首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dot-blot hybridization has been successfully used for the construction of single nucleotide polymorphism (SNP)-based linkage maps, quantitative trait locus analysis, marker-assisted selection, and the identification of species and cultivars. This method is, however, time-consuming, even for a small number of plant samples. We propose a method in which streptavidin-coated magnetic beads replace the nylon membrane for immobilization of the PCR products and are hybridized with allele-specific oligonucleotide probes and a digoxigenin-labeled oligonucleotide hybridized with the allele-specific oligonucleotide probe. After amplification of plant DNA by PCR with the biotinylated primers, those oligonucleotide probes having species-specific or allele-specific sequences were mixed together with the digoxigenin-labeled oligonucleotide and the streptavidin-coated magnetic beads at a temperature suitable for each probe. Species-specific internal transcribed spacer 1 (ITS1) sequences and allele-specific sequences of the hypervariable region I of S-locus receptor kinase (SRK) specifically detected ITS1 sequences and SRK alleles in Brassica species, respectively. SNPs were also successfully analyzed by using allele-specific oligonucleotide probes and competitive oligonucleotides. In the SNP analysis, PCR products were indirectly captured by magnetic beads. SNP alleles of eight cultivars each of Brassica rapa and Raphanus sativus were analyzed using streptavidin-coated magnetic beads. The genotyping results corresponded well with those of dot-blot-SNP analysis. Although allele-specific hybridization using streptavidin-coated magnetic beads is somewhat costly, it is easier and more rapid than dot-blot hybridization. This method is suitable for the analysis of a small number of plant samples with a large number of DNA markers.  相似文献   

2.
We have combined the asymmetric polymerase chain reaction (PCR) with allele-specific PCR to detect a single point mutation. A set of two priming oligonucleotides and a third allele-specific primer were used to identify heterozygotes for a G to A mutation at nucleotide 10,708 in the apolipoprotein B (apo B) gene. The system requires neither restriction enzyme digestion nor allele-specific oligonucleotides as conventionally applied for allele-specific hybridization of slot blots. This method clearly allows for the detection of the mutant allele by inspection, after agarose gel electrophoresis of a single PCR reaction. DNA from 40 patients with familial defective apo B-100 due to the G to A mutation at nucleotide 10,708 in the apo B gene and their normal relatives was analyzed. Complete agreement with allele-specific hybridization of slot blots confirms supposition that the system is effective to screen a larger population.  相似文献   

3.
We have used the polymerase chain reaction (PCR) to amplify exon VII of the bovine beta-casein gene. The mutations responsible for the B variant were identified by direct sequencing of the amplification products. A bidirectional allele-specific PCR method (BAS-PCR) has been developed using oligonucleotides overlapping the mutation site at their 3' ends. This new procedure allows a rapid and reliable discrimination between the B and non-B alleles of beta-casein.  相似文献   

4.
Data on five single-nucleotide polymorphisms (SNPs) per gene are estimated to allow association of disease risks or pharmacogenetic parameters with individual genes. Efficient technologies for rapidly detecting SNPs will therefore facilitate the mining of genomic information. Known methods for SNP analysis include restriction-fragment-length polymorphism polymerase chain reaction (PCR), allele-specific oligomer hybridization, oligomer-specific ligation assays, minisequencing, direct sequencing, fluorescence-detected 5'-exonuclease assays, and hybridization with PNA probes. Detection by mass spectrometry (MS) offers speed and high resolution. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) can detect primer extension products, mass-tagged oligonucleotides, DNA created by restriction endonuclease cleavage, and genomic DNA. We have previously reported MALDI-TOF-monitored nuclease selections of modified oligonucleotides with increased affinity for targets. Here we use nuclease selections for genotyping by treating DNA to be analyzed with oligonucleotide probes representing known genotypes and digesting probes that are not complementary to the DNA. With phosphodiesterase I, the target-bound, complementary probe is largely refractory to nuclease attack and its peak persists in mass spectra (Fig. 1A). In optimized assays, both alleles of a heterozygote were genotyped with six nonamer DNA probes (> or = 125 fmol each) and asymmetrically amplified DNA from exon 10 of the cystic fibrosis transmembrane regulatory gene (CFTR).  相似文献   

