首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato spotted wilt virus (TSWV) causes economically important losses in many crops, worldwide. In pepper (Capsicum annuum), the best method for disease control has been breeding resistant cultivars by introgression of gene Tsw from Capsicum chinense. However, this resistance has two drawbacks: (a) it is not efficient if plants are infected at early growth stages and under prolonged high temperatures, and (b) it is rapidly overcome by TSWV evolution. In this work, we selected and evaluated a new accession from Capsicum baccatum, named PIM26‐1, using a novel approach consisting in measuring how three parameters related to virus infection changed over time, in comparison to a susceptible pepper variety (Negral) and a resistant (with Tsw) accession (PI‐159236): (a) The level of resistance to virus accumulation was estimated as an opposite to absolute fitness, W=er, being r the viral multiplication rate calculated by quantitative RT‐PCR; (b); the level of resistance to virus infection was estimated as the Kaplan–Meier survival time for no infection using DAS‐ELISA to identify TSWV‐infected plants; (c) the level of tolerance was estimated as the Kaplan–Meier survival time for no appearance of severe symptoms. Our results showed that the levels of both resistance parameters against TSWV wild type (WT) and Tsw‐resistance breaking (TBR) isolates were higher in PIM26‐1 than in the susceptible pepper variety Negral and similar to the resistant variety PI‐159236 against the TBR isolate. However, PIM26‐1 showed a very high tolerance (none of the plants developed severe symptoms) to the WT and TBR isolates in contrast to Negral for WT and TBR or PI‐159236 for TBR (most TSWV‐inoculated plants developed severe symptoms). All this indicate that the new accession PIM26‐1 is a good candidate for breeding programmes to avoid damages caused by TSWV TBR isolates in pepper.  相似文献   

2.
3.
Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV) and Apple mosaic virus are economically important viruses infecting fruit tree species worldwide. To evaluate the occurrence of these pome fruit viruses in Latvia, a large‐scale survey was carried out in 2007. Collected samples were tested for infection by DAS ELISA and multiplex RT‐PCR. The accuracy of the detection of the viruses in multiplex RT‐PCR was confirmed by sequencing amplified PCR fragments. The results showed a wide occurrence of viruses in apple and pear commercial orchards established from non‐tested planting material. More than 89% of the tested apple trees and more than 60% of pear trees were infected with one or more pome fruit viruses. Analyses showed that the high occurrence of viruses in several apple cultivars is due to the propagation of infected clonal rootstocks and scions from infected mother trees. Sequence analyses targeting the 3′‐terminal region of the tested viruses showed various degrees of genetic diversity within respective virus isolates. This is the first report of the occurrence of ACLSV, ASGV and ASPV in apple and pear trees in Latvia and demonstrates their genetic diversity in different host genotypes.  相似文献   

4.
Tomato yellow leaf curl virus disease (TYLCVD) has been observed in Tunisia for more than 20 years. Until year 2004, only the Tomato yellow leaf curl Sardinia virus‐Sicily (TYLCSV‐[Sic]) was detected in tomato, pepper and bean crops. In the Sahel region, some tomato samples showing severe TYLCVD symptoms were collected from greenhouses in 2004 and 2005. Typing of these isolates revealed for the first time the presence of the TYLCV Israel in Tunisia. This result was confirmed by using several sets of specific primers and by sequencing. This species has also been detected on pepper and bean collected from fields in the same region. The sequencing of a tomato and a bean isolate showed that they both share more than 97% of sequence identity with the TYLCV from Dominican Republic ( AF024715 ). The TYLCV has been found in single and mixed infection with the TYLCSV‐[Sic].  相似文献   

5.
6.
In glasshouse tests, infective sap from plants infected with 17 different isolates of Tomato spotted wilt virus (TSWV) from four Australian states was inoculated to three Capsicum chinense accessions (PI 152225, PI 159236 and C00943) carrying single genes that confer hypersensitive resistance to TSWV. The normal response to inoculation was development of necrotic (hypersensitive) local lesions in inoculated leaves without systemic invasion, but 3/1386 infected plants also developed systemic susceptible reactions in addition to hypersensitive ones. Similarly when two isolates were inoculated to C. chinense backcross progeny plants, 1/72 developed systemic susceptible reactions in addition to localised hypersensitive ones. Using cultures from the four plants with susceptible reactions and following three to five further cycles of serial subculture in TSWV‐resistant C. chinense plants, four isolates were obtained that gave systemic susceptible type reactions in the three TSWV‐resistant accessions, and in TSWV‐resistant cultivated pepper (C. annuum). When three of these isolates were inoculated to tomato (Lycopersicon esculentum) breeding lines with single gene resistance to TSWV, resistance was not overcome. Similarly, none of the four isolates overcame partial resistance to TSWV in Lactuca virosa. When TSWV isolates were inoculated to tomato breeding lines carrying partial resistance from L. chilense, systemic infection developed which was sometimes followed by ‘recovery’. After four successive cycles of serial passage in susceptible cultivated pepper of a mixed culture of a resistance‐breaking isolate with the non resistance‐breaking isolate from which it came, the resistance‐breaking isolate remained competitive as both were still found. However, when the same resistance‐ breaking isolate was cultured alone, evidence of partial reversion to wild‐type behaviour was eventually obtained after five but not four cycles of long term serial subculture in susceptible pepper, as by then the culture had become a mixture of both types of strain. This work suggests that resistance‐breaking strains of TSWV that overcome single gene hypersensitive resistance in pepper are relatively stable. The findings have important implications for situations where resistant pepper cultivars are deployed widely in the field without taking other control measures as part of an integrated TSWV management strategy.  相似文献   

