首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu J  Ferster D 《Neuron》2010,68(6):1187-1201
When the primary visual cortex (V1) is activated by sensory stimulation, what is the temporal correlation between the synaptic inputs to nearby neurons? This question underlies the origin of correlated activity, the mechanism of how visually evoked activity emerges and propagates in cortical circuits, and the relationship between spontaneous and evoked activity. Here, we have recorded membrane potential from pairs of V1 neurons in anesthetized cats and found that visual stimulation suppressed low-frequency membrane potential synchrony (0-10 Hz), and often increased synchrony at high frequencies (20-80 Hz). The increase in high-frequency synchrony occurred for neurons with similar orientation preferences and for neurons with different orientation preferences and occurred for a wide range of stimulus orientations. Thus, while only a subset of neurons spike in response to visual stimulation, a far larger proportion of the circuit is correlated with spiking activity through subthreshold, high-frequency synchronous activity that crosses functional domains.  相似文献   

2.
The effect of frontoparietal sensorimotor (FPSM) cortex stimulation on both the spontaneous and the noxious evoked activity of neurons in the lateral reticular nucleus (LRN) was tested in barbiturate-anesthetized rats. Ninety-three LRN neurons that responded to a noxious heat stimulus (HS) were recorded (72% antidromically fired from the cerebellum). Of these, 66 neurons altered their spontaneous firing rates in response to cortical stimulation. Two patterns of responses were found: either an excitation followed by a suppression of spontaneous activity (52 neurons), or a pure suppression of spontaneous activity lasting 50-400 msec (14 neurons). In 46 of these neurons, it was found that cortical stimulation reduced HS-evoked activity to near the baseline level. Furthermore, it was found that when applied after a prolonged cortical stimulation, the HS was ineffective. It is concluded that FPSM cortex can influence nociceptive information in LRN neurons that respond to its stimulation, possibly interfering with the mechanisms underlying stimulation-produced analgesia (SPA). In this context, it is proposed that the cortex can modulate the activity of LRN neurons that activate, through local loops, a descending antinociceptive system and also a separate projection system to the cerebellum.  相似文献   

3.
The effect of frontoparietal sensorimotor (FPSM) cortex stimulation on both the spontaneous and the noxious evoked activity of neurons in the lateral reticular nucleus (LRN) was tested in barbiturate-anesthetized rats. Ninety-three LRN neurons that responded to a noxious heat stimulus (HS) were recorded (72% antidromically fired from the cerebellum). Of these, 66 neurons altered their spontaneous firing rates in response to cortical stimulation. Two patterns of responses were found: either an excitation followed by a suppression of spontaneous activity (52 neurons), or a pure suppression of spontaneous activity lasting 50-400 msec (14 neurons). In 46 of these neurons, it was found that cortical stimulation reduced HS-evoked activity to near the baseline level. Furthermore, it was found that when applied after a prolonged cortical stimulation, the HS was ineffective. It is concluded that FPSM cortex can influence nociceptive information in LRN neurons that respond to its stimulation, possibly interfering with the mechanisms underlying stimulation-produced analgesia (SPA). In this context, it is proposed that the cortex can modulate the activity of LRN neurons that activate, through local loops, a descending antinociceptive system and also a separate projection system to the cerebellum.  相似文献   

4.
This paper shows a medial prefrontal cortex (CxAP9) facilitating influence upon the unit activity of the centralis lateralis (Cl) nucleus of the thalamus, in rats anesthetized with urethane. Cortical influences were studied using both cortical cooling and cortical spreading depression (CSD) procedures. Both spontaneous and noxious thermally evoked activities were considered. When CSD was propagated and affected the CxAP9, as well as during the cooling of this area, both spontaneous activity and the responses evoked in Cl cells by noxious stimulation were blocked. This effect was interpreted as a cortical disfacilitation upon Cl cells. During the cortical silent period we tested the excitability of a few Cl cells, provoking their activation by passing electrical current across the same Cl recording electrode. No changes were observed in their excitable response threshold during CSD or cortical cooling. Our results are in agreement with the proposition of a tonic cortical facilitatory action upon the spontaneous and noxious-evoked responses recorded in the Cl cells.  相似文献   

