首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of organic anions are known to decrease biliary secretion of cholesterol and phospholipid without affecting bile acid secretion. Cyclobutyrol (CB) is a choleretic agent which also inhibits biliary lipid secretion. Using isolated perfused rat liver we have studied this inhibition in relation to possible mechanisms suggested for other anions. Shortly after its administration to the isolated perfused liver, CB decreases biliary outputs of cholesterol and phospholipid, without changes in bile acid secretion, at low (450 nmol/min), high (1350 nmol/min) and nil taurocholate infusion rates. The absolute inhibition does not appear to be decreased by elevated bile acid secretion. There is a differential effect on secretion of cholesterol and phospholipid, more marked at low bile acid secretion rates. Biliary outputs of the canalicular membrane enzymes 5'-nucleotidase and alkaline phosphodiesterase I are also depressed by CB administration, but the anion does not affect the biliary output of bovine serum albumin or the output of rat serum albumin into the perfusion fluid. Since CB does not inhibit intracellular vesicular transport or apparently inhibit intracanalicular events, its effect is different from the effect of several other anions. From these studies it appears that the most likely effect of CB is exerted at the level of the canalicular membrane.  相似文献   

2.
These studies were undertaken to characterize the role of plasma membrane cholesterol in canalicular secretory functions and hepatocyte integrity against intravenous taurocholate administration. Cholesterol and sphingomyelin concentrations and cholesterol/phospholipid ratios were significantly increased in canalicular membranes of diosgenin-fed rats, suggesting a more resistant structure against solubilization by taurocholate. During taurocholate infusion, control rats had significantly decreased bile flow, whereas diosgenin-fed animals maintained bile flow. Maximal cholesterol output increased by 176% in diosgenin-fed rats, suggesting an increased precursor pool of biliary cholesterol in these animals. Maximal phospholipid output only increased by 43% in diosgenin-fed rats, whereas bile salt output remained at control levels. The kinetics of glutamic oxalacetic transaminase, lactic dehydrogenase, and alkaline phosphatase activities in bile showed a significantly faster release in control than in diosgenin-fed rats. After 30 min of intravenous taurocholate infusion, necrotic hepatocytes were significantly increased in control animals. Preservation of bile secretory functions and hepatocellular cytoprotection by diosgenin against the intravenous infusion of toxic doses of taurocholate was associated with an increased concentration of cholesterol and sphingomyelin in the canalicular membrane. The increase of biliary cholesterol output induced by diosgenin was correlated to the enhanced concentration of cholesterol in the canalicular membrane.  相似文献   

3.
The biliary excretion of bile salts, lysosomal acid phosphatase, and total proteins were studied in rats under different experimental conditions: during bile salt loss through a bile fistula and after loading with exogenous sodium taurocholate. The experimental models were suitable to demonstrate that variations in the excretion of bile salts were associated with those of acid phosphatase output. During bile salt depletion, acid phosphatase output showed a decrease parallel to that of bile salts. Following a single i.v. injection of sodium taurocholate and during its i.v. infusion, a rapid increase of acid phosphatase excretion in bile was seen. The patterns of enzyme outputs observed after administration of sodium taurocholate suggested a bulk discharge in bile of lysosomal contents. The profiles of protein output were similar to those of acid phosphatase suggesting an association between the secretory mechanism of these bile constituents. In contrast to sodium taurocholate, 4-methylumbelliferone, which also increases canalicular bile flow, did not produce changes in the excretory patterns of the bile components studied. Therefore, the results suggested a bile salt related secretion of acid phosphatase in the rat, which may involve protein secretion in bile.  相似文献   