5.
DP gene typing using in vitro DNA amplification combined with sequence-specific oligonucleotide probes has recently been reported. The resulting DNA amplification was specific for theHLA-DPB locus. Typing for the individualDPB alleles was exclusively dependent on the hybridizations of the probes but hampered by close sequence homology between differentDP alleles yielding complex patterns of reactivity with a panel of probes. We report the combined use of allele-specific DNA in vitro amplification and allele-specific oligonucleotides in typing forDPB1 * 03 andDPB1 * 06. Complete concordance with PLT typing was observed for theDPB1 * 03 alleles, while in the DPB1*06 group, at least three variantDPB1 * 06 alleles were identified which have not been described previously.  相似文献   

6.
Summary. We have used the polymerase chain reaction (PCR) to amplify exon VII of the bovine β-casein gene. The mutations responsible for the B variant were identified by direct sequencing of the amplification products. A bidirectional allele-specific PCR method (BAS-PCR) has been developed using oligonucleotides overlapping the mutation site at their 3' ends. This new procedure allows a rapid and reliable discrimination between the B and non-B alleles of β-casein.  相似文献   

7.
The genetic variability of apolipoprotein E (apoE) influences plasma lipoprotein levels, and allele frequencies differ between African Americans and Caucasians. As African Americans have higher lipoprotein [a] (Lp[a]) levels than Caucasians, we investigated the effects of the apoE gene on allele-specific apolipoprotein [a] (apo[a]) levels across ethnicity. We determined apo[a] sizes, allele-specific apo[a] levels (i.e., levels associated with alleles defined by size), and the apoE gene polymorphism in 231 African Americans and 336 Caucasians. African Americans, but not Caucasians, with the apo E2 genotype had lower levels of Lp[a] compared with those with the apo E4 genotype (9.6 vs. 11.2 nmol/l; P = 0.034, expressed as square root levels). Distribution of apo[a] alleles across apoE genotypes were similar between African Americans and Caucasians. Among African Americans with large apo[a], the allele-specific apo[a] level was significantly lower among epsilon2 carriers compared with epsilon3 or epsilon4 carriers (5.4 vs. 6.6 and 7.4 nmol/l, respectively; P < 0.005, expressed as square root levels). In contrast, there was no significant difference in allele-specific apo[a] levels across apoE genotypes among Caucasians. For large apo[a] sizes, apoE genotype contributed to the observed African American-Caucasian differences in allele-specific apo[a] levels.  相似文献   

8.
9.
A method which employs the polymerase chain reaction (PCR) to identify Escherichia coli strains containing the estA gene was developed. This gene codes for heat-stable enterotoxin type I. The use of an inosine-containing pair of amplification primers allowed the amplification of a specific 175-bp DNA fragment from several different estA alleles. The amplified fragments were identified and distinguished by allele-specific oligonucleotide hybridization and characterized by restriction endonuclease analysis. An extension of the classical two-primer PCR proved to be a very simple and rapid method to identify and characterize the estA alleles. Besides the inosine-containing pair of primers, which recognized all described alleles, additional oligonucleotides were used as primers. The sequence of each of these primers was allele specific, and each was amplification compatible with one of the inosine-containing primers. Thus, in one PCR the 175-bp fragment typical for all estA alleles and an allele-specific fragment of different size were produced. These fragments could be separated by agarose gel electrophoresis and were recognized by ethidium bromide staining. Twenty-seven E. coli strains were tested with this amplification system. The presence or lack of the genetic information for production of heat-stable enterotoxin type I was perfectly consistent with the ability of these strains to produce this enterotoxin, as determined by enzyme-linked immunosorbent assay.  相似文献   

10.
Summary In order to investigate the molecular basis of phenylketonuria (PKU) in the Polish population, we screened 44 mutant chromosomes from PKU probands for six known mutations, frequently occurring in western European countries, by polymerase chain reaction amplification of their genomic DNA and hybridization with allele-specific oligonucleotides. Our results show that the majority (66%) of all PKU alleles are characterized by three different mutations: in codon 408 (56.8%), codon 158 (6.8%) and codon 261 (2.27%). Of the mutant haplotype 2 alleles, 96% were linked to the mutation in codon 408. Out of five mutant haplotype 4 alleles, three showed the codon 158 mutation, and out of four mutant haplotype 1 alleles, one had the codon 261 mutation. In two families, MspI digests revealed an additional 13.5-kb band similar in length to that previously reported. However, analysis of exon 9 excluded the presence of the T to C transition originally described, indicating a new MspI variant in the Polish population.  相似文献   