7.
Aims: To develop a highly sensitive and rapid protocol for simultaneous detection and differentiation of Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) in pepper and tomato. In this study, we use the multiplex PCR technique to detect dual infection of these two viruses. Methods and Results: A multiplex RT–PCR method consisting of one‐tube reaction with two primer pairs targeted to replicase genes was developed to simultaneously detect TMV and ToMV in seed samples of pepper and tomato. Specific primers were designed from conserved regions of each of the virus genomes, and their specificity was confirmed by sequencing PCR products. RT–PCR detected up to 10?6 dilution of total RNA extracted from infected leaves. Multiplex RT–PCR revealed the presence of both TMV and ToMV in three of 18 seed samples of tomato and one of 18 seed samples of pepper. Conclusions: The multiplex PCR assay was a cost effective, quick diagnostic technique, which was helpful in differentiating TMV and ToMV accurately. Significance and Impact of the Study: The multiplex PCR assay described in this study is a valuable tool for plant pathology and basic research studies. This method may facilitate better recognition and distinction of TMV and ToMV in both pepper and tomato.  相似文献   

8.
9.
Thrips were surveyed in tomato spotted wilt-susceptible crops in five areas across North Carolina. Tomato, pepper, and tobacco plants in commercial fields were sampled and 30 species of thrips were collected over a 3-year period. The most common species overall was Frankliniella tritici (Fitch). The most common thrips species that are known to vector Tomato Spotted Wilt Virus (TSWV) were F. fusca (Hinds), and F. occidentalis (Pergande). Relatively low numbers of Thrips tabaci Lindeman, another reported vector, were collected. The spatial and temporal occurrence of vectors varied with sampling method, crop species, region of North Carolina, and localized areas within each region. In a laboratory experiment, no difference was detected between the ability of F. fusca and F. occidentalis to acquire and transmit a local isolate of TSWV. Based on vector efficiency and occurrence, F. fusca is considered the most important vector of TSWV in tobacco, whereas both F. fusca and F. occidentalis are important vectors of TSWV in tomato and pepper.  相似文献   

10.
TSWV belongs to the genus Tospovirus which was established in the family Bunyaviridae, a family of animal viruses. Besides TSWV, Impatiens necrotic spot virus (INSV) and ground nut bud necrosis virus (GBNV) were established as different Tospovirus species. Tospoviruses have quasispherical particles of 85 nm diametre which are surrounded by a membrane and contain 3 RNA species and 4 structural proteins. In Tospovirus infected plant cells virions were detected in cavaties of the endoplasmatic reticulum and additionally amorphous electron dense material accumulates in infected cells. Defective forms of TSWV lack the ability to form complete virus particles. TSWV is the only plant pathogenic virus that is transmitted by thrips which transmit the virus with different efficiency. The virus has an extensive plant host range of more than 360 different species. The developing symptoms depend on the Tospovirus species, the virulence of the virus strains and the environmental conditions.

Based on the reaction of TSWV isolates with N‐specific polyclonal antisera, 3 serogroups were established. The most frequently used technique for serologically based diagnosis of Tospoviruses is DAS ELISA with N‐specific or preadsorbed antisera against complete virus. For TSWV epidemiology distinct weeds and cultural host plants play an important role for the survival of virus and vector. Breeding for resistance is the most important preventive measure of control.  相似文献   

11.
Leaf samples were collected from plants with tospovirus‐like symptoms from various hosts in different regions of Greece where Thrips tabaci, Frankliniella occidentalis or both vectors occur. The viruses infecting these plants were identified with polyclonal antibodies raised against the N proteins of Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) by ELISA. All samples tested positive for TSWV, but not for INSV. ELISA of thirty three isolates, using monoclonal antibodies against the N protein of TSWV, revealed the existence of five epitopes on the N protein. RT‐PCR tests on a few randomly‐selected isolates, using a pair of universal primers, a pair of primers specific for the L gene and a pair of primers specific for the N gene, as well as sequence analysis of a part of the S gene of one isolate, confirmed the authenticity of the virus isolated as TSWV. Host range studies showed differences in susceptibility, especially among species belonging to the Leguminosae and Cucurbitaceae. The species Beloporone guttata and Coleus sp. are reported for the first time as hosts of the virus, whereas Solanum melongena, Celosia cristata, Dianthus chinensis, Stephanotis floribunda and Catharanthus roseus were identified as new hosts of TSWV in Greece.  相似文献   