4.
Simon et al. (J. Clin. Invest., 70 (1982) 401) studied cholate binding to crude liver plasma membrane vesicles and suggested that the binding may represent mainly the binding to the receptor (carrier) on the canalicular membrane. This hypothesis was supported by finding a good correlation between the number of cholate binding sites on liver plasma membrane and the maximal rate of biliary secretion (Tm) for taurocholate. We studied bile acid binding to sinusoidal and canalicular membrane vesicles isolated from rat liver by a rapid filtration technique. Scatchard analysis of the saturation kinetics showed both [3H]cholate and [3H]chenodeoxycholate bind to two classes of binding site on each membrane. However, little difference was observed between the binding to sinusoidal and canalicular membrane vesicles for each bile acid (cholate, Kd1 = 10.4 and 19.8 microM, n1 = 31.0 23.6 pmol/mg protein, Kd2 = 1.32 and 1.73 mM, n2 = 13.1 and 23.4 nmol/mg protein; and chenodeoxycholate, Kd1 = 0.207 and 0.328 microM, n1 = 36.7 and 27.4 pmol/mg protein, Kd2 = 1.16 and 2.26 mM, and n2 = 20.6 and 24.2 nmol/mg protein; numbers show the mean values sinusoidal and canalicular membrane vesicles, respectively). Chenodeoxycholate binding to sinusoidal membrane vesicles was markedly inhibited by cholate but not by Rose bengal, an organic anion dye. These studies indicate that both membranes (sinusoidal and canalicular membrane vesicles) have two kinds of binding site for bile acids, although no clear difference in the binding properties was observed between the two membranes. Consequently, the cholate binding Simon detected may represent the binding not only to canalicular membrane vesicles but also to sinusoidal membrane vesicles.  相似文献   

5.
Bile acid secretion induced by cAMP and taurocholate is associated with recruitment of several ATP binding cassette (ABC) transporters to the canalicular membrane. Taurocholate-mediated bile acid secretion and recruitment of ABC transporters are phosphatidylinositol 3-kinase (PI3K) dependent and require an intact microtubular apparatus. We examined mechanisms involved in cAMP-mediated bile acid secretion. Bile acid secretion induced by perfusion of rat liver with dibutyryl cAMP was blocked by colchicine and wortmannin, a PI3K inhibitor. Canalicular membrane vesicles isolated from cAMP-treated rats manifested increased ATP-dependent transport of taurocholate and PI3K activity that were reduced by prior in vivo administration of colchicine or wortmannin. Addition of a PI3K lipid product, phosphoinositide 3,4-bisphosphate, but not its isomer, phosphoinositide 4,5-bisphosphate, restored ATP-dependent taurocholate in these vesicles. Addition of a decapeptide that activates PI3K to canalicular membrane vesicles increased ATP-dependent transport above baseline activity. In contrast to effects induced by taurocholate, cAMP-stimulated intracellular trafficking of the canalicular ABC transporters was unaffected by wortmannin, and recruitment of multidrug resistance protein 2, but not bile salt excretory protein (bsep), was partially decreased by colchicine. These studies indicate that trafficking of bsep and other canalicular ABC transporters to the canalicular membrane in response to cAMP is independent of PI3K activity. In addition, PI3K lipid products are required for activation of bsep in the canalicular membrane. These observations prompt revision of current concepts regarding the role of cAMP and PI3K in intracellular trafficking, regulation of canalicular bsep, and bile acid secretion.  相似文献   

6.
Canalicular plasma membranes were isolated from rat liver homogenates using nitrogen cavitation and calcium precipitation methods. Compared with homogenates, the membranes were enriched 55- to 56-fold in gamma-glutamyltransferase, aminopeptidase M, and alkaline phosphatase activities and showed very low enrichment in markers of other membranes. By electron microscopy, the membrane preparation contained neither junctional complexes nor contaminating organelles and consisted exclusively of vesicles. The presence of vesicles was also evident from the osmotic sensitivity of D-[6-3H]glucose uptake into the membrane preparation. Antisera obtained from rabbits immunized with highly purified rat kidney gamma-glutamyltransferase inhibited the transferase activity of intact or Triton X-100-solubilized membranes by 45-55%. Treatment of vesicles with anti-gamma-glutamyltransferase antisera and anti-rabbit IgG antisera increased the apparent density of the membranes during sucrose density gradient centrifugation. gamma-Glutamyltransferase and aminopeptidase M activities were selectively removed from the vesicles by limited proteolysis with papain without changing the intravesicular space or alkaline phosphatase activity of the membranes. Specific binding of anti-gamma-glutamyltransferase antibody to the outer surface of isolated hepatocytes was observed as measured by the antisera and 125I-labeled protein A; binding followed saturation kinetics with respect to antibody concentration. These data indicate that the isolated canalicular membrane vesicles are exclusively oriented right-side-out and that gamma-glutamyltransferase and aminopeptidase M are located on the luminal side of rat liver canalicular plasma membranes.  相似文献   

