首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Few studies have found strong evidence to suggest that ecotones promote species richness and diversity. In this study we examine the responses of a high‐Andean bird community to changes in vegetation and topographical characteristics across an Andean tree‐line ecotone and adjacent cloud forest and puna grassland vegetation in southern Peru. Over a 6‐month period, birds and vegetation were surveyed using a 100 m fixed‐width Distance Sampling point count method. Vegetation analyses revealed that the tree‐line ecotone represented a distinctive high‐Andean vegetation community that was easily differentiated from the adjacent cloud forest and puna grassland based on changes in tree‐size characteristics and vegetation cover. Bird community composition was strongly seasonal and influenced by a pool of bird species from a wider elevational gradient. There were also clear differences in bird community measures between tree‐line vegetation, cloud forest and puna grassland with species turnover (β‐diversity) most pronounced at the tree‐line. Canonical Correspondence Analysis revealed that the majority of the 81 bird species were associated with tree‐line vegetation. Categorizing patterns of relative abundance of the 42 most common species revealed that the tree‐line ecotone was composed primarily of cloud forest specialists and habitat generalists, with very few species from the puna grassland. Only two species, Thlypopsis ruficeps and Anairetes parulus, both widespread Andean species more typical of montane woodland vegetation edges, were categorized as ecotone specialists. However, our findings were influenced by significant differences in species detectability between all three vegetation communities. Our study highlights the importance of examining ecotones at an appropriate spatial and temporal scale. Selecting a suitable distance between sampling points based on the detection probabilities of the target bird species is essential to obtain an unbiased picture of how ecotones influence avian richness and diversity.  相似文献   

2.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

3.
Mountain forests deserve special attention from ecologists and conservation biologists given the ecosystem services they provide to society, and their threat under global change. In the subalpine region of the Andes, Polylepis woodlands occur as arboreal islands in a matrix of grassland and scrub. Due to overgrazing and burning, however, these woodland patches are believed to cover only 11% of their potential area in Bolivia, core area for Polylepis. We reviewed the knowledge on the species diversity for the Bolivian Polylepis woodland remnants, assessed the conservation status of the occurring species, determined their trophic niche, and related species richness with climatic variables and elevation. Based in 31 publications, we found 780 identified species occurring in Polylepis woodlands: 425 plants, 266 birds, 46 mammals, 35 butterflies and 8 reptiles. Ten of the 13 Bolivian Polylepis species, as well as 7 other plant species, 14 bird species and 4 mammal species were categorized as threatened or near threatened according to IUCN criteria. In general, plant species richness increased with increased precipitation and length of the growth season, while it decreased with increasing elevation. There was a positive relationship between bird species richness, precipitation and length of the growth season. The highest bird endemism in Polylepis woodland remnants occurred at intermediate elevations, temperatures and precipitation. Mammal species richness decreased with increasing maximum temperature. Finally, we discuss the most important knowledge gaps regarding biodiversity in Bolivian Polylepis woodland remnants.  相似文献   

4.
Many of the world’s large river systems have been greatly altered in the past century due to river regulation, agriculture, and invasion of introduced Tamarix spp. (saltcedar, tamarisk). These riverine ecosystems are known to provide important habitat for avian communities, but information on responses of birds to differing levels of Tamarix is not known. Past research on birds along the Colorado River has shown that avian abundance in general is greater in native than in non‐native habitat. In this article, we address habitat restoration on the lower Colorado River by comparing abundance and diversity of avian communities at a matrix of different amounts of native and non‐native habitats at National Wildlife Refuges in Arizona. Two major patterns emerged from this study: (1) Not all bird species responded to Tamarix in a similar fashion, and for many bird species, abundance was highest at intermediate Tamarix levels (40–60%), suggesting a response threshold. (2) In Tamarix‐dominated habitats, the greatest increase in bird abundance occurred when small amounts of native vegetation were present as a component of that habitat. In fact, Tamarix was the best vegetation predictor of avian abundance when compared to vegetation density and canopy cover. Our results suggest that to positively benefit avian abundance and diversity, one cost‐effective way to rehabilitate larger monoculture Tamarix stands would be to add relatively low levels of native vegetation (~20–40%) within homogenous Tamarix habitat. In addition, this could be much more cost effective and feasible than attempting to replace all Tamarix with native vegetation.  相似文献   

