首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3β (GSK3β) and 70kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3β at Ser(9) and, to a lesser extent, Thr(390), the dephosphorylation of p70S6K at Thr(389), and the phosphorylation of p70S6K at Thr(421) and Ser(424). The specific p38 inhibitor SB203080 reduced the p-GSK3β(Ser9) and autophagy through the phosphorylation of p70S6K(Thr389); however, it augmented the levels of p-ERK, p-GSK3β(Thr390), and p-70S6K(Thr421/Ser424) induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our data show that proteasome inhibition regulates p38/GSK(Ser9)/p70S6K(Thr380) and ERK/GSK3β(Thr390)/p70S6K(Thr421/Ser424) kinase signaling, which is involved in cell survival and cell death.  相似文献   

2.
Expanded polyglutamine (polyQ) proteins are known to be the causative agents of a number of human neurodegenerative diseases but the molecular basis of their cytoxicity is still poorly understood. PolyQ tracts may impede the activity of the proteasome, and evidence from single cell imaging suggests that the sequestration of polyQ into inclusion bodies can reduce the proteasomal burden and promote cell survival, at least in the short term. The presence of misfolded protein also leads to activation of stress kinases such as p38MAPK, which can be cytotoxic. The relationships of these systems are not well understood. We have used fluorescent reporter systems imaged in living cells, and stochastic computer modeling to explore the relationships of polyQ, p38MAPK activation, generation of reactive oxygen species (ROS), proteasome inhibition, and inclusion body formation. In cells expressing a polyQ protein inclusion, body formation was preceded by proteasome inhibition but cytotoxicity was greatly reduced by administration of a p38MAPK inhibitor. Computer simulations suggested that without the generation of ROS, the proteasome inhibition and activation of p38MAPK would have significantly reduced toxicity. Our data suggest a vicious cycle of stress kinase activation and proteasome inhibition that is ultimately lethal to cells. There was close agreement between experimental data and the predictions of a stochastic computer model, supporting a central role for proteasome inhibition and p38MAPK activation in inclusion body formation and ROS-mediated cell death.  相似文献   

3.
Inhibition of proteasome activity occurs in normal aging and in a wide variety of neurodegenerative conditions including Alzheimer's disease and Parkinson's disease. Although each of these conditions is also associated with mitochondrial dysfunction potentially mediated by proteasome inhibition, the relationship between proteasome inhibition and the loss of mitochondrial homeostasis in each of these conditions has not been fully elucidated. In this study, we conducted experimentation in order to begin to develop a more complete understanding of the effects proteasome inhibition has on neural mitochondrial homeostasis. Mitochondria within neural SH-SY5Y cells exposed to low level proteasome inhibition possessed similar morphological features and similar rates of electron transport chain activity under basal conditions as compared with untreated neural cultures of equal passage number. Despite such similarities, maximal complex I and complex II activities were dramatically reduced in neural cells subject to proteasome inhibition. Proteasome inhibition also increased mitochondrial reactive oxygen species production, reduced intramitochondrial protein translation, and increased cellular dependence on glycolysis. Finally, whereas proteasome inhibition generated cells that consistently possessed mitochondria located in close proximity to lysosomes with mitochondria present in the cellular debris located within autophagosomes, increased levels of lipofuscin suggest that impairments in mitochondrial turnover may occur following proteasome inhibition. Taken together, these data demonstrate that proteasome inhibition dramatically alters specific aspects of neural mitochondrial homeostasis and alters lysosomal-mediated degradation of mitochondria with both of these alterations potentially contributing to aging and age-related disease in the nervous system.  相似文献   

