absence of N1-acetylation of polyamines, there was a shift in urinary and tissue polyamines indicative of a decline in metabolic flux. This was accompanied by an increase in white adipose acetyl- and malonyl-CoA pools, a decrease in adipose palmitate and glucose oxidation, and an accumulation of body fat. The latter was further exaggerated under a high fat diet, where knock-out mice gained twice as much weight as wild-type mice. A model is proposed whereby the expression status of spermidine/spermine N1-acetyltransferase alters body fat accumulation by metabolically modulating tissue acetyl- and malonyl-CoA levels, thereby influencing fatty acid biosynthesis and oxidation.  相似文献   

19.
Polyamine metabolism and cancer   总被引:7,自引:0,他引:7  
Polyamines are aliphatic cations present in all cells. In normal cells, polyamine levels are intricately controlled by biosynthetic and catabolic enzymes. The biosynthetic enzymes are ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, and spermine synthase. The catabolic enzymes include spermidine/spermine acetyltransferase, flavin containing polyamine oxidase, copper containing diamine oxidase, and possibly other amine oxidases. Multiple abnormalities in the control of polyamine metabolism and uptake might be responsible for increased levels of polyamines in cancer cells as compared to that of normal cells. This review is designed to look at the current research in polyamine biosynthesis, catabolism, and transport pathways, enumerate the functions of polyamines, and assess the potential for using polyamine metabolism or function as targets for cancer therapy.  相似文献   

20.
The role of polyamines in carbon tetrachloride (CCl4)-induced organ injury was studied in syngenic rats and transgenic rats with activated polyamine catabolism. In syngenic rats, administration of CCl4 resulted in the induction of hepatic spermidine/spermine N 1-acetyltransferase (SSAT), accumulation of putrescine, reduction in spermine level and appearance of moderate hepatic injury within 24 h. Upon treatment with CCl4, transgenic rats overexpressing SSAT displayed induction of both hepatic and pancreatic SSAT, with subsequent accumulation of putrescine and decrease of both spermidine and spermine pools. Administration of CCl4 in SSAT transgenic rats induced not only massive hepatic injury, but also severe acute necrotizing pancreatitis. Pretreatment of the animals with catabolically stable functional polyamine mimetic, α-methylspermidine (MeSpd) prevented pancreatic and hepatic injury in SSAT rats and markedly reduced liver damage in syngenic animals. As assessed by immunostaining of proliferating cell nuclear antigen, MeSpd increased the amount of regenerating hepatocytes in both genotypes. These results show that CCl4 induces hepatic and pancreatic polyamine catabolism, and the extent of organ damage correlates with the degree of polyamine depletion. Furthermore, MeSpd protects against CCl4-induced hepatic and pancreatic damage and promotes tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号