首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of modulated electromagnetic fields on the spectral parameters of bioelectric brain activity in awake cats was studied by registering the electroencephalogram from the skin surface in the vertex area using carbon electrodes. In the normal electroencephalogram, spectral components in the range above 20 Hz predominated. It was shown that, upon irradiation with electromagnetic field (basic frequency 980 MHz, power density 30-50 microW/cm2), spectral components in the range of 12-18 Hz begin to prevail. A similarity in the redistribution of the power of spectral components upon both acoustic and modulated electromagnetic influences was revealed. The results suggest that there is a a common neurophysiological mechanism by which modulated electromagnetic radiation and acoustic stimulation affect the electrical activity of the brain. This ia consistent with the assumption that the effect of the electromagnetic field on the central nervous system is mediated through the acoustic sensory system.  相似文献   

3.
Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion.We recorded local field potentials from motor cortex, caudate-putamen (CPU), substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN) in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg), and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting.Ketamine induced coherent oscillations in low gamma (~ 50 Hz), high gamma (~ 80 Hz) and high frequency (HFO, ~ 150 Hz) bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement.These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency-specific pattern of connectivity among the structures analyzed.  相似文献   

4.
Ten 2-day-old piglets were inoculated intranasally with Aujeszky's disease virus and their solar ganglia were examined by light and electron microscopy. The cytopathic change noticed was neuronal and glial cell degeneration. It was invariably associated with the virus replicated within the cells. All the main stages of virus development were observed in the degenerated ganglionic cells. Characteristically, plexiform vermicellar array and electron-dense tubular filaments were detected in a part of the nuclei of the infected neuron.  相似文献   

5.
Summary In spiders the bulk of the central nervous system (CNS) consists of fused segmental ganglia traversed by longitudinal tracts, which have precise relationships with sensory neuropils and which contain the fibers of large plurisegmental interneurons. The responses of these interneurons to various mechanical stimuli were studied electrophysiologically, and their unilateral or bilateral structure was revealed by intracellular staining. Unilateral interneurons visit all the neuromeres on one side of the CNS. They receive mechanosensory input either from a single leg or from all ipsilateral legs via sensory neurons that invade leg neuromeres and project into specific longitudinal tracts. The anatomical organization of unilateral interneurons suggests that their axons impart their information to all ipsilateral leg neuromeres. Bilateral interneurons are of two kinds, symmetric and asymmetric neurons. The latter respond to stimulation of all legs on one side of the body, having their dendrites amongst sensory tracts of the same side of the CNS. Anatomical evidence suggests that their terminals invade all four contralateral leg neuromeres. Bilaterally symmetrical plurisegmental interneurons have dendritic arborizations in both halves of the fused ventral ganglia. They respond to the stimulation of any of the 8 legs. A third class of cells, the ascending neurons have unilateral or bilateral dendritic arborizations in the fused ventral ganglia and show blebbed axons in postero-ventral regions of the brain. Their response characteristics are similar to those of other plurisegmental interneurons. Descending neurons have opposite structural polarity, arising in the brain and terminating in segmental regions of the fused ventral ganglia. Descending neurons show strong responses to visual stimulation. Approximately 50% of all the recorded neurons respond exclusively to stimulation of a single type of mechanoreceptor (either tactile hairs, or trichobothria, or slit sensilla), while the rest respond to stimulation of a variety of sensilla. However, these functional differences are not obviously reflected by the anatomy. The functional significance of plurisegmental interneurons is discussed with respect to sensory convergence and the coordination of motor output to the legs. A comparison between the response properties of certain plurisegmental interneurons and their parent longitudinal tracts suggests that the tracts themselves do not reflect a modality-specific organization.Abbreviations BPI bilateral plurisegmental interneuron - CNS central nervous system - FVG fused ventral ganglia - LT longitudinal tract - PI plurisegmental interneuron - PSTH peristimulus timehistogram - UPI unilateral plurisegmental interneuron  相似文献   