4.
Numerous studies suggest that proteasome inhibition may play a causal role in mediating the increased levels of protein oxidation and neuron death observed in conditions associated with oxidative stress. In the present study we demonstrate that administration of non-toxic levels of oxidative stress does not result in impairment of 20S/26S proteasome activity, and actually increases the expression of specific proteasome subunits. Non-toxic levels of oxidative stress were observed to elevate the amount of protein oxidation in the presence of preserved proteasomal function, suggesting that proteasome inhibition may not mediate increases in protein oxidation following low-level oxidative stress. Preserving basal proteasome function appears to be critical to preventing the neurotoxicity of low-level oxidative stress, based on the ability of proteasome inhibitor treatment to exacerbate oxidative stress toxicity. Taken together, these data indicate that maintaining neural proteasome function may be critical to preventing neurotoxicity, but not the increase in protein oxidation, following low-level oxidative stress.  相似文献   

5.
Hexavalent chromium [Cr(VI)] is a carcinogenic genotoxin commonly found in industry and the environment. DNA damage resulting from Cr(VI) exposure triggers numerous stress responses, including activation of cell cycle checkpoints and initiation of apoptosis. Mechanisms controlling these responses, while extensively studied, have yet to be fully elucidated. Here, we demonstrate that the p38 mitogen-activated protein kinase (MAPK) is activated by Cr(VI) exposure and that inhibition of p38 function using the selective inhibitor SB203580 results in abrogation of S-phase and G2 cell cycle checkpoints in response to Cr(VI). Also, we observe that inhibition of p38 results in decreased cell survival and increased percentage of apoptotic cells following Cr(VI) treatment. Taken together, these results indicate that p38 function is critical for optimal stress response induced by Cr(VI) exposure.  相似文献   

6.
A number of studies have suggested that proteasome inhibition plays a causal role in the neuropathological processes observed in aging, Alzheimer's disease (AD), and Parkinson's disease (PD). Although the effects of acute and toxic proteasome inhibition on neural viability are well documented, at present little is known about the effects of chronic low-level proteasome inhibition on neural homeostasis. In order to address this issue we have established clonal lines of neural SH-SY5Y cells, which were generated after continual exposure to low concentrations of a pharmacological proteasome inhibitor. We have recently utilized these clonal cell lines to demonstrate that chronic low-level proteasome inhibition induces neural alterations that are highly relevant to aging, AD, and PD. The focus of this study was to elucidate the alterations in gene expression that occurred in our clonal cell lines after chronic low-level proteasome inhibition. Taken together, data presented in this report indicate that, although chronic low-level proteasome inhibition alters the expression of a limited number of genes (less than 0.8%), it is observed to significantly alter the expression of genes within specific categories that are highly relevant to aging, AD, and PD. Perhaps just as importantly, our analysis revealed that the vast majority of genes altered by chronic low-level proteasome inhibition have not been significantly characterized, suggesting that proteasome inhibition may mediate effects on neural homeostasis through as yet unidentified cellular processes.  相似文献   

7.
Oxaliplatin, a platinum derivative cancer drug, has been used for treating human colorectal cancers. Survivin has been proposed as a cancer target, which highly expressed in most cancer cells but not normal adult cells. In this study, we investigated the regulation of survivin expression by exposure to oxaliplatin in human colon cancer cells. Oxaliplatin (3–9 μM for 24 h) markedly induced cytotoxicity, proliferation inhibition and apoptosis in the human RKO colon cancer cells. The survivin protein expression of RKO cells is dramatically reduced by oxaliplatin; however, the survivin gene expression is slightly altered. The survivin blockage of oxaliplatin elevated caspase-3 activation and apoptosis in RKO cells. Over-expression of survivin proteins by transfection with a survivin-expressed vector resisted the oxaliplatin-induced cancer cell death. Meantime, oxaliplatin elicited the phosphorylation of p38 mitogen-activated protein (MAP) kinase. SB202190, a specific p38 MAP kinase inhibitor, restored the survivin protein level and attenuated oxaliplatin-induced cancer cell death. In addition, oxaliplatin increased the levels of phospho-p53 (Ser-15) and total p53 proteins. Inhibition of p53 expression by a specific p53 inhibitor pifithrin-α reduced the phosphorylated p38 MAP kinase and active caspase-3 proteins in the oxaliplatin-exposed RKO cells. In contrast, SB202190 did not alter the oxaliplatin-induced p53 protein level. Furthermore, treatment with a specific proteasome inhibitor MG132 restored survivin protein level in the oxaliplatin-treated colon cancer cells. Taken together, our results demonstrate for the first time that survivin is down-regulated by p38 MAP kinase and proteasome degradation pathway after treatment with oxaliplatin in the human colon cancer cells.  相似文献   