7.
Transport of reduced glutathione (GSH) was studied in isolated rat liver canalicular membrane vesicles by a rapid filtration technique. The membrane vesicles exhibit uptake of [2-3H]glycine--labeled GSH into an osmotically reactive intravesicular space. Although the canalicular membrane vesicles possess gamma-glutamyltransferase and aminopeptidase M, enzymes that hydrolyze glutathione into component amino acids, inactivation of the vesicle-associated transferase by affinity labeling with L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125) had no effect on the initial rate of GSH transport. Chemical analysis revealed that intact GSH accounted for most of vesicle-associated radioactivity. The initial rate of transport followed saturation kinetics with respect to GSH concentration; an apparent Km of 0.33 mM and V of 1.47 nmol/mg protein in 20 s were calculated. These results indicate that transport of GSH across the canalicular membranes is a carrier-mediated process. Replacement of NaCl in the transport medium by KCl, LiCl or choline chloride had no effect on the transport activity of the vesicles. The rate of GSH uptake by the vesicles was enhanced by valinomycin-induced K+-diffusion potential (vesicle inside-positive) and was inhibited by probenecid, indicating that GSH transport across the canalicular membranes is electrogenic and involves the transfer of negative charge. The transport of GSH was inhibited by oxidized glutathione or S-benzyl-glutathione. This transport system in canalicular plasma membranes may function in biliary secretion of GSH and its derivatives which are synthesized in hepatocytes by oxidative processes or glutathione S-transferase.  相似文献   

8.
Effect of thiazolidinediones on bile acid transport in rat liver   总被引:2,自引:0,他引:2  
Snow KL  Moseley RH 《Life sciences》2007,80(8):732-740
The thiazolidinedione derivatives, troglitazone, rosiglitazone, and pioglitazone, are novel insulin-sensitizing drugs that are useful in the treatment of type 2 diabetes. However, hepatotoxicity associated with troglitazone led to its withdrawal from the market in March 2000. In view of case reports of hepatotoxicity from rosiglitazone and pioglitazone, it is unclear whether thiazolidinediones as a class are associated with hepatotoxicity. Although the mechanism of troglitazone-associated hepatotoxicity has not been elucidated, troglitazone and its major metabolite, troglitazone sulfate, competitively inhibit adenosine triphosphate (ATP)-dependent taurocholate transport in isolated rat canalicular liver plasma membrane vesicles mediated by the canalicular bile salt export pump (Bsep). These results suggest that cholestasis may be a factor in troglitazone-associated hepatotoxicity. To determine whether this effect is 1) limited to canalicular bile acid transport and 2) is specific to troglitazone, the effect of troglitazone, rosiglitazone, and ciglitazone on bile acid transport was examined in rat basolateral (blLPM) and canalicular (cLPM) liver plasma membrane vesicles. In cLPM vesicles, troglitazone, rosiglitazone, and ciglitazone (100 microM) all significantly inhibited ATP-dependent taurocholate transport. In blLPM vesicles, these three thiazolidinediones also significantly inhibited Na(+)-dependent taurocholate transport. Inhibition of bile acid transport was concentration dependent and competitive in both cLPM and blLPM vesicles. In conclusion, these findings are consistent with a class effect by thiazolidinediones on hepatic bile acid transport. If hepatotoxicity is associated with this effect, then hepatotoxicity is not limited to troglitazone. Alternatively, if hepatotoxicity is limited to troglitazone, other mechanisms are responsible for its reported hepatotoxicity.  相似文献   