6.
Yokota  R.  Burnstock  G. 《Cell and tissue research》1983,232(2):379-397
Summary A semi-quantitative electron-microscopic study of neuronal cell bodies, nerve profiles and synapses in the anterior pelvic ganglia of the guinea-pig has been carried out following in vivo labelling of adrenergic nerve endings with 5-hydroxydopamine. Ganglion cells of three main types have been distinguished: 1) the majority (about 70%) not containing granular vesicles, probably cholinergic elements; 2) those containing large granular vesicles of uniform size (80–110 nm), with granules of medium density and prominent halos; and 3) those containing vesicles of variable size (60–150 nm), with very dense eccentrically placed granular cores. Some non-neuronal granule-containing cells were present, mainly near small blood vessels. Some 95% of the total axon profiles within the ganglia were cholinergic, the remaining 5% were adrenergic. However, 99% of synapses (i.e. axons within 50 nm of nerve cell membrane with pre-and post-synaptic specialisations) were cholinergic, and 1 % were adrenergic. Only three examples of nerve cell bodies exhibiting both cholinergic and adrenergic synapses were observed. Unlike the para-and prevertebral ganglia, the pelvic ganglia contained large numbers of axo-somatic synapses. As many as 20% of the nucleated neuronal cell profiles displayed two distinct nuclei.  相似文献   

7.
In vertebrates, hair-cell-bearing mechanosensory organs and the neurons that innervate them share a common placodal origin. In the inner ear, the peripheral neurons for both auditory and vestibular systems emigrate from the otic placode as neuroblasts, and divide, differentiate and innervate only one of six to eight distinct sensory organs. How these neurons find their correct target is unknown, although one suggestion is that they synapse with clonally related cells. To test this idea for both the middle and inner ears of chicken embryos, lineage analysis was initiated at the time of neuroblast delamination by labeling progenitors with replication-defective retroviruses. The vast majority (89%) of clones were restricted to a single anatomical subdivision of the sensory periphery or its associated ganglia, indicating limited clonal dispersion. Among the remaining clones, we found evidence of a shared neurosensory lineage in the middle ear. Likewise, in the inner ear, neurons could be related to cells of the otic epithelium, although the latter cells were not widely distributed. Rather, they were restricted to a region in or near the utricular macula. None of the other seven sensory organs was related to the ganglion neurons, suggesting that a common lineage between neurons and their targets is not a general mechanism of establishing synaptic connections in the inner ear. This conclusion is further strengthened by finding a shared lineage between the vestibular and acoustic ganglia, revealing the presence of a common progenitor for the two functional classes of neurons.  相似文献   

8.
褐菖鲉的听觉阈值研究   总被引:1,自引:0,他引:1  
利用听觉诱发电位记录技术研究了褐菖鲉(Sebasticus marmoratus)的听觉阈值。通过采用听觉生理系统记录和分析了8尾褐菖鲉对频率范围在100—1000 Hz的7种不同频率的声音刺激的诱发电位反应。结果表明, 褐菖鲉的听觉阈值在整体上随着频率增加而增加, 对100—300 Hz的低频声音信号敏感, 最敏感频率为150 Hz, 对应的听觉阈值为70 dB re 1 μPa。褐菖鲉的听觉敏感区间与其发声频率具有较高的匹配性, 表明其声讯交流的重要性。同时, 人为低频噪声可能对其声讯交流造成影响。  相似文献   