8.
9.
Zhu X  Mei M  Lee HG  Wang Y  Han J  Perry G  Smith MA 《Neurochemical research》2005,30(6-7):791-796
Amyloid-β is a leading candidate factor in the development of Alzheimer disease (AD), however the mechanisms involved are unclear. As such, there has been considerable interest in evidence showing that the neuronal damage caused by amyloid-β is mediated by oxidative stress. Notably, oxidative stress leads to activation of stress-activated protein kinases, which we and others have shown are also involved in AD pathogenesis. One SAPK in particular, p38, appears to be crucial in AD and therefore, in the current study, we investigated the role of p38 activation in amyloid-β cytotoxicity. Our data showed p38 activation was induced by amyloid-β in a concentration-dependent manner in M17 human neuroblastoma cells. Notably, amyloid-β toxicity was significantly decreased by inhibition of p38 activity by overexpressing dominant negative p38. Consistent with this, in primary cortical neurons amyloid-β also induced p38 activation and amyloid-β toxicity was significantly diminished when p38 was inhibited by its specific inhibitor, SB203580. Taken together, these data suggest that p38 is a key downstream effector of amyloid-β-induced neuronal death and blocking this pathway may be of therapeutic value.  相似文献   

10.
11.
Increasing evidence suggests that proteasome inhibition plays a causal role in promoting the neurodegeneration and neuron death observed in multiple disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). The ability of severe and acute inhibition of proteasome function to induce neuron death and neuropathology similar to that observed in AD and PD is well documented. However, at present the effects of chronic low-level proteasome inhibition on neural homeostasis has not been elucidated. In order to determine the effects of chronic low-level proteasome inhibition on neural homeostasis, we conducted studies in individual colonies of neural SH-SY5Y cells that were isolated following continual exposure to low concentrations (100 nm) of the proteasome inhibitor MG115. Clonal cell lines appeared morphologically similar to control cultures but exhibited significantly different rates of both proliferation and differentiation. Elevated levels of protein oxidation and protein insolubility were observed in clonal cell lines, with all clonal cell lines being more resistant to neural death induced by serum withdrawal and oxidative stress. Interestingly, clonal cell lines demonstrated evidence for increased macroautophagy, suggesting that chronic low-level proteasome inhibition may cause an excessive activation of the lysosomal system. Taken together, these data indicate that chronic low-level proteasome inhibition has multiple effects on neural homeostasis, and suggests that studying the effects of chronic low-level proteasome inhibition may be useful in understanding the relationship between protein oxidation, protein insolubility, proteasome function, macroautophagy and neural viability in AD and PD.  相似文献   

12.
Pro-tumorigenic function of the p38 kinase plays a critical role in human cholangiocarcinogenesis. However, the underlying mechanism remains incompletely understood. Here, we report that c-Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), contributes to the pro-tumorigenic ability of p38 in human cholangiocarcinoma cells. Both p38 and c-Met promote the proliferation and invasion of human cholangiocarcinoma cells. Importantly, inhibition or knockdown of p38 decreased the basal activation of c-Met. Tyrosine phosphatase inhibitor studies revealed that p38 promotes the activity of c-Met, at least in part, by inhibiting dephosphorylation of the receptor. Moreover, density enhanced phosphatase-1 (DEP-1) is involved in p38-mediated inhibiting dephosphorylation of c-Met. Furthermore, p38 inhibits the degradation of c-Met. Taken together, these data provide a potential mechanism to explain how p38 promotes human cholangiocarcinoma cell proliferation and invasion. We propose that the link between p38 and c-Met is implicated in the progression of human cholangiocarcinoma.  相似文献   