9.
The hepatic transport of the immunosuppressive Cyclosporin A (CyA) was studied using liposomal phospholipid membranes, freshly isolated rat hepatocytes and bile canalicular plasma membrane vesicles from rat liver. The Na(+)-dependent, saturable uptake of the bile acid 3H-taurocholate into isolated rat liver cells was apparently competitively inhibited by CyA. However, the uptake of CyA into the cells was neither saturable, nor temperature-dependent nor Na(+)-dependent, nor could it be inhibited by bile salts or CyA-derivatives, indicating passive diffusion. In steady state depolarization fluorescence studies, CyA caused a concentration-dependent decrease of anisotropy, indicating a membrane fluidizing effect. Ion flux experiments demonstrated that CyA dramatically increases the permeability of Na+ and Ca2+ across phospholipid membranes in a dose- and time-dependent manner, suggesting a iontophoretic activity that might have a direct impact on cellular ion homeostasis and regulation of bile acid uptake. Photoaffinity labeling with a [3H]-labeled photolabile CyA-derivative resulted in the predominant incorporation of radioactivity into a membrane polypeptide with an apparent molecular weight of 160,000 and a minor labeling of polypeptides with molecular weights of 85,000-90,000. In contrast, use of a photolabile bile acid resulted in the labeling of a membrane polypeptide with an apparent molecular weight of 110,000, representing the bile canalicular bile acid carrier. The photoaffinity labeling as well as CyA transport by canalicular membrane vesicles were inhibited by CyA and the p-glycoprotein substrates daunomycin and PSC-833, but not by taurocholate, indicating that CyA is excreted by p-glycoprotein. CyA uptake by bile canalicular membrane vesicles was ATP-dependent and could not be inhibited by taurocholate. CyA caused a decrease in the maximum amount of bile salt accumulated by the vesicles with time. However, initial rates of [3H]-taurocholate uptake within the first 2.5 min remained unchanged at increasing CyA concentrations. In summary, the data indicate that CyA does not directly interact with the hepatic bile acid transport systems. Its cholestatic action may rather be the result of alterations in membrane fluidity, intracellular effects and an interaction with p-glycoprotein.  相似文献   

10.
The liver cell plasma membranes of fed male Wistar rats were separated into a fraction rich in bile canaliculi and the remainder of the plasma membrane. Electron-microscopically, the bile canalicular fraction consisted almost exclusively of intact bile canaliculi with thier contiguous membranes. The remaining plasma membrane fraction consisted primarily of vesicles and sheets of membranes essentially free from the bile canaliculi. The bile canalicular membrane fraction contained relatively more total lipid, cholesterol, and phospholipid, and relatively less protein. Although the phospholipid composition of the two fractions was the same, the specific activity of the bile canalicular membrane phosholipids, up to 12 h following in vivo administration of [2-3H]glycerol, was always significantly greater than that of the remaining plasma membranes, and showed a biphasic response not found in the latter. The specific activity of the phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine of the bile canalicular membranes rose to a peak within 40 min after administration of the label, fell sharply and then rose to a second peak after 120 min. The specific activity of the sphingomyelin and phosphatidylserine plus phosphatidylinositol of the bile canalicular membranes and of all the phospholipids of the remaining plasma membranes diphasic pattern but increased steadily to reach a maximum at 120 min. The specific activity of biliary phosphatidylcholine followed a pattern identical to that of the phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine of the bile canalicular membrane fraction. These results show that the average rate of turnover of phospholipid in the bile canalicular membranes is considerably greater than that in the remaining plasma membrane and other cell membrane fractions; they indicate that the phospholipid of the bile canalicular membranes exists in two or more pools, turning over a different rates; and they support the concept that biliary phospholipid is derived from the bile canalicular membrane. The results also suggest that bile canalicular phospholipid may be derived from two different sources, in contrast to the remainong plasma membrane.  相似文献   

11.
The influence of the intracellular glutathione status on bile acid excretion was studied in the perfused rat liver. Perturbation of the thiol redox state by short term additions of diamide (100 microM) or hydrogen peroxide (250 microM) or t-butyl hydroperoxide (250 microM) led to a reversible inhibition of biliary taurocholate release without affecting hepatic uptake; inhibition amounted to 45% for diamide and 90% for the hydroperoxides. Concomitantly, the bile acid accumulated intracellularly. Bile flow increased from 1.3 to 2.0 microliters X min-1 X g liver-1 upon infusion of taurocholate (10 microM); the latter value was suppressed to 1.2 microliters X min-1 X g liver-1 by the addition of t-butyl hydroperoxide (250 microM). Similarly, the hepatic disposition of another bile constituent, bilirubin, was suppressed by 70% upon addition of hydrogen peroxide. While the addition of hydrogen peroxide inhibited also the endogenous release of bile acids almost completely, endogenous bile flow was much less affected, decreasing from 1.3 to 1.0 microliters X min-1 X g liver-1. Measurement of [14C]erythritol clearance showed bile/perfusate ratios of about unity both in the absence and presence of hydrogen peroxide, suggesting canalicular origin of the bile under both conditions. In livers from Se-deficient rats low in Se-GSH peroxidase (less than 5% of controls), hydrogen peroxide inhibited taurocholate transport substantially less, providing evidence for the involvement of glutathione in mediating the inhibition observed in normal livers. The percentage inhibition of taurocholate release and intracellular glutathione disulfide (GSSG) content were closely correlated. The addition of t-butyl hydroperoxide caused a several-fold increase of biliary GSSG release, whereas biliary GSH release was even decreased. The results establish a role of glutathione in canalicular taurocholate disposition.  相似文献   