5.
While intensification of human activities and its ecological effects in many natural areas have recently received much attention, land abandonment in marginal areas is still the largely ignored side of a process rooted in the same socioeconomic context. Decreasing human impact in marginal rural areas often triggers a recovery of seminatural vegetation. Over a period of 25 years, we studied the changes in landscape and vegetation structure that followed land abandonment in a traditional Mediterranean mosaic of crops, grasslands, shrublands and woodlands, and assessed their effects on songbird occurrence and distribution. We combined an analysis of vegetation changes based on aerial photo interpretation with an analysis of bird censuses from 1978, 1992 and 2003 at two spatial scales: landscape and census plot (respectively 2800 and 3 ha). The perceived temporal changes in the vegetation were scale dependent. At the landscape scale, open habitats tended to disappear and woodlands matured. The contrasts in vegetation structure that defined habitat patches at the onset of the study tended to disappear. There was an overall shift of the bird community in favour of woodland species. At the scale of the census plot, however, the colonization by woody vegetation of patches formerly characterized by a homogeneous grass cover increased the local diversity of the vegetation, at least temporarily. Of seven species dependent on open habitats, the occurrence rate of five species significantly decreased, whereas it increased for two species: woodlark (Lulula arborea) and melodious warbler (Hippolais polyglotta). This increase was linked to the transitional increase in local vegetation diversity. In patches originally dominated by woodlands, local vegetation diversity decreased as woody vegetation expanded into clearings. The occurrence rate significantly increased for seven species relying on closed woodlands, while it decreased for two woodland species. As most species of high conservation profile in the Mediterranean are tied to open or to heterogeneous transitional habitats, these trends raise questions concerning their persistence in the future.  相似文献   

6.
Landscapes available to birds to select for breeding locations are arrayed along multiple dimensions. Identifying the primary gradients structuring shrubsteppe bird communities in the western United States is important because widespread habitat loss and alteration are shifting the environmental template on which these birds depend. We integrated field habitat surveys, GIS coverages, and bird counts from 61 Breeding Bird Survey routes located in shrubsteppe habitats across a >800 000 km2 region to determine the gradients of habitat, topography, and geography underlying bird communities. A small set of habitat features dominated the primary environmental gradients in a canonical ordination; the 13 species in the shrubsteppe bird community were closely packed along the first two axes. Using hierarchical variance partitioning, we identified habitat as the most important pure (31% explained variation) or shared component. Topography (9%) and geography (4%) were minor components but each shared a larger contribution with habitat (habitat‐topography 21%; habitat‐geography 22%) in explaining the organization of the bird community. In a second tier partition of habitat structure, pure composition (% land cover) was more important (45%) than configuration (patch size and edge) (7%); the two components shared 27% of the explained variation in the bird community axes. Local (9%), community (14%), and landscape (10%) levels contributed equally. Adjacent organizational levels had a larger shared contribution (local‐community 26%; community‐landscape 27%) than more separated local‐landscape levels (21%). Extensive conversion of shrubsteppe habitats to agriculture, exotic annual grasslands, or pinyon (Pinus spp.)–juniper (Juniperus spp.) woodlands is occurring along the primary axes of habitat structure. Because the shrubsteppe bird community was organized along short gradients dominated by habitat features, relatively small shifts in their available environment will exert a strong influence on these bird populations in the absence of buffering by alternative gradients.  相似文献   

