首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulin receptor (IR) gene expression at the mRNA level was investigated in liver, hindlimb skeletal muscle, and epididymal adipose tissue of rats exposed to prolonged in vivo administration of adrenaline in relation to control rats. In the liver of adrenaline-treated rats, there were no differences in relation to controls when DNA and protein content were measured. In skeletal muscle, only a slight decrease in protein concentration was detected. By contrast, a clear increase in both protein and DNA content was observed in the adipose tissue of treated animals. Northern blot assays revealed two IR mRNA species of approximately 9.5 and 7.5 Kb in the three tissues from controls. Adrenaline treatment induced an increase of approximately 60% in the levels of both RNAs in adipose tissue but not in liver or skeletal muscle. These results provide evidence for an in vivo tissue-specific regulation of IR gene expression at the mRNA level in rats under an experimental condition of excess of catecholamines.  相似文献   

2.
3.
Listeria monocytogenes is an important food-borne pathogen that can tolerate a wide range of stress conditions. However, its stress adaptation processes are still poorly understood. Real-time-based quantitative RT-PCR (qRT-PCR) provides a tool to probe gene expression changes underlying stress adaptation. But, a limitation to study mRNA levels by real-time qRT-PCR is that validated reference genes are required for normalization. Such genes are currently lacking for experimental models that may be applied to evaluate stress-related gene expression changes in L. monocytogenes. Therefore, five housekeeping genes (HKG) were studied as potential reference genes. Their expression stability was evaluated across 16 L. monocytogenes strains. Three experimental models designed to assess gene expression changes induced by cold, acid and high NaCl concentration stress adaptation were applied. The 16S rRNA gene was consistently the most stably expressed HKG across the different L. monocytogenes strains under all the experimental conditions. While the expressions of beta-glucosidase (bglA), Glyceraldehyde-3P-dehydrogenase (gap), RNA polymerase beta subunit (rpoB) and Ribosomal protein L4 (rplD) was stable amongst the different L. monocytogenes strains, they were prone to significant variations under the different stress adaptation models.  相似文献   

4.
The expression of calcium-binding protein regucalcin mRNA in the kidney cortex of rats was investigated. The change of regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin complementary DNA (0.9 kb of open-reading frame). Regucalcin mRNA was expressed in the kidney cortex, and this expression was clearly increased by a single intraperitoneal administration of calcium chloride solution (5–15 mg Ca/100 g body weight) in rats; this increase was remarkable at 60–120 min after the administration. Thyroparathyroidectomy (TPTX) caused a slight decrease of regucalcin mRNA levels in the kidney cortex. However, the administration of calcium (10 mg/100 g) in TPTX rats produced a clear increase of regucalcin mRNA levels in the kidney cortex. The subcutaneous administration of calcitonin (10–100 MRC mU/100 g) or parathyroid hormone [1–34] (1–10 U/100 g) in TPTX rats which received calcium (10 mg/100 g) administration did not cause an appreciable alteration of regucalcin mRNA levels in the kidney cortex, suggesting that the mRNA expression is not stimulated by calcium-regulating hormones. The administration of trifluoperazine (TFP; 5 mg/100 g), an inhibitor of Ca2+/calmodulin action, completely blocked the expression of regucalcin mRNA stimulated by calcium administration. Now, calcium content in the kidney cortex was significantly elevated by a single intraperitpneal administration of calcium (10 mg/100 g) in rats. The present study clearly demonstrates that the expression of regucalcin mRNA in the kidney cortex is stimulated by calcium administration in rats. This expression may be mediated through Ca2+/calmodulin action in the kidney cortex.  相似文献   

5.
To study the change of gene expression in the brain tissues of schizophrenia, we used the gene expression monitoring technology and compared two sets of pools each containing four RNA samples of frontal cortex that were randomly selected from the control or schizophrenia group. We found that the expression of two genes were commonly altered in four pairwise comparisons; the expression of DEAD-box protein p72 (p72) gene was increased and neuropeptide Y (NPY) gene expression was decreased in the schizophrenia group compared with the control group. To substantiate these results, we estimated their mRNA levels by the real time TaqMan method in the 15 samples of each frontal or temporal cortex of four matched groups of schizophrenia, bipolar disorder, major depression and normal controls. A statistically significant decrease was observed for NPY in the frontal, but not in the temporal cortex, in the schizophrenia group (P=0.003). A decrease was also observed in the frontal cortex of the bipolar disorder group (P=0.031). In contrast, p72 gene expression showed no significant difference among the four groups. In conclusion, by novel technology of DNA array and TaqMan PCR analyses, we found that neuropeptide Y mRNA levels were significantly reduced in the frontal cortex in both schizophrenia and bipolar disorder.  相似文献   