11.
Although the dot-blot-SNP technique is a laborsaving, cost-effective method for SNP genotyping of a large number of plants, the synthesis of 5′-digoxigenin (DIG)-labeled oligonucleotides for use as probes is still costly. We developed two probe-labeling methods for this technique, one being digoxigenin labeling of oligonucleotides by PCR (PCR-DIG labeling) and the other being hybridization using a bridge probe and a 5′-DIG-labeled oligonucleotide (bridge hybridization). Bridge hybridization detected allele-specific signals under hybridization conditions similar to those for the 5′-DIG-labeled oligonucleotides and biotin-labeled oligonucleotides, while signals were detected only under a lower stringency condition by PCR-DIG labeling. As a method for genotyping using many markers at one time, two methods, i.e., PCR using mixed primer pairs and hybridization using mixed probes, were examined with successful results. Eighty-five SNP markers designed for genotyping of rice cultivars detected allele-specific signals, the genotyping results corresponding to the previously reported ones.  相似文献   

12.
Screening for polymorphisms in the human type 1 angiotensin II receptor locus (AGTR1) has led to the identification of an A1166C transversion in the 3'-untranslated region. This molecular variant, C(1166), has been linked to essential hypertension. We describe here a rapid method for the detection of this point mutation by a simple modification of PCR amplification with allele-specific oligonucleotides (ASO), so as to avoid a hybridization procedure involving either radioactive- or non-radioactive-labeled probes, labeled primers, or restriction typing. The procedure described is convenient for routine clinical laboratory use with manual sample processing and offers the potential for further automation, as well.  相似文献   

13.
We have identified a new T-to-A single-base substitution at nucleotide 3548 (in the genomic sequence) in exon 6 in the glucocerebrosidase gene from a patient with Gaucher disease type 3. This mutation caused a substitution of isoleucine for phenylalanine at amino acid residue 213 (of 497 residues in the mature protein). By in vitro expression study in cultured mammalian cells, this mutation resulted in deficient activity of glucocerebrosidase. By allele-specific oligonucleotide hybridization of selectively PCR-amplified DNA from eight unrelated Japanese Gaucher disease patients, this mutant allele was observed in other neuronopathic Japanese Gaucher disease patients, in moderately frequent occurrence (three of six neuronopathic patients). This observation suggests that this allele was one of severe [corrected] alleles which were related to the development of neurological manifestations of Gaucher disease.  相似文献   

14.
Genotyping and sequence analysis of apolipoprotein E isoforms   总被引:24,自引:0,他引:24  
Apolipoprotein E (apoE), a polymorphic plasma protein, is essential for catabolism of lipoproteins by receptor-mediated endocytosis. One of the apoE isoforms (E2) differs in its binding affinity to specific receptors and contributes to variations in lipoprotein metabolism. Diagnosis of apoE isoforms is done by isoelectric focusing, but it is hindered by various degrees of post-translational sialylation of the apoE protein. Electrophoretically silent structural variations may also escape detection by this technique. We describe a method for genotyping apoE based on hybridization of allele-specific oligonucleotides with enzymatically amplified genomic DNA, which permits unambiguous diagnosis of six common apoE phenotypes within 24 h. Among 100 E2 alleles present in 81 unrelated individuals genotyped by this technique, we found two rare structural mutants of apoE in addition to the common E2 form, E2(158Arg----Cys). Automated sequencing of amplified DNA identified the rare mutants as E2(136Arg----Ser) and E2(145Arg----Cys). The genotypic method may complement or even replace isoelectric focusing for routine determination of apoE phenotypes and for identification of rare structural variants.  相似文献   

15.
We report dot-blot hybridization with allele-specific oligonucleotides for single nucleotide polymorphisms (SNPs) analysis to be applicable for practical plant breeding and cultivar identification. Competitive hybridization of a digoxigenin-labeled oligonucleotide having the sequence of a mutant allele (or a wild-type allele) together with an unlabeled oligonucleotide having the sequence of a wild-type allele (or a mutant allele) was highly effective to reduce background signals in dot-blot hybridization. All 100 tested genes (200 alleles) in rice having SNPs or insertions/deletions were detected in an allele-specific manner. Genotypes of 43 rice cultivars were identified by this technique, and eight SNP markers were found to be sufficient for distinguishing all the cultivars from each other. Dot-blot analysis was also applied to genotyping of Wx and Sd1 of F4 plants in a conventional breeding program. Since dot-blot analysis with competitive hybridization provides a highly reliable, simple, and cost-effective technique for SNP analysis of a large number of samples, this technique is expected to realize the practical use of a novel breeding method, in which plants or breeding lines are selected by SNP analyses of many genes in a laboratory.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