7.
While the area of plantation forests continues to increase worldwide, their contribution to the conservation of biodiversity is still controversial. There is a particular concern on the central role played by natural habitat remnants embedded within the plantation matrix in conserving species-rich insect communities. We surveyed butterflies in maritime pine plantation landscapes in south-western France in 83 plots belonging to seven habitat types (five successional stages of pine stands, native deciduous woodlands and herbaceous firebreaks). The effect of plot, habitat and landscape attributes on butterfly species richness, community composition and individual species were analysed with a General Linear Model (GLM), partial Canonical Correspondence Analysis (CCA) and the IndVal method. The most important factors determining butterfly diversity and community composition were the presence of semi-natural habitats (deciduous woodlands and firebreaks) at the landscape scale and the composition of understorey vegetation at the plot scale. Pure effects of plot variables explained the largest part of community variation (12.8%), but landscape factors explained an additional, independent part (6.7%). Firebreaks were characterized by a higher species richness and both firebreaks and deciduous woodlands harboured species not or rarely found in pine stands. Despite the forest-dominated landscape, typical forest butterflies were rare and mainly found in the deciduous woodlands. Threatened species, such as Coenonympha oedippus and Euphydryas aurinia, were found in pine stands and in firebreaks, but were more abundant in the latter. In the studied plantation forest, the conservation of butterflies depends mainly on the preservation of semi-natural habitats, an adequate understorey management and the maintenance of soil moisture levels.  相似文献   

8.
Cloud forests in central Guatemala are fragmented and decreasing in area due to slash-and-burn agricultural activities. We studied bird species composition, abundance, guild composition, and site tenacity of a 102 ha plot located in a cloud forest region of the Sierra Yalijux in Guatemala, half of which was primary forest and half young secondary forest (<7-years-old). Of the 100 species present 14 were restricted to the Endemic Bird Area ‘Northern Central American highlands’ (i.e. 66% of a total of 21 endemics). Five of the 100 analysed species, including one of the restricted-range species (Troglodytes rufociliatus), had a significantly different abundance in primary and secondary forests. Theoretical analysis suggests that seven species out of a community comprised of 141 bird species are already extirpated and only three out of the 14 present restricted-range species might survive the current state of deforestation. Insectivores were the dominant guild on the plot in terms of numbers of species, followed by omnivores, frugivores and granivores. However, in terms of individuals, omnivores made up nearly half of the bird individuals in primary forest, but declined by 44% in secondary forest, whereas granivores more than doubled in this habitat type. Numbers of species per guild were not significantly different between habitats, while numbers of individuals per guild were significantly different. In general, individuals per species are significantly different in the two habitats. Results suggest that most of the species that are currently surviving in the remnant forests of the Sierra Yalijux might be fairly well adapted to a range of forest conditions, but that populations of a number of restricted-range species might be small. Even generalists species like the Common Bush Tanager (Chlorospingus ophthalmicus) are less abundant in secondary vegetation than in primary forest of the study plot.  相似文献   

9.
Abstract: Shrubland birds are declining throughout the eastern United States. To manage scrub-shrub habitats for birds, managers need information on avian habitat relationships. Past studies have produced contradictory results in some cases and may be of limited generality because of site- and habitat-specific factors. We studied shrubland birds across 6 habitats in 3 New England states to provide more general information on habitat relationships than has been possible in past studies. Our study sites included all major scrub-shrub habitats in New England: wildlife openings, regenerating clear-cuts, beaver ponds, utility rights-of-way, pitch pine (Pinus rigida) woodlands, and scrub oak (Quercus ilicifolia) barrens and ranged from Connecticut to northern New Hampshire, with research conducted from 2002 to 2007. Using N-mixture models of repeated point counts, we found that 6 of 12 shrubland birds preferred areas with greater shrub cover. An additional 4 species appeared to prefer areas with lower-stature vegetation and greater forb cover. Eight of 10 bird species showed relationships with cover of individual plant species, with Spiraea spp., willows (Salix spp.), alders (Alnus spp.), and invasive exotics being the most important. We recommend that shrubland management for birds focus on providing 2 distinct habitats: 1) areas of tall (>1.5 m) vegetation with abundant shrub cover and 2) areas of lower (<1.5 m) vegetation with abundant forb cover but fewer shrubs.  相似文献   