9.
Amputation of the lizard tail is followed by its complete regeneration over a period of six-eight months. The new tail is innervated only by the last three pairs of spinal nerves upstream from the plane of amputation, since no nerve cells are present in the regenerated. The corresponding dorsal root ganglia increase in volume (hypertrophic ganglia) and most of their sensory neurons become hypertrophic. Satellite cells belonging to this hypertrophic ganglia increase in number. This paper describes an autoradiographic study, after administration of tritiated thymidine, of the hypertrophic dorsal root ganglia of the lizard during tail regeneration. We evaluated the number of satellite cells which neo-synthetize DNA ("labeling index = LI%) and are therefore suitable to undergo cell division. The LI% was significatively increased in hypertrophic ganglia when compared to internal control ganglia (not directly involved in the reinnervation process) and normal ganglia (lizards with intact tails). The comparison between internal control ganglia and normal ganglia showed higher LI% values in the formers, although this difference was not statistically significative. These results are in line with those obtained by other authors and suggest that satellite cells of dorsal root ganglia can undergo cellular proliferation also in the adult, especially in particular experimental conditions.  相似文献   

10.
Successful healing of skin wounds requires sensory innervation and the release of vasoactive neuropeptides that dilate blood vessels and deliver serum proteins to the wound, and that cause pain that protects from further injury. Activin has been proposed as a target-derived regulator of sensory neuropeptides during development, but its role in the mature nervous system is unknown. While adult skin contains a low level of activin, protein levels in skin adjacent to a wound increase rapidly after an excision. Neurons containing the neuropeptide calcitonin gene-related peptide (CGRP) increased in sensory ganglia that projected to the wounded skin, but not in ganglia that projected to unwounded skin, suggesting that neurons respond to a local skin signal. Indeed, many adult sensory neurons respond with increased CGRP expression to the application of activin in vitro and utilize a smad-mediated signal transduction pathway in this response. A second skin-derived factor nerve growth factor (NGF) also increased in wounded skin and increased CGRP in cultured adult dorsal root ganglia (DRG) neurons but with lower efficacy. Together, these data support the hypothesis that activin made by skin cells regulates changes in sensory neuropeptides following skin injury, thereby promoting vasodilation and wound healing.  相似文献   

11.
Neural coding in the chick cochlear nucleus   总被引:5,自引:0,他引:5  
Physiological recordings were made from single units in the two divisions of the chick cochlear nucleus-nucleus angularis (NA) and nucleus magnocellularis (NM). Sound evoked responses were obtained in an effort to quantify functional differences between the two nuclei. In particular, it was of interest to determine if nucleus angularis and magnocellularis code for separate features of sound stimuli, such as temporal and intensity information. The principal findings are: 1. Spontaneous activity patterns in the two nuclei are very different. Neurons in nucleus angularis tend to have low spontaneous discharge rates while magnocellular units have high levels of spontaneous firing. 2. Frequency tuning curves recorded in both nuclei are similar in form, although the best thresholds of NA units are about 10 dB more sensitive than their NM counterparts across the entire frequency range. A wide spread of neural thresholds is evident in both NA and NM. 3. Large driven increases in discharge rate are seen in both NA and NM. Rate intensity functions from NM units are all monotonic, while a substantial percentage (22%) of NA units respond to increased sound level in a nonmonotonic fashion. 4. Most NA units with characteristic frequencies (CF) above 1000 Hz respond to sound stimuli at CF as 'choppers', while units with CF's below 1000 Hz are 'primary-like'. Several 'onset' units are also seen in NA. In contrast, all NM units show 'primary-like' response. 5. Units in both nuclei with CF's below 1000 Hz show strong neural phase-locking to stimuli at their CF. Above 1000 Hz, few NA units are phase-locked, while phase-locking in NM extends to 2000 Hz. 6. These results are discussed with reference to the hypothesis that NM initiates a neural pathway which codes temporal information while NA is involved primarily with intensity coding, similar in principle to the segregation of function seen in the cochlear nucleus of the barn owl (Sullivan and Konishi 1984).  相似文献   