12.
Direct photoaffinity labeling of liver plasma membrane subfractions enriched in sinusoidal and canalicular membranes using [35S]adenosine 5'-O-(thiotriphosphate) ([35S]ATP gamma S) allows the identification of ATP-binding proteins in these domains. Comparative photoaffinity labeling with [35S]ATP gamma S and with the photolabile bile salt derivative (7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-[3 beta-3H]-cholan-24-oyl-2'- aminoethanesulfonate followed by immunoprecipitation with a monoclonal antibody (Be 9.2) revealed the identity of the ATP-binding and the bile salt-binding canalicular membrane glycoprotein with the apparent Mr of 110,000 (gp110). The isoelectric point of this glycoprotein was 3.7. Transport of bile salt was studied in vesicles enriched in canalicular and sinusoidal liver membranes. Incubation of canalicular membrane vesicles with [3H] taurocholate in the presence of ATP resulted in an uptake of the bile salt into the vesicles which was sensitive to vanadate. ATP-dependent taurocholate transport was also observed in membrane vesicles from mutant rats deficient in the ATP-dependent transport of cysteinyl leukotrienes and related amphiphilic anions. Substrates of the P-glycoprotein (gp170), such as verapamil and doxorubicin, did not interfere with the ATP-dependent transport of taurocholate. Reconstitution of purified gp110 into liposomes resulted in an ATP-dependent uptake of [3H]taurocholate. These results demonstrate that gp110 functions as carrier in the ATP-dependent transport of bile salts from the hepatocyte into bile. This export carrier is distinct from hitherto characterized ATP-dependent transport systems.  相似文献   

13.
The binding characteristics of human epidermal growth factor (EGF) were compared between highly purified canalicular (CMV) and sinusoidal (basolateral) rat liver plasma membrane (SMV) preparations. The dissociation constants (2-3 nM) for these membranes were comparable, while the binding capacity for CMV was approximately half that for SMV. The binding capacity for CMV was too high to be accounted for only by the contamination with sinusoidal membranes, since the measurements of specific activities of various enzymes (Na+,K+-ATPase, alkaline phosphatase, and leucine aminopeptidase) indicated that the extents of the cross contamination with other membrane fractions were at most 10%. Although the physiological function of specific binding of EGF to bile canalicular membrane domain remains to be determined, it may have a role in biliary excretion of EGF. The specific binding of EGF to bile canalicular membranes from rat liver was identified for the first time.  相似文献   

14.
Bile is the route for elimination of cholesterol from the body. Recent studies have begun to elucidate hepatocellular, molecular and physical-chemical mechanisms whereby bile salts stimulate biliary secretion of cholesterol together with phospholipids, which are enriched (up to 95%) in phosphatidylcholines. Active translocation of bile salts and phosphatidylcholines across the hepatocyte's canalicular plasma membrane provides the driving force for biliary lipid secretion. This facilitates physical-chemical interactions between detergent-like bile salt molecules and the ectoplasmic leaflet of the canalicular membrane, which result in biliary secretion of cholesterol and phosphatidylcholines as vesicles. Within the hepatocyte, separate molecular pathways function to resupply bile salts, phosphatidylcholines and cholesterol to the canalicular membrane for ongoing biliary lipid secretion.  相似文献   