10.
We compared bird community responses to the habitat transitions of rainforest‐to‐pasture conversion, consequent habitat fragmentation, and post‐agricultural regeneration, across a landscape mosaic of about 600 km2 in the eastern Australian subtropics. Birds were surveyed in seven habitats: continuous mature rainforest; two size classes of mature rainforest fragment (4–21 ha and 1–3 ha); regrowth forest patches dominated by a non‐native tree (2–20 ha, 30–50 years old); two types of isolated mature trees in pasture; and treeless pasture, with six sites per habitat. We compared the avifauna among habitats and among sites, at the levels of species, functional guilds, and community‐wide. Community‐wide species richness and abundance of birds in pasture sites were about one‐fifth and one‐third, respectively, of their values in mature rainforest (irrespective of patch size). Many measured attributes changed progressively across a gradient of increased habitat simplification. Rainforest specialists became less common and less diverse with decreased habitat patch size and vegetation maturity. However, even rainforest fragments of 1–3 ha supported about half of these species. Forest generalist species were largely insensitive to patch size and successional stage. Few species reached their greatest abundance in either small rainforest fragments or regrowth. All pastures were dominated by bird species whose typical native habitats were grassland, wetland, and open eucalypt forest, while pasture trees modestly enhanced local bird communities. Overall, even small scattered patches of mature and regrowth forest contributed substantial bird diversity to local landscapes. Therefore, maximizing the aggregate rainforest area is a useful regional conservation strategy.  相似文献   

11.
Interactions between competing species may be intensified when they are restricted to small patches of remnant habitat, potentially increasing physiological stress in individuals. The effects of interspecific competition on stress in wildlife remain largely unexplored. In Australia, remnant woodlands are often dominated by aggressive honeyeaters, especially the noisy miner (Manorina melanocephala). Harassment of smaller birds by miners may result in their exclusion from suitable woodland habitat. We tested whether the presence of noisy miners is also associated with elevated stress in a model species of small passerine bird, the superb fairy‐wren (Malurus cyaneus). We sampled wrens from six sites, three remnant woodlands with noisy miners and three larger fragments of reserved habitat without noisy miners. Differential white blood cell counts were used to infer levels of chronic stress. We also assessed variation in body condition and the prevalence of blood parasites (Haemoproteus spp.) to test for associations between stress and parasitemia. The mean heterophil‐to‐lymphocyte (H:L) ratio was 1.8 × higher among superb fairy‐wrens living in miner‐dominated woodlands, suggesting higher levels of chronic stress. Individuals with higher stress appeared to be in poorer condition, as indicated by fat scores and residual body mass. Prevalence of blood parasites was generally high and was highest in reserved habitat (59%) where miners were absent. Birds with blood parasites living in these habitats had higher H:L ratios but the intensity of infection and H:L ratio was inversely related. Our results suggest that birds persisting in the presence of noisy miners might experience chronic stress, but further study is necessary to separate the relative importance of noisy miner aggression from other potential stressors in small patches of degraded woodland. Stress induced by interspecific aggression should be considered in future studies of wildlife living in remnant vegetation.  相似文献   