12.
13.
Wavelet analysis of blood flow oscillations recorded with laser Doppler flowmetry in finger glabrous skin microvessels was carried out in 82 subjects with different variations in the syndromes of hand and foot sympathectomy and denervation. As distinct from the 0.02–0.046-Hz (about 0.03–0.04 Hz) blood flow oscillations in skin microvessels of sympathetic thermoregulatory origin, no relationship was found between the presence of 0.07–0.015 Hz (about 0.1 Hz) vasomotions in the wavelet spectrum and intactness of sympathetic innervation in the tissue region. The use of the myogenic band oscillation parameters, in particular, the amplitudes of vasomotions, for assessing the state of sympathetic thermoregulatory innervation determining the neurogenic tone of skin microvessels is not physiologically correct. The influence of local environmental factors on the vasomotion parameters confirms their local origin. The local perfusion pressure value significantly influenced the amplitude but not the frequency of vasomotions. The amplitude dominance of vasomotions was observed upon a decrease in perfusion pressure, whereas a marked increase in perfusion pressure or venous congestion resulted in a sharp depression of their amplitudes. Under the sympathectomy conditions, the oscillatory dynamic component of the arteriolar myogenic tone in the glabrous skin of the extremity acral zones is involved in the blood flow’s autoregulation. The presence of fine sensory fibers is necessary to carry out the dynamic autoregulation of the blood flow. Sensory nonmyelinated fibers and the trophic neuropeptides secreted by them not only initiate independent oscillations in the low-frequency (0.047–0.069 Hz) myogenic band, but also contribute to the normalized amplitudes of vasomotions being increased. At the same time, no appreciable influence of the sympathetic vasomotor activity and the corresponding influence of catecholamines on the amplitude and frequency of vasomotions was observed.  相似文献   

14.
Among sensory systems, the somatic sense is exceptional in its ability to detect a wide range of chemical, mechanical and thermal stimuli. How this sensory diversity is established during development remains largely elusive. We devised a method (BAPTISM) that uses the photoconvertible fluorescent protein Kaede to simultaneously analyze birthdate and cell fate in live zebrafish embryos. We found that trigeminal sensory ganglia are formed from early-born and late-born neurons. Early-born neurons give rise to multiple classes of sensory neurons that express different ion channels. By contrast, late-born neurons are restricted in their fate and do not form chemosensory neurons expressing the ion channel TrpA1b. Accordingly, larvae lacking early-born neurons do not respond to the TrpA1b agonist allyl isothiocyanate. These results indicate that the multimodal specification and function of trigeminal sensory ganglia depends on the timing of neurogenesis.  相似文献   

15.
The role of target-derived BMP signaling in development of sensory ganglia and the sensory innervation of the skin was examined in transgenic animals that overexpress either the BMP inhibitor noggin or BMP4 under the control of a keratin 14 (K14) promoter. Overexpression of noggin resulted in a significant increase in the number of neurons in the trigeminal and dorsal root ganglia. Conversely, overexpression of BMP4 resulted in a significant decrease in the number of dorsal root ganglion neurons. There was no significant change in proliferation of trigeminal ganglion neurons in the noggin transgenic animals, and neuron numbers did not undergo the normal developmental decrease between E12.5 and the adult, suggesting that programmed cell death was decreased in these animals. The increase in neuron numbers in the K14-noggin animals was followed by an extraordinary increase in the density of innervation in the skin and a marked change in the pattern of innervation by different types of fibers. Conversely, the density of innervation of the skin was decreased in the BMP4 overexpressing animals. Further Merkel cells and their innervation were increased in the K14-noggin mice and decreased in the K14-BMP4 mice. The changes in neuron numbers and the density of innervation were not accompanied by a change in the levels of neurotrophins in the skin. These findings indicate that the normal developmental decrease in neuron numbers in sensory ganglia depends upon BMP signaling, and that BMPs may limit both the final neuron number in sensory ganglia as well as the extent of innervation of targets. Coupled with prior observations, this suggests that BMP signaling may regulate the acquisition of dependence of neurons on neurotrophins for survival, as well as their dependence on target-derived neurotrophins for determining the density of innervation of the target.  相似文献   