15.
Through labeling with the sodium salt of the photolabile bile salt derivative (7,7-azo-3 alpha,12 alpha-dihydroxy-5 beta-[3 beta-3H]cholan-24-oyl)- 2-aminoethanesulfonic acid, a bile salt-binding polypeptide with an apparent molecular weight of 100,000 was identified in isolated canalicular but not basolateral (sinusoidal) rat liver plasma membranes. This labeled polypeptide was isolated from octyl glucoside-solubilized canalicular membranes by DEAE-cellulose and subsequent wheat germ lectin Sepharose chromatography. The purified protein still contained covalently incorporated radioactive bile salt derivative and exhibited a single band with an apparent molecular weight of 100,000 on sodium dodecyl sulfate-gels. Antibodies were raised in rabbits and their monospecificity toward this canalicular polypeptide demonstrated by immunoblot analysis. No cross-reactivity was found with basolateral membrane proteins. The antibodies inhibited taurocholate uptake into isolated canalicular but not basolateral membrane vesicles. In addition, the antibodies also decreased efflux of taurocholate from canalicular vesicles. If the canalicular bile salt-binding polypeptide was immunoprecipitated from Triton X-100-solubilized canalicular membranes and subsequently deglycosylated with trifluoromethanesulfonic acid, the apparent molecular weight was decreased from 100,000 to 48,000 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). These studies confirm previous results in intact liver tissue and strongly indicate that a canalicular specific glycoprotein with an apparent molecular weight of 100,000 is directly involved in canalicular excretion of bile salts.  相似文献   

16.
An analog of lysophosphatidylcholine (1-dodecyl-propanediol-3-phosphocholine) which does not impair membrane-bound enzymes was used for the induction of shedding of membrane vesicles from intact calf thymocytes. Without liberation of intracellular enzymes such as lactate dehydrogenase (EC 1.1.1.27) the shedded membranes contained 15--25% of the total activity of the plasma membrane enzymes alkaline phosphatase (EC 3.1.3.1), nucleotide pyrophosphatase (EC 3.1.4.1) and gamma-glutamyl transferase (EC 2.3.2.2). Membrane-free supernatants only exhibited trace activities of these enzymes. Without further purification, the specific enzyme activities in shedded membranes were of the same order of magnitude as in purified plasma membranes prepared after nitrogen cavitation of thymocytes. Small amounts of membrane vesicles which showed a different composition could be removed without detergent. These membranes exhibited a 3-fold lower specific activity of the gamma-glutamyl transferase while that of the alkaline phosphatase and nucleotide pyrophosphatase was similar as in detergent induced membrane vesicles. Distinct differences also were found in the protein pattern. The content of total cholesterol and phospholipid in vesicles shed spontaneously or after detergent treatment was nearly identical, however, significant differences were found in the fatty acid composition of the main phospholipids. The content of polyunsaturated fatty acids (linoleic and arachidonic acid) increased in the order: spontaneously shedded membranes, detergent induced vesicles, conventional purified plasma membranes. These results are discussed in terms of the heterogeneous composition of areas of the thymocyte plasma membrane.  相似文献   

17.
Biliary secretory pressure represents the force generated to deliver bile through the biliary system. Bile acid-induced toxicity may decrease canalicular bile formation and (or) induce back diffusion causing cholestasis. To determine if biliary secretory pressure is a sensitive indicator of bile toxicity, taurocholate was compared with a less cytotoxic bile acid, tauroursodeoxycholate. In fasted male Sprague-Dawley rats, the common bile duct was cannulated and the endogenous bile salt pool was removed by enteroclysis. Taurocholate (n = 35) or tauroursodeoxycholate (n = 35) in saline was infused for 1 h. Maximal biliary secretory pressure was then measured by attaching the biliary cannula to a column monometer and recording the maximum height to which bile rose. With taurocholate administration, bile flow and bile salt secretion linearly rose to a maximum infusion of 0.5 mumol/(min.g liver), above which hemolysis and death occurred. In contrast, tauroursodeoxycholate could be infused at higher rates with bile salt secretion plateauing at 1.25 mumol/(min.g liver] Both had similar choleretic potencies. Mean biliary secretory pressure at low (less than 0.15 mumol/(min.g liver] infusions was lower with taurocholate (22.5 cm bile) than tauroursodeoxycholate (25.2 cm). Further, increasing the taurocholate infusion decreased the biliary secretory pressure; yet for taurousodeoxycholate, pressure remained unchanged even at higher infusions. Thus, taurocholate but not tauroursodeoxycholate decreases biliary secretory pressure at high infusion rates, likely a reflection of its toxicity to the hepatobiliary epithelium.  相似文献   