12.
13.
Tomato spotted wilt virus (TSWV) causes serious diseases of many economically important crops. Disease control has been achieved by breeding tomato and pepper cultivars with the resistance genes Sw‐5 and Tsw, respectively. However, TSWV isolates overcoming these genetic resistances have appeared in several countries. To evaluate the risk of spread of these resistance‐breaking isolates, we tested their ability of transmission by the main vector of TSWV, the thrips Frankliniella occidentalis. We compared the transmission rate by thrips of six TSWV isolates of different biotype (able or unable to overcome this resistance in pepper and tomato), and with divergent genotype (A and B). Our results indicate that the transmission rate was related to the amount of virus accumulated in thrips but not to virus accumulation in the source plants on which thrips acquired the virus. No correlation was found between transmission efficiency by thrips and the genotype or between transmission efficiency and the ability of overcoming both resistances. This result suggests that resistance‐breaking isolates have the same potential to be transmitted as the isolates unable to infect resistant tomato and pepper cultivars.  相似文献   

14.
15.
16.
我们于1984和1985年6月上、中旬,在广州市郊、县,湛江市郊以及广西南宁市郊、县,北海市郊和合蒲县等花生产区,调查花生病毒病时,除了发现花生轻斑驳病毒病外,还发现一种新的病毒病害。其症状特征是:病株顶端叶片上出现很多褪绿黄斑或环斑,有的环斑变  相似文献   

17.
Lily symptomless virus (LSV) and Arabis mosaic virus (ArMV) cause severe losses of quantity and quality of lily flower and bulb production. Specificity, sensitivity and speed of detection methods for viruses need to be improved greatly to prevent LSV and ArMV from spreading from infected lilies. A dual IC‐RT‐PCR procedure for detection was developed in which the antibodies of LSV and ArMV were mixed and the mixture used to coat the PCR tubes. The particles of the two viruses were captured by the respective antibodies. Interference by other RNA viruses in infected lily was eliminated in the RT‐PCR. Also, an RNA extraction step was omitted. The dual IC‐RT‐PCR products of LSV and ArMV were 521 bp and 691 bp, respectively. The specificity of the method was validated; only LSV and ArMV of four viruses were detected by dual IC‐RT‐PCR. The sensitivity of the detection method is 1 mg leaf tissue and higher than DAS‐ELISA due to enrichment by dual immunocapture.  相似文献   

18.
The effects of different isolates of the tomato spotted wilt tospovirus (TSWV), host plants, and temperatures on Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), the most important vector of TSWV in North Carolina, were measured in the laboratory. Thrips were reared at either 18.3, 23.9, or 29.4 °C until adult eclosion on excised leaves of Datura stramonium L. or Emilia sonchifolia (L.). Plants were either infected with the TSWV isolates CFL or RG2, or left uninfected (control). The results revealed a positive relationship between larval survival and temperature, regardless of host plant or TSWV isolate. Both survival to adult and percentage transmission of TSWV by F. fusca were significantly affected by the interaction between host plant and TSWV isolate. The consequence of this interaction was that the cohort‐based percentage transmission from infected E. sonchifolia plants for CFL was 1.3‐fold greater than that of RG2, whereas the percentage transmission from infected D. stramonium plants for RG2 was twice that of CFL. Both host plant and TSWV isolates showed significant effects on thrips development time to adult and head capsule width of adult thrips, as well as on the incidence of thrips infection with TSWV. The infection status of these thrips was determined by ELISA for the NSs viral protein. Infected thrips reared on infected host foliage took longer to develop to adult and were smaller than non‐infected thrips which had also been reared on infected host foliage, demonstrating a direct effect of the TSWV on thrips. However, non‐infected thrips reared on non‐infected leaves took longer to develop than non‐infected thrips reared on infected leaves, suggesting an effect of the plant tissue on thrips. In addition, adult thrips reared on TSWV‐infected D. stramonium at 29.4 °C developed smaller head capsules than thrips developing on infected foliage at lower temperatures and on non‐infected leaves of D. stramonium or E. sonchifolia. Both TSWV isolates and host plants differentially affected females more than males. In conclusion, both the infection of thrips by TSWV and TSWV‐mediated changes in host plant quality were found to have significant biological effects on F. fusca.  相似文献   

19.
20.
A multiplex primer set was developed to detect four Begomoviruses in East Java, Indonesia, i.e. Tomato leaf curl New Delhi virus (ToLCNDV), Tomato yellow leaf curl Kanchanaburi virus (TYLCKaV), Pepper yellow leaf curl Indonesia virus (PepYLCIV) and Mungbean yellow mosaic India virus (MYMIV). Survey at different altitudes found that begomoviruses infecting pepper, tomato and long bean were more variable, while in eggplant and string bean were more uniform. As a single virus, TYLCKaV infected eggplant, and sometimes tomato and pepper; PepYLCIV infected pepper, tomato and long bean; ToLCNDV only infected long bean and tomato at low frequency; and MYMIV infected beans. Mixed infection occurred more frequently in the low altitude areas. Subsequent examination indicated that Cucumber mosaic virus (CMV) and potyviruses were also responsible for diseased fabaceous. Our data suggest a relationship between altitudes and virus species occurrence. However, which viral species infects a crop is mainly influenced by the crop rather than by altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号