12.
The movement ability of species in fragmented landscapes must be considered if habitat restoration strategies are to allow maximum benefit in terms of increased or healthier wildlife populations. We studied movements of a range of bird species between woodland patches within a high‐altitude Polylepis/matrix landscape in the Cordillera Vilcanota, Peru. Movement rates between Polylepis patches differed across guilds, with arboreal omnivores, arboreal sally‐strikers and nectarivores displaying the highest movement rates, and understorey guilds and arboreal sally‐gleaners the lowest movement rates. Birds tend to avoid flights to more distant neighboring patches, especially when moving from patches which were themselves isolated. The decline in bird flight frequencies with increasing patch isolation followed broken‐stick models most closely, and while we suggest that there is evidence for a decline in between‐patch movements over distances of 30–210 m, there was great variability in movement rates across individual patches. This variability is presumably a result of complex interactions between patch size, quality and configuration, and flight movement patterns of individual bird species. Our study does, however, highlight the contribution small woodland patches make toward fragmented Polylepis ecosystem functioning, and we suggest that, where financial resources permit, small patch restoration would be an important compliment to the restoration of larger woodland patches. Most important is that replanting takes place within 200 m or so of existing larger patches. This will be especially beneficial in allowing more frequent use of woodland elements within the landscape and in improving the total area of woodland patches that are functionally connected.  相似文献   

13.
Overabundant native species can have a significant cascading effect on other components of wildlife, and those that deplete other species, often promoted by anthropogenic change to vegetation cover and habitat, are called reverse keystone species. Birds in the genus Manorina are widely reported as being such species, and in highly disturbed or fragmented environments, and some intact environments, noisy miners Manorina melanocephala can have a strong negative effect on small passerine species via hyper‐aggressive mobbing. The tropical savannas of northern Australia consist of largely unmodified woodlands, and two species of Manorina occur naturally in this region: the noisy miner and the yellow‐throated miner Manorina flavigula. Therefore, what effect do these species have on bird assemblage in predominantly continuous habitats, relative to other typical determinants of avifauna assemblage such as vegetation structure? We used data collected from bird surveys at 511 sites across northern Queensland (179 noisy miner M. melanocephala sites, 332 yellow‐throated miner M. flavigula sites) between 1998 and 2010. We examined the variation in bird composition at each site due to increasing abundance of Manorina spp. using uni‐ and multivariate techniques. We found total bird richness was significantly lower in sites where noisy and yellow‐throated miner abundances were highest, and passerine species seemed most affected. For species, 45 species varied significantly in abundance with increasing miner numbers, and the overall effect of yellow‐throated miners on other birds seemed more pronounced. However, vegetation structure was generally an equal or more important predictor of avifauna richness and abundance. We conclude that despite the superficially intact nature of northern Australian woodlands, pastoral intensification or poor land management might create disturbances that facilitate increases in the abundance of Manorina, causing localized overabundance and a compounding negative effect on other native bird species.  相似文献   

14.
Buffel grass (Cenchrus ciliaris) has been established in Ulu?u‐Kata Tjut a National Park since 1968. To date, the influence of buffel grass on the Park's flora and fauna has been largely unassessed. The objectives of this study were to determine if buffel grass dominates vegetation communities at the base of Ulu?u and if buffel grass habitats are associated with lower reptile and amphibian species richness than endemic vegetation communities. We used vegetation transects to measure the amount of buffel grass and genera of endemic vegetation at 26 sampling locations around the base of Ulu?u. The vegetation survey data were paired with pitfall trap data from reptile and amphibian captures at the same sampling locations. Indicator species analysis and non‐metric multidimensional scaling were used to analyse the vegetation and herpetofaunal community data. Our analyses determined five distinct vegetation communities around Ulu?u. At the base of Ulu?u, buffel grass dominated half of sampled areas and the rest of the inselberg's base was dominated by Themeda grasses. Buffel grass habitats had significantly higher herpetofaunal species richness than the Themeda habitats that dominated other areas at Ulu?u's base. Herpetofauna species richness in buffel grass‐dominated habitats was also significantly higher than all vegetation communities except for Triodia‐dominated habitats. These observations do not directly indicate that buffel grass presence promotes higher species richness of reptiles and amphibians since the observed patterns may be driven by factors such as proximity to breeding sites and abiotic variables not directly related to the grass itself.  相似文献   