5.
The mammalian cerebral cortex is characterized by intense spontaneous activity, depending on brain region, age, and behavioral state. Classically, the cortex is considered as being driven by the senses, a paradigm which corresponds well to experiments in quiescent or deeply anesthetized states. In awake animals, however, the spontaneous activity cannot be considered as 'background noise', but is of comparable-or even higher-amplitude than evoked sensory responses. Recent evidence suggests that this internal activity is not only dominant, but also it shares many properties with the responses to natural sensory inputs, suggesting that the spontaneous activity is not independent of the sensory input. Such evidence is reviewed here, with an emphasis on intracellular and computational aspects. Statistical measures, such as the spike-triggered average of synaptic conductances, show that the impact of internal network state on spiking activity is major in awake animals. Thus, cortical activity cannot be considered as being driven by the senses, but sensory inputs rather seem to modulate and modify the internal dynamics of cerebral cortex. This view offers an attractive interpretation not only of dreaming activity (absence of sensory input), but also of several mental disorders.  相似文献   

6.
Patterns of spontaneous activity in the developing retina, LGN, and cortex are necessary for the proper development of visual cortex. With these patterns intact, the primary visual cortices of many newborn animals develop properties similar to those of the adult cortex but without the training benefit of visual experience. Previous models have demonstrated how V1 responses can be initialized through mechanisms specific to development and prior to visual experience, such as using axonal guidance cues or relying on simple, pairwise correlations on spontaneous activity with additional developmental constraints. We argue that these spontaneous patterns may be better understood as part of an "innate learning" strategy, which learns similarly on activity both before and during visual experience. With an abstraction of spontaneous activity models, we show how the visual system may be able to bootstrap an efficient code for its natural environment prior to external visual experience, and we continue the same refinement strategy upon natural experience. The patterns are generated through simple, local interactions and contain the same relevant statistical properties of retinal waves and hypothesized waves in the LGN and V1. An efficient encoding of these patterns resembles a sparse coding of natural images by producing neurons with localized, oriented, bandpass structure-the same code found in early visual cortical cells. We address the relevance of higher-order statistical properties of spontaneous activity, how this relates to a system that may adapt similarly on activity prior to and during natural experience, and how these concepts ultimately relate to an efficient coding of our natural world.  相似文献   

7.

Background

The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system.

Methodology/Principal Findings

Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses.

Conclusions/Significance

These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects suggests that there are at least two functional pathways from the auditory cortex to the cochlea.  相似文献   

8.
Many aspects of visual cortical functional architecture, such as orientation and ocular dominance columns, are present before animals have had any visual experience, indicating that the initial formation of cortical circuitry takes place without the influence of environmental cues. For this reason, it has been proposed that spontaneous activity within the developing visual pathway carries instructive information to guide the early establishment of cortical circuits. Recently developed recording and stimulation techniques are revealing new information about the in vivo organization of this spontaneous activity and its contribution to cortical development. Multielectrode recordings in the developing lateral geniculate nucleus (LGN) of ferrets demonstrate that retinal spontaneous activity is not simply relayed to the visual cortex, but is reshaped and transformed by a variety of mechanisms including cortical feedback and endogenous oscillatory activity. The resulting patterns are consistent with many of the predictions of correlation-based models of cortical development. In addition, the introduction of artificially correlated activity into the visual pathway disrupts some but not all aspects of orientation tuning development. Thus, while these results support an instructive role of spontaneous activity in shaping cortical development, there still appears to be a number of aspects of this process that cannot be accounted for by activity alone.  相似文献   

9.
MacLean JN  Watson BO  Aaron GB  Yuste R 《Neuron》2005,48(5):811-823
Although spontaneous activity occurs throughout the neocortex, its relation to the activity produced by external or sensory inputs remains unclear. To address this, we used calcium imaging of mouse thalamocortical slices to reconstruct, with single-cell resolution, the spatiotemporal dynamics of activity of layer 4 in the presence or absence of thalamic stimulation. We found spontaneous neuronal coactivations corresponded to intracellular UP states. Thalamic stimulation of sufficient frequency (>10 Hz) triggered cortical activity, and UP states, indistinguishable from those arising spontaneously. Moreover, neurons were activated in identical and precise spatiotemporal patterns in thalamically triggered and spontaneous events. The similarities between cortical activations indicate that intracortical connectivity plays the dominant role in the cortical response to thalamic inputs. Our data demonstrate that precise spatiotemporal activity patterns can be triggered by thalamic inputs and indicate that the thalamus serves to release intrinsic cortical dynamics.  相似文献   