18.
ABC transporter trafficking in rat liver induced by cAMP or taurocholate and [(35)S]methionine metabolic labeling followed by subcellular fractionation were used to identify and characterize intrahepatic pools of ABC transporters. ABC transporter trafficking induced by cAMP or taurocholate is a physiologic response to a temporal demand for increased bile secretion. Administration of cAMP or taurocholate to rats increased amounts of SPGP, MDR1, and MDR2 in the bile canalicular membrane by 3-fold; these effects abated after 6 h and were insensitive to prior treatment of rats with cycloheximide. Half-lives of ABC transporters were 5 days, which suggests cycling of ABC transporters between canalicular membrane and intrahepatic sites before degradation. In vivo [(35)S]methionine labeling of rats followed by immunoprecipitation of (sister of P-glycoprotein) (SPGP) from subcellular liver fractions revealed a steady state distribution after 20 h of SPGP between canalicular membrane and a combined endosomal fraction. After mobilization of transporters from intrahepatic sites with cAMP or taurocholate, a significant increase in the amount of ABC transporters in canalicular membrane vesicles was observed, whereas the decrease in the combined endosomal fraction remained below detection limits in Western blots. This observation is in accordance with relatively large intracellular ABC transporter pools compared with the amount present in the bile canalicular membrane. Furthermore, trafficking of newly synthesized SPGP through intrahepatic sites was accelerated by additional administration of cAMP but not by taurocholate, indicating two distinct intrahepatic pools. Our data indicate that ABC transporters cycle between the bile canaliculus and at least two large intrahepatic ABC transporter pools, one of which is mobilized to the canalicular membrane by cAMP and the other, by taurocholate. In parallel to regulation of other membrane transporters, we propose that the "cAMP-pool" in hepatocytes corresponds to a recycling endosome, whereas recruitment from the "taurocholate-pool" involves a hepatocyte-specific mechanism.  相似文献   

19.
The protein concentration in bile from several species is reported. The changes in output of protein, bile salts and several enzymes have been followed in rat bile over a 48 h cannulation period. Bile-salt concentration dropped rapidly owing to interruption of the enterohepatic circulation but the output of protein, lysosomal enzymes [acid phosphatase (EC 3.1.3.2) and beta-D-glucuronidase (EC 3.2.1.31)] and plasma-membrane enzymes [5'-nucleotidase (EC 3.1.3.5) and phosphodiesterase I (EC 3.1.4.1)] was maintained. Liver cell damage, monitored by output of lactate dehydrogenase, was very low throughout. Protein, lysosomal enzymes and plasma-membrane enzymes showed different patterns of output with time, but all showed a net increase between 12 and 24 h. The output of lysosomal and plasma-membrane enzymes was between 1 and 5% of the total liver complement over the first 24 h; if inhibition by biliary components is taken into account the output of some of these enzymes, particularly acid phosphatase, may be greater. Ultracentrifugation of bile showed that as the concentration of bile salts decreases the proportion of plasma-membrane enzymes in a sedimentable form increases. The results are discussed in relation to other studies of biliary proteins and to studies of the perturbation of membranes and cells with bile salts.  相似文献   

20.
Taurolithocholate (TLC), a natural bile salt, induces selective impairment on canalicular membrane of the hepatocyte, which seems to be a major determinant of its cholestatic effect in experimental animals. In order to extend existing studies about the effects of TLC on bile secretion, we examined in TLC-treated rats the biliary excretion of compounds that are transported to canalicular membrane via vesicles, such as lipids and proteins. The single intravenous injection of TLC (3 mumol/100 g body wt.) inhibited transiently the biliary bile salt excretion, while the biliary excretion of lipids (i.e., cholesterol and phospholipids) and proteins remained inhibited even though the biliary excretion and composition of bile salts were normalized. Under such a condition, TLC also inhibited the transcellular vesicular pathway to the exogenous protein horseradish peroxidase entry into bile, without altering the paracellular biliary access of the protein. The hepatic uptake of horseradish peroxidase was unaffected by TLC-treatment. The results indicate that TLC can inhibit the biliary excretion of compounds that reach the canaliculus via a vesicular pathway, such as lipids and proteins, by a mechanism not related to a defective bile salt excretion. Possible explanations for these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号