15.
Question: Is the modern patchy distribution of highly biodiverse Polylepis woodlands a consequence of human activity or natural fluctuations in environmental conditions? What are the consequences of changing climate for the tree genus Polylepis? Location: High central tropical Andes. Methods: We characterized the ecological baseline conditions for Polylepis woodlands over the last ca. 370 000 years through: (i) examination of fossil pollen records (Salar de Uyuni and Lake Titicaca) and (ii) a review of autecological information concerning Polylepis. Results: Fossil pollen data revealed fluctuations in the abundance (ca. 0‐34%) of Polylepis pollen before the arrival of humans in South America (>12 000 years ago), indicating that Polylepis did not form permanent continuous woodland before the arrival of humans and that climatic factors can drive rapid vegetation change. Autecological assessment of Polylepis revealed: (i) negative moisture balance, (ii) fire, (iii) waterlogging, and (iv) cloud cover to be critical in determining the niche space available for Polylepis. Conclusions: Polylepis niche space in the central Andes was at a maximum during warm and wet conditions in the past, but might be at a minimum during the warmer and drier than modern conditions predicted for later this century. The sensitivity to past global climate change emphasizes the need for conservation planners to consider model predictions of a warmer central Andes in the coming decades when developing planting schemes. Natural fluctuations in woodland abundance suggest the most effective way for conservation efforts to “mimic” the natural baseline would be to develop a reproductively connected patchwork of communities.  相似文献   

16.
The mosaic of trees, shrubs and open grassland in mesic African savannas is highly dynamic and strongly influenced by mammal herbivory and fire. We investigated the bird fauna in four different savanna habitats to help assess the impacts of vegetation change on this component of faunal diversity. Birds were censused, plant species were identified and vegetation structure was measured in four different vegetation types (Acacia nilotica woodland, Acacia nigrescens woodland, broadleaf thicket and open grassland) in the Hluhluwe-Umfolozi Park in northern KwaZulu Natal, South Africa. Multivariate ordination analyses were used to determine the relative importance of vegetation structure and floristic composition in defining bird assemblages. The bird communities of the grasslands, the acacia woodlands, and the broadleaf woodlands were clearly separated on the first axis of the detrended canonical correspondence analysis (DCCA). Canopy cover and foliage height diversity (FHD) were strongly correlated with the first axis of DCCA, possibly reflecting a secondary successional series from grassland to woodland, known as bush encroachment. Floristic composition (based on presence–absence data only) seemed to be less important for bird community composition than vegetation structure. The results indicate that changes in vegetation structure, caused by bush encroachment, could cause concomitant changes in bird community composition.  相似文献   

17.
There is a long‐standing debate on whether the occurrence of the iconic high‐Andes Polylepis woodlands as small and isolated fragments is of natural or anthropogenic origin. We make inferences regarding the fragmentation history based on both a new population genetic study on P. besseri and a synthesis of available studies on the population genetics of Polylepis woodlands. We infer the timing of the main woodland fragmentation event by analysing: (1) the remaining levels of population genetic diversity and the relation to population size; (2) among‐population genetic differentiation; and (3) the difference in genetic diversity between the offspring and adult generation. We retrieved seven publications on the population genetics of five Polylepis spp. We did not find a relationship between population size and genetic diversity, and genetic differentiation was low compared with that reported for similar plant species. These findings do not support a history of long‐term fragmentation. The offspring showed a loss of genetic diversity and increasing differentiation compared with adults, suggesting that the main habitat fragmentation event is of relatively recent origin. For P. besseri, no significant differences were found between the adult and offspring genetic variation. We discuss the conservation and restoration consequences for this important high‐Andean genus. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 544–554.  相似文献   