10.
The scientific study of subjective experience is a current major research area in the neurosciences. Coordination patterns of brain activity are being studied to address the question of how brain function relates to behaviour, and particularly methods to estimate neuronal synchronization can unravel the spatio-temporal dynamics of the transient formation of neuronal assemblies. We report here a biophysical correlate of subjective experience. Subjects visualised figures with different levels of noise, while their brain activity was recorded using magnetoencephalography (MEG), and reported the moment in time (corresponding to a noise level) of figure recognition, which varied between individuals, as well as the moment when they saw the figure more clearly, which was mostly common among the participants (thus less subjective). This latter moment is considered to represent psychophysical stochastic resonance (PSR). Fluctuations in neuronal synchronization, quantified using a diffusion coefficient, were lower in occipital cortex when subjects recognised the figure, for a certain noise level, but did not correlate with the moment of PSR. A different pattern was observed in frontal cortex, where lower values of the diffusion coefficient in neuronal synchronization was maintained from the moment of recognition to the moment of PSR. No specific pattern was found analysing signals from temporal or parietal cortical areas. These observations provide support for distinct synchronization patterns in different cortical areas, and represent another demonstration that the subjective, first-person perspective is accessible to scientific methods.   相似文献   

11.
To investigate the relative impact of intrinsic and synaptic factors in the maintenance of the membrane potential of cat neocortical neurons in various states of the network, we performed intracellular recordings in vivo. Experiments were done in the intact cortex and in isolated neocortical slabs of anesthetized animals, and in naturally sleeping and awake cats. There are at least four different electrophysiological cell classes in the neocortex. The responses of different neuronal classes to direct depolarization result in significantly different responses in postsynaptic cells. The activity patterns observed in the intact cortex of anesthetized cats depended mostly on the type of anesthesia. The intracellular activity in small neocortical slabs was composed of silent periods, lasting for tens of seconds, during which only small depolarizing potentials (SDPs, presumed miniature synaptic potentials) were present, and relatively short-lasting (a few hundred milliseconds) active periods. Our data suggest that minis might be amplified by intrinsically-bursting neurons and that the persistent Na+ current brings neurons to firing threshold, thus triggering active periods. The active periods in neurons were composed of the summation of synaptic events and intrinsic depolarizing currents. In chronically-implanted cats, slow-wave sleep was characterized by active (depolarizing) and silent (hyperpolarizing) periods. The silent periods were absent in awake cats. We propose that both intrinsic and synaptic factors are responsible for the transition from silent to active states found in naturally sleeping cats and that synaptic depression might be responsible for the termination of active states during sleep. In view of the unexpected high firing rates of neocortical neurons during the depolarizing epochs in slow-wave sleep, we suggest that cortical neurons are implicated in short-term plasticity processes during this state, in which the brain is disconnected from the outside world, and that memory traces acquired during wakefulness may be consolidated during sleep.  相似文献   

12.
Spontaneous cortical activity of single neurons is often either dismissed as noise, or is regarded as carrying no functional significance and hence is ignored. Our findings suggest that such concepts should be revised. We explored the coherent population activity of neuronal assemblies in primary sensory area in the absence of a sensory input. Recent advances in real-time optical imaging based on voltage-sensitive dyes (VSDI) have facilitated exploration of population activity and its intimate relationship to the activity of individual cortical neurons. It has been shown by in vivo intracellular recordings that the dye signal measures the sum of the membrane potential changes in all the neuronal elements in the imaged area, emphasizing subthreshold synaptic potentials and dendritic action potentials in neuronal arborizations originating from neurons in all cortical layers whose dendrites reach the superficial cortical layers. Thus, the VSDI has allowed us to image the rather illusive activity in neuronal dendrites that cannot be readily explored by single unit recordings. Surprisingly, we found that the amplitude of this type of ongoing subthreshold activity is of the same order of magnitude as evoked activity. We also found that this ongoing activity exhibited high synchronization over many millimeters of cortex. We then investigated the influence of ongoing activity on the evoked response, and showed that the two interact strongly. Furthermore, we found that cortical states that were previously associated only with evoked activity can actually be observed also in the absence of stimulation, for example, the cortical representation of a given orientation may appear without any visual input. This demonstration suggests that ongoing activity may also play a major role in other cortical function by providing a neuronal substrate for the dependence of sensory information processing on context, behavior, memory and other aspects of cognitive function.  相似文献   