16.
We describe a method for the discrimination of short tandem repeat (STR) alleles based on active microarray hybridization. An essential factor in this method is electronic hybridization of the target DNA, at high stringency, in <5 min. High stringency is critical to avoid slippage of hybrids along repeat tracts at allele-specific test sites in the array. These conditions are attainable only with hybridization kinetics realized by electronic concentration of DNA. A sandwich hybrid is assembled, in which proper base stacking of juxtaposed terminal nucleotides results in a thermodynamically favored complex. The increased stability of this complex relative to non-stacked termini and/or base pair mismatches is used to determine the identification of STR alleles. This method is capable of simultaneous and precise identification of alleles containing different numbers of repeats, as well as mutations within these repeats. Given the throughput capabilities of microarrays our system has the potential to enhance the use of microsatellites in forensic criminology, diagnostics and genetic mapping.  相似文献   

17.
The fluorescent labeled oligodeoxyribonucleotides which contain deoxyethenoadenosione (d epsilon A) at their 5' end were prepared by treating CPG bound oligonucleotides with 5'-DMTr-deoxyethenoadenosine-3'-H-phosphonate. The hybrid formation of d epsilon A-oligonucleotide with its complementary DNA was studied by fluorescence spectroscopy. The fluorescence of d epsilon A in a single strand was largely quenched by stacking interaction with the base at 3' position. When d epsilon A-oligonucleotides hybridized with their complementary strands, relative fluorescence quantum yields (Qrel) against d epsilon A changed in specific manners. These results suggest that d epsilon A-oligonucleotides are applicable to study the local structure of DNA in solution.  相似文献   

18.
We describe a novel assay capable of accurately determining the length of short tandem repeat (STR) alleles. STR genotyping is achieved utilizing RecA-mediated ligation (RML), which combines the high fidelity of RecA-mediated homology searching with allele-specific ligation. RecA catalyzes the pairing of synthetic oligonucleotides with one strand of a double-stranded DNA target, in this case a PCR amplicon. Ligation occurs only when two adjacent oligonucleotides are base paired to the STR region without any overlap or gap. RecA activity is required to overcome the inherent difficulty of annealing repeated sequences in register. This assay is capable of determining STR genotypes of human samples, is easily adapted to high throughput or automated systems and can have widespread utility in diagnostic and forensic applications.  相似文献   

19.
A simple and rapid method for the analysis of genetic polymorphisms has been developed using allele-specific oligonucleotide arrays bound to glass supports. Allele-specific oligonucleotides are covalently immobilized on glass slides in arrays of 3 mm spots. Genomic DNA is amplified by PCR using one fluorescently tagged primer oligonucleotide and one biotinylated primer oligonucleotide. The two complementary DNA strands are separated, the fluorescently tagged strand is hybridized to the support-bound oligonucleotide array, and the hybridization pattern is detected by fluorescence scanning. Multiple polymorphisms present in the PCR product may be detected in parallel. The effect of spacer length, surface density and hybridization conditions were evaluated, as was the relative efficacy of hybridization with single or double-stranded PCR products. The utility of the method was demonstrated in the parallel analysis of 5 point mutations from exon 4 of the human tyrosinase gene.  相似文献   

20.
Abstract

In this paper we consider the efficiency of additional rounds of “continuous stacking” hybridization in DNA sequence reconstruction by hybridization with oligonucleotide matrix (SHOM). After the initial hybridization of target DNA with the matrix of oligonucleotides of fixed length L some additional hybridizations should be carried out in the presence of fluorescently labeled oligonucleotides of another length l. These additional oligonucleotides can hybridize in tandem with matrix tuples (continuous stacking hybridization) thus forming an extended duplex with the target DNA strand. The additional data obtained allows resolutions of branching points arising in the reconstruction procedure. Multiple rounds of continuous stacking hybridization considerably increase the efficiency of the sequencing method, eventually approaching the power of (L+l)-matrix. We develop here an algorithm that allows us to minimize the number of additional hybridization steps, by assembling sets of l-tuples to be added together in each round of continuous stacking hybridization. For SHOM using a matrix of octanucleotides, continuous stacking hybridization with pen- tanucleotides increases the length of unambiguously sequenced DNA from 200 to several thousands of base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号