18.
Invasion of riparian habitats by non‐native plants is a global problem that requires an understanding of community‐level responses by native plants and animals. In the Great Plains, resource managers have initiated efforts to control the eastward incursion of Tamarix as a non‐native bottomland plant (Tamarix ramosissima) along the Cimarron River in southwestern Kansas, United States. To understand how native avifauna interact with non‐native plants, we studied the effects of Tamarix removal on riparian bird communities. We compared avian site occupancy of three foraging guilds, abundance of four nesting guilds, and assessed community dynamics with dynamic, multiseason occupancy models across three replicated treatments. Community parameters were estimated for Tamarix‐dominated sites (untreated), Tamarix‐removal sites (treated), and reference sites with native cottonwood sites (Populus deltoides). Estimates of initial occupancy (ψ2006) for the ground‐to‐shrub foraging guild tended to be highest at Tamarix‐dominated sites, while initial occupancy of the upper‐canopy foraging and mid‐canopy foraging guilds were highest in the treated and reference sites, respectively. Estimates of relative abundance for four nesting guilds indicated that the reference habitat supported the highest relative abundance of birds overall, although the untreated habitat had higher abundance of shrub‐nesters than treated or reference habitats. Riparian sites where invasive Tamarix is dominant in the Great Plains can provide nesting habitat for some native bird species, with avian abundance and diversity that are comparable to remnant riparian sites with native vegetation. Moreover, presence of some native vegetation in Tamarix‐dominated and Tamarix‐removal sites may increase abundance of riparian birds such as cavity‐nesters. Overall, our study demonstrates that Tamarix may substitute for native flora in providing nesting habitat for riparian birds at the eastern edge of its North American range.  相似文献   

19.
We compared wintering bird communities and their habitats among three shoals at Jiuduansha, a newly-formed wetland in the Yangtze River estuary. The highest species richness and diversity were recorded in Shangsha, which is the highest shoal, and the highest abundance and lowest species diversity were recorded in Xiasha, which is the lowest shoal. Shangsha had the largest abundance of perching birds whereas Xiasha was the most abundant in waterbirds. Bird assemblages showed different associations with the different habitat types—perching birds were favored by reed (Phragmites australis) communities, shallow water foragers and dabbling ducks preferred sea-bulrush (Scirpus mariqueter) communities, and moist-soil foragers and gulls showed a preference for bare intertidal zones. All bird assemblages, however, avoided the smooth cordgrass (Spartina alterniflora) communities, which are dominated by an alien invasive plant. The composition of avian communities was related to habitat types at the three shoals. Our results suggest that the newly-formed tidelands can provide suitable habitats for waterbirds and that the lower tidelands can attract more waterfowl than the higher tidelands. Because the shoal with low species diversity could have exclusive bird species, conservation efforts should not concentrate only on the area with high species diversity. The estuarine wetlands should be considered as a whole when conservation strategies are designed. The alien invasive plant should, moreover, be effectively controlled, to provide suitable habitats for birds.  相似文献   

20.
Smooth cordgrass (Spartina alterniflora) is one of the most invasive exotic plants of saltmarshes worldwide. To understand the effects of smooth cordgrass invasion on the habitat use and selection by breeding saltmarsh birds, we compared species number and abundance of breeding birds in native reed (Phragmites australis) and smooth cordgrass-invaded habitats (reed-cordgrass mixed habitats and cordgrass monocultures) at Chongming Dongtan in the Yangtze River estuary, China. We further examined the similarity of bird communities in different habitats and habitat selection by dominant bird species. For saltmarsh generalists, species number and abundance did not differ among the habitats. For saltmarsh specialists, species number and abundance did not differ in reed monocultures and reed-cordgrass mixed habitats but were significantly lower in cordgrass monocultures than in reed monocultures and reed-cordgrass mixed habitats. ANOSIM indicated that the difference in bird communities was larger between cordgrass monocultures and the habitats with reed than between the habitats with reed. The saltmarsh specialists preferred reed monocultures, while saltmarsh generalists avoided reed monocultures. Most species indicated no selection (neither preferred nor avoided) on reed-cordgrass mixed habitats, and no species preferred the cordgrass monocultures. The use of cordgrass monocultures by the common saltmarsh birds was negatively related to their body size. This study suggests that the spread of exotic smooth cordgrass has greatly affected the species composition and structure of local bird communities and has been especially disadvantageous to the saltmarsh specialists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号