13.
14.
Pemphigus vulgaris (PV) is an autoimmune skin disease mediated by autoantibodies directed against the cadherin-type cell adhesion molecules desmoglein (Dsg) 3 and Dsg1 and is characterized by loss of keratinocyte cohesion and epidermal blistering. Several intracellular signaling pathways, such as p38MAPK activation and RhoA inhibition, have been demonstrated to be altered following autoantibody binding and to be causally involved in loss of keratinocyte cohesion. In this paper, we demonstrate that cAMP-mediated signaling completely prevented blister formation in a neonatal pemphigus mouse model. Furthermore, elevation of cellular cAMP levels by forskolin/rolipram or β receptor agonist isoproterenol blocked loss of intercellular adhesion, depletion of cellular Dsg3, and morphologic changes induced by Ab fractions of PV patients (PV-IgG) in cultured keratinocytes. Incubation with PV-IgG alone increased cAMP levels, indicating that cAMP elevation may be a cellular response pathway to strengthen intercellular adhesion. Our data furthermore demonstrate that this protective pathway may involve protein kinase A signaling because protein kinase A inhibition attenuated recovery from PV-IgG-induced cell dissociation. Finally, cAMP increase interfered with PV-IgG-induced signaling by preventing p38MAPK activation both in vitro and in vivo. Taken together, our data provide insights into the cellular response mechanisms following pemphigus autoantibody binding and point to a possible novel and more specific therapeutic approach in pemphigus.  相似文献   

15.
Among other cellular responses, tumor necrosis factor (TNF) induces different forms of cell death and the activation of the p38 mitogen-activated protein kinase (MAPK). The influence of p38 MAPK activation on TNF-induced apoptosis or necrosis is controversially discussed. Here, we demonstrate that pharmacological inhibition of p38 MAPK enhances TNF-induced cell death in murine fibroblast cell lines L929 and NIH3T3. Furthermore, overexpression of dominant-negative versions of p38 MAPK or its upstream kinase MKK6 led to increased cell death in L929 cells. While overexpression of the p38 isoforms alpha and beta did not protect L929 cells from TNF-induced toxicity, overexpression of constitutively active MKK6 decreased TNF-induced cell death. Although the used inhibitors of p38 MAPK decreased the phosphorylation of the survival kinase PKB/Akt, this effect could be ruled out as cause of the observed sensitization to TNF-induced cytotoxicity. Finally, we demonstrate that the nuclear factor kappaB (NF-kappaB)-dependent gene expression, shown as an example for the anti-apoptotic gene cellular inhibitor of apoptosis (c-IAP2), was reduced by p38 MAPK inhibition. In consequence, we found that inhibition of p38 MAPK led to the activation of the executioner caspase-3.  相似文献   

16.
The ability of cisplatin (cis‐diamminedichloroplatinum II) toxicity to induce acute kidney injury (AKI) has attracted people's attention and concern for a long time, but its molecular mechanisms are still widely unknown. We found that the expression of transforming growth factor‐β (TGF‐β)‐activated kinase 1 (TAK1) could be increased in kidneys of mice administrated with cisplatin. Autophagy is an evolutionarily conserved catabolic pathway and is involved in various acute and chronic injuries. Moreover, p38 MAPK (mitogen‐activated protein kinase) and ERK regulate autophagy in response to various stimuli. Therefore, our hypothesis is that cisplatin activates TAK1, which phosphorylates p38 and ERK, leading to excessive autophagy of tubular epithelial cells and thus exacerbating kidney damage. Here, BALB/c mice were intraperitoneally injected with a TAK1 inhibitor and were then administrated with sham or cisplatin at 20 mg/kg by intraperitoneal injection. Compared with mice in the vehicle cisplatin group, mice intraperitoneally injected with a TAK1 inhibitor were found to have lower serum creatinine and less tubular damage following cisplatin‐induced AKI. Furthermore, inhibition of TAK1 reduced p38 and Erk phosphorylation, decreased expression of LC3II and reversed the down‐regulation of P62 expression induced by cisplatin. The hypothesis was verified with tubular epithelial cells administrated with cisplatin in vitro. Finally, p38 inhibitor or ERK inhibitor abated autophagy activation and cell viability reduction in tubular epithelial cells treated with cisplatin plus TAK1 overexpression vector. Taken together, our results show that cisplatin activates TAK1, which phosphorylates p38 and ERK, leading to excessive autophagy of tubular epithelial cells that exacerbates kidney damage.  相似文献   