13.
Cortical gamma activity (30–80 Hz) is believed to play important functions in neural computation and arises from the interplay of parvalbumin-expressing interneurons (PV) and pyramidal cells (PYRs). However, the subthreshold dynamics underlying its emergence in the cortex of awake animals remain unclear. Here, we characterized the intracellular dynamics of PVs and PYRs during spontaneous and visually evoked gamma activity in layers 2/3 of V1 of awake mice using targeted patch-clamp recordings and synchronous local field potentials (LFPs). Strong gamma activity patterned in short bouts (one to three cycles), occurred when PVs and PYRs were depolarizing and entrained their membrane potential dynamics regardless of the presence of visual stimulation. PV firing phase locked unconditionally to gamma activity. However, PYRs only phase locked to visually evoked gamma bouts. Taken together, our results indicate that gamma activity corresponds to short pulses of correlated background synaptic activity synchronizing the output of cortical neurons depending on external sensory drive.  相似文献   

14.
Although many studies have examined the columnar organization of primary somatosensory (SI) cortex, the functional relationship among neurons in different layers remains unclear. To understand how activity is coordinated among different cortical layers, the present investigation tested the hypothesis that the initial part of a peripheral stimulus produces a serial pattern of laminar activation in SI cortex. Extracellular discharges of 334 histologically recovered neurons were recorded from the medial bank of the coronal sulcus in nine anesthetized cats during electrical or cutaneous stimulation of the distal forelimb. Mean responses during the initial 50-msec period following stimulus onset were largest in layers IIIb or IV for both types of stimulation, but laminar differences in the magnitude of onset responses were not statistically significant. Among 175 neurons with responses exceeding 0.5 spikes per stimulus, electrical Stimulation consistently produced shorter response latencies than mechanical indentation in the extragranular (II, IIIa, V, VI), but not in the middle (IIIb, IV), cortical layers. The average minimum latencies for different cortical layers ranged from 7.4 to 10.1 msec for responses to electrical stimulation and from 10.3 to 11.6 msec for responses to mechanical indentations, but these laminar differences were not statistically significant. In some experiments, neurons in different layers of a cortical column were recorded simultaneously with dual-electrode assemblies; among 37 neuron pairs in which both neurons responded with more than 0.5 spikes per stimulus, response latencies were similar, even though the neurons were separated by several hundred microns. Cross-correlation analysis of the onset responses for neurons recorded simultaneously from different layers also indicated that many cells throughout a cortical column were activated nearly simultaneously by the initial phase of a peripheral stimulus. Results from the present study are compared with previous reports examining laminar patterns of activation.  相似文献   

15.
Spontaneous and evoked activities of nucleus interpositus neurons (IN) of the cerebellum were examined before and after cerebellar paravermal cortex lesions in cats anesthetized with alpha-chloralose. It was found that spontaneous activity increased dramatically following cortical ablation: before the lesion only 4% of cells encountered fired at a rate exceeding 80 impulses/sec., whereas up to 40% discharged at this rate postoperatively. Responses to paw stimulation were also altered: the initial excitation was lengthened from 8.5 to 15.8 msec; narrow; trough causing segmentation in this excitation, which seems to result from Purkinje cell inhibition, was absent; and the succeeding inhibitory period was reduced in duration by 50%. Also after the lesion there was a strong tendency for the neurons to discharge in bursts. It is suggested that changes in cell activity in the IN following cortical lesion unveil neural mechanisms of motor disturbances in lesioned cats.  相似文献   

16.
This report addresses the nature of population coding in sensory cortex by applying information theoretic analysis to data recorded simultaneously from neuron pairs located in primary somatosensory cortex of anaesthetised rats. We studied how cortical spike trains code for the location of a whisker stimulus on the rat's snout. We found that substantially more information was conveyed by 10 ms precision spike timing compared with that conveyed by the number of spikes counted over a 40 ms response interval. Most of this information was accounted for by the timing of individual spikes. In particular, it was the first post-stimulus spikes that were crucial. Spike patterns within individual cells played a smaller role; spike patterns across cells were negligible. This pattern of results was robust both to the exact nature of the stimulus set and to the precision at which spikes were binned.  相似文献   