6.
The effect of adrenalectomy (ADX) or saline ingestion, which is a hypertensive factor, on the expression of calcium-binding protein regucalcin mRNA in the kidney cortex of rats was investigated. The change of regucalcin mRNA levels was analyzed by Northern blotting using rat liver regucalcin complementary DNA (0.9 kb of open-reading frame). Regucalcin mRNA was expressed in the kidney cortex but not the medulla. Rats were adrenalectomized, and 48 h later they were sacrificed. ADX caused a reduction of regucalcin mRNA levels in the kidney cortex, suggesting that adrenal glands participate in the regulation of the mRNA expression. This reduction was not restored by the subcutaneous administration of dexamethasone with an effective dose (1 mg/kg body weight), which can stimulate kidney regucalcin mRNA expression. Regucalcin mRNA levels in the kidney cortex of rats were markedly suppressed by the ingestion of saline for 7 days. The ADX-induced decrease of renal cortex regucalcin mRNA levels was not appreciably restored by saline ingestion. Moreover, regucalcin mRNA levels in the kidney cortex of spontaneous hypertensive rats (SHR) were clearly decreased as compared with that of control (Wistar-Kyoto) rats. Meanwhile, calcium content in the kidney cortex was not significantly decreased by ADX or saline ingestion. The present study suggests that the expression of regucalcin mRNA in the kidney cortex of rats is suppressed by saline administration.  相似文献   

7.
The alteration of Ca2+-binding protein regucalcin mRNA expression in the kidney cortex of rats administered cisplatin and cephaloridine, which can induce kidney damage, was investigated. Cisplatin (0.25, 0.5 and 1.0 mg/100 g body weight) or cephaloridine (25, 50 and 100 mg/100 g) was intraperitoneally administered in rats, and 1, 2 and 3 days later they were sacrificed. The alteration in serum findings after the administration of cisplatin (1.0 mg/100 g) or cephaloridine (50 and 100 mg/100 g) demonstrated chemically induced kidney damage; blood urea nitrogen (BUN) concentration increased markedly and serum inorganic phosphorus or calcium concentration decreased significantly. Moreover, the administration of cisplatin (1.0 mg/100 g) or cephaloridine (100 mg/100 g) caused a remarkable increase of calcium content in the kidney cortex of rats, indicating kidney damage. The expression of regucalcin mRNA in the kidney cortex was markedly reduced by the administration of cisplatin or cephaloridine in rats, when the mRNA levels were analyzed by Northern blotting using rat liver regucalcin cDNA (0.9 kb). The mRNA decreases were seen with the used lowest dose of cisplatin or cephaloridine. The present study clearly demonstrates that the mRNA expression of Ca2+-binding protein regucalcin in the kidney cortex of rats is decreased by chemically induced kidney damage.  相似文献   

8.
Cadherin is a cell adhesion molecule widely expressed in the nervous system. Previously, we analyzed the expression of nine classic cadherins (Cdh4, Cdh6, Cdh7, Cdh8, Cdh9, Cdh10, Cdh11, Cdh12, and Cdh20) and T‐cadherin (Cdh13) in the developing postnatal common marmoset (Callithrix jacchus) brain, and found differential expressions between mice and marmosets. In this study, to explore primate‐specific cadherin expression at the embryonic stage, we extensively analyzed the expression of these cadherins in the developing embryonic marmoset brain. Each cadherin showed differential spatial and temporal expression and exhibited temporally complicated expression. Furthermore, the expression of some cadherins differed from that in rodent brains, even at the embryonic stage. These results suggest the possibility that the differential expressions of diverse cadherins are involved in primate specific cortical development, from the prenatal to postnatal period.  相似文献   

9.
目的:拟观察高压氧(HBO)治疗对急性创伤性颅脑损伤后皮层NOSmRNA表达的影响,探讨HBO治疗急性脑损伤的机理。方法:采用自由落体法打击模型制备SD大鼠急性脑创伤,伤后1 h、12 h采用0.25 MPaHBO治疗,伤后6 h、24 h取样皮层,应用半定量逆转录聚合酶链反应(RT-PCR)观察神经元型一氧化氮合酶(nNOS)、内皮型一氧化氮合酶(eNOS)和诱导型一氧化氮合酶(iNOS)mRNA表达量变化。结果:0.25MPaHBO治疗各时间组nNOS、eNOS和iNOSmRNA较急性颅脑损伤各时间组显著下降(P<0.01),且HBO治疗24 h组较6 h组下降更明显(P<0.05,P<0.01),0.25 MPa常氧高氮各时间组与急性颅脑损伤各时间组NOSmRNA表达量无统计学意义。结论:HBO治疗可以下调nNOSmRNA、iNOSmRNA和eNOSmRNA的表达量,可能为HBO治疗脑创伤的机理之一。  相似文献   

10.
11.
12.
13.
14.
15.
The expression of calcium-binding protein regucalcin mRNA in the kidney cortex of rats ingested with saline was investigated. The alteration in regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin complementary DNA (0.9 kb of open reading frame). Rats were freely given saline as drinking water for 7 days. Regucalcin mRNA levels in the kidney cortex were suppressed by saline ingestion. When calcium chloride (10 mg Ca/100 g body weight) was intraperitoneally administered to rats ingested with saline for 7 days, the effect of calcium administration to increase regucalcin mRNA levels was weakened by saline ingestion. Such effect was also seen by the administration of 2.5 and 5 mg Ca/100 g. Regucalcin mRNA levels in the kidney cortex of spontaneous hypertensive rats (SHR) were not appreciably increased by the administration of calcium (10 mg/100 g). Meanwhile, calcium content in the kidney cortex was significantly elevated by the administration of calcium (10 mg/100 g) to normal rats. This increase was weakened in saline-ingested rats. Moreover, Ca2+/calmodulin-dependent protein kinase activity in the cytosol of kidney cortex was significantly decreased by saline ingestion. These results suggest the possibility that saline ingestion-induced suppression of regucalcin mRNA expression in the kidney cortex is partly involved in the attenuation of Ca2+ signalling.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号