17.
18.
We have previously reported that cyclic strain results in rapid phosphorylation of p38 mitogen activated protein kinase (MAPKs). The aim of this study was to examine the role of protein phosphatase type 2A (PP2A) in regulating p38 MAPK activation in bovine aortic endothelial cells exposed to cyclic strain. In this study, we demonstrate that the catalytic subunit of PP2A is tyrosine phosphorylated by cyclic strain, resulting in inhibition of phosphatase activity. Okadaic acid, an inhibitor of PP2A at lower concentrations increased phosphorylation of p-38. Phospho-p38 MAPK physically associated with the catalytic subunit, PP2Ac. Phospho-p38 MAPK was dephosphorylated by purified PP2Ac in cell lysates, but if pretreated with okadaic acid, phospho-p38 MAPK was maintained. Taken together, our result suggests that PP2A plays a regulatory role in p38 MAPK activation in endothelial cells exposed to cyclic strain.  相似文献   

19.
The 26S proteasome is an ATP-dependent proteolytic complex found in all eukaryotes, archaebacteria, and some eubacteria. Inhibition of the 26S proteasome causes pleiotropic effects in cells, including cellular apoptosis, a fact that has led to the use of the 26S proteasome inhibitor, bortezomib, for treatment of the multiple myeloma cancer. We previously showed that in addition to the effects of proteolysis, inhibition of the 26S proteasome causes a rapid decrease in the protein synthesis rate due to phosphorylating alfa subunit of the eukaryotic translation initiation factor 2 (eIF2alpha) by the heme-regulated inhibitor kinase (HRI). In order to test whether inhibition of the 26S proteasome causes the same effect in cancer cells, we have investigated the influence of two commonly used proteasome inhibitors, bortezomib and MG132, on the phosphorylation status of eIF2alpha in B16F10 melanoma and 4T1 breast cancer cells. It was found that both of the inhibitors caused rapid phosphorylation of eIF2alpha. Taking into account that the Hsp70 is a critical component needed for the HRI activation and enzymatic activity, we have tested a possible participation of this protein in the eIF2alpha phosphorylation event. However, treatment of the cells with two structurally different Hsp70 inhibitors, quercetin and KNK437, in the presence of the proteasome inhibitors did not affect the eIF2alpha phosphorylation. In addition, neither protein kinase C (PKC) nor p38 mitogen-activated protein kinase (MAPK) was required for the proteasome inhibitor-induced eIF2alpha phosphorylation; futhermore, both the PKC inhibitor staurosporine and the p38 MAPK inhibitor SB203580 caused enchanced phosphorylation of eLF2alpha. Zinc (II) protoporphyrine IX (ZnPP), an inhibitor of the heme-oxygenase-1 (HO-1), which has also been previously reported to be involved in HRI activation, also failed to prevent the induction of eIF2alpha phosphorylation in the presence of the proteasome inhibitor bortezomib or MG132.  相似文献   

20.
Kim do Y  Jung MS  Park YG  Yuan HD  Quan HY  Chung SH 《BMB reports》2011,44(10):659-664
As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号