17.
Spontaneous waves of activity that propagate across large structures during specific developmental stages play central roles in CNS development. To understand the genesis and functions of these waves, it is critical to understand the spatial and temporal patterns of their propagation. We recently reported that spontaneous waves in the neonatal cerebral cortex originate from a ventrolateral pacemaker region. We have now analyzed a large number of spontaneous waves using calcium imaging over the entire area of coronal slices from E18‐P1 mouse brains. In all waves, the first cortical region active is this ventrolateral pacemaker. In half of the waves, however, the cortical pacemaker activity is itself triggered by preceding activity in the septal nuclei. Most waves are restricted to the septum and/or ventral cortex, with only some invading the dorsal cortex or the contralateral hemisphere. Waves fail to propagate at very stereotyped locations at the boundary between ventral and dorsal cortex and at the dorsal midline. Waves that cross these boundaries pause at these same locations. Waves at these stages are blocked by both picrotoxin and CNQX, indicating that both GABAA and AMPA receptors are involved in spontaneous activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 679–692, 2010  相似文献   

18.
For a statistical analysis of spontaneous activity of cortical pyramidal neurons (PN) of the cat, recordings were obtained from axons of those neurons descending in the lateral pyramidal tract in lumbar segments of the spinal cord. Spontaneous activity of all investigated PN is not random in sequence but has a complex temporal structure. Three types of spontaneous activity were distinguished by the character of distribution of the interspike intervals (ISI); the degree of grouping of the spikes into volleys separated by long intervals increases from type I to type III. Type III is more often found in PN with fast-conducting axons. As a rule the number of volleys in the spontaneous activity differed from that expected by the hypothesis of random spike sequence. In some cases repetition of volleys with an identical, or nearly identical, temporal structure was observed. It is postulated that the type of spontaneous activity is determined by the functional state of the neuron and by its morphological properties. Experiments were carried out on two groups of animals: 1) briefly anesthetized a long time before the recording was obtained, and then immobilized; 2) anesthetized with chloralose and Nembutal. The differences between the character of spontaneous PN activity were mainly in the degree of grouping of the spikes (which was greater in the second group). Significant positive correlation was found between the velocity of conduction along the PN axon and the mean ISI of the spontaneous activity.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 3–11, January–February, 1972.  相似文献   

19.
During mastication, reflexes are modulated and sensory transmission is altered in interneurons and ascending pathways of the rostral trigeminal sensory complex. The current experiment examines the modulation of sensory transmission through the most caudal part of the trigeminal sensory system, the medullary dorsal horn, during fictive mastication produced by cortical stimulation. Extracellular single unit activity was recorded from the medullary dorsal horn, and multiple unit activity was recorded from the trigeminal motor nucleus in anesthetized, paralyzed rabbits. The masticatory area of sensorimotor cortex was stimulated to produce rhythmic activity in the trigeminal motor nucleus (fictive mastication). Activity in the dorsal horn was compared in the presence and absence of cortical stimulation. Fifty-two percent of neurons classified as low threshold and 83% of neurons receiving noxious inputs were influenced by cortical stimulation. The cortical effects were mainly inhibitory, but 21% of wide dynamic range and 6% of low threshold cells were excited by cortical stimulation. The modulation produced by cortical stimulation, whether inhibitory or excitatory, was not phasically related to the masticatory cycle. It is likely that, when masticatory movements are commanded by the sensorimotor cortex, the program includes tonic changes in sensory transmission through the medullary dorsal horn.  相似文献   

20.
Primary visual cortex (V1) was implicated as an important candidate for the site of perceptual suppression in numerous psychophysical and imaging studies. However, neurophysiological results in awake monkeys provided evidence for competition mainly between neurons in areas beyond V1. In particular, only a moderate percentage of neurons in V1 were found to modulate in parallel with perception with magnitude substantially smaller than the physical preference of these neurons. It is yet unclear whether these small modulations are rooted from local circuits in V1 or influenced by higher cognitive states. To address this question we recorded multi-unit spiking activity and local field potentials in area V1 of awake and anesthetized macaque monkeys during the paradigm of binocular flash suppression. We found that a small but significant modulation was present in both the anesthetized and awake states during the flash suppression presentation. Furthermore, the relative amplitudes of the perceptual modulations were not significantly different in the two states. We suggest that these early effects of perceptual suppression might occur locally in V1, in prior processing stages or within early visual cortical areas in the absence of top-down feedback from higher cognitive stages that are suppressed under anesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号