16.
A group of serotonergic cells, located in the pedal ganglia ofHelix lucorum, modulates synaptic responses of neurons involved in withdrawal behavior. Extracellular or intracellular stimulation of these serotonergic cells leads to facilitation of spike responses to noxious stimuli in the putative command neurons for withdrawal behavior. Noxious tactile stimuli elicit an increase in background spiking frequency in the modulatory neurons and a corresponding increase in stimulus-evoked spike responses in withdrawal interneurons. The serotonergic neurons have processes in the neuropil of the parieto-visceral ganglia complex, consistent with their putative role in modulating the activity of giant parietal interneurons, which send processes to the same neuropil and to the pedal ganglia. The serotonergic cells respond to noxious tactile and chemical stimuli. Although the group as a whole respond to noxious stimuli applied to any part of the body, most cells respond more to ipsilateral than contralateral stimulation, and exhibit differences in receptive areas. Intracellular investigation revealed electrical coupling between serotonergic neurons which could underlie the recruitment of members of the group not responding to a given noxious stimulus.  相似文献   

17.
This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold.  相似文献   

18.
Following permanent transection of the adult rat sciatic nerve, sensory neuron apoptosis in the contributing L4 and L5 dorsal root ganglia can be observed for at least 6 months afterwards. To establish the profile of any sensory neuron apoptosis and loss over time when axonal regeneration is allowed, serial sections of L4 and L5 ganglia were examined and the neurons counted using a stereological technique 1, 2 and 3 months after crushing the right sciatic nerve at mid-thigh level. Our results show that an identical degree of sensory neuron loss and apoptosis occurs 1 month after crush as at 1 month after permanent transection. However, at 3 months no neurons undergoing apoptosis could be observed and no significant loss could be detected in the ipsilateral ganglia when compared to unoperated controls. One explanation was a neuronal replacement mechanism, which was investigated by administering bromodeoxyuridine to rats for 1 month after sciatic nerve transection or crush, prior to detection using immunohistochemistry on sections of their ganglia after 2 months. The presence of bromodeoxyuridine in the nuclei of occasional cells that would be counted as neurons on the basis of size and morphology indicates that a process of apparent neurogenesis may underlie the profile of sensory neuron loss after axotomy.  相似文献   

19.
The pineal organ in the roach, Rutilus rutilus (L.), is covered by a semi-transparent area, the pineal window. Beneath this the pineal is attached to a long robust stalk, lying just under the parietal bone. The pineal is attached to the brain through the dorsal sac. Three cell types have been identified histologically. These are the sensory cells, supporting cells and the ganglia cells. The inner segment of the sensory cells respond to PAS and AF staining, while the remaining cells respond to Orange G, LG, or Acid Fuchsin. The evidence suggests that the roach pineal may have a dual photosensory and glandular function.  相似文献   

20.
The auditory system of the plainfin midshipman fish, Porichthys notatus, is an important sensory receiver system used to encode intraspecific social communication signals in adults, but the response properties and function of this receiver system in pre-adult stages are less known. In this study we examined the response properties of auditory-evoked potentials from the midshipman saccule, the main organ of hearing in this species, to determine whether the frequency response and auditory threshold of saccular hair cells to behaviorally relevant single tone stimuli change during ontogeny. Saccular potentials were recorded from three relative sizes of midshipman fish: small juveniles [1.9–3.1 cm standard length (SL), large juveniles (6.8–8.0 cm SL) and non-reproductive adults (9.0–22.6 cm SL)]. The auditory evoked potentials were recorded from the rostral, middle and caudal regions of the saccule while single tone stimuli (75–1,025 Hz) were presented via an underwater speaker. We show that the frequency response and auditory threshold of the midshipman saccule is established early in development and retained throughout ontogeny. We also show that saccular sensitivity to frequencies greater than 385 Hz increases with age/size and that the midshipman saccule of small and large juveniles, like that of non-reproductive adults, is best suited to detect low frequency sounds (<105 Hz) in their natural acoustic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号