首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A methanogenic bioreactor that utilized wastepaper was developed and operated at 55°C. Microbial community structure analysis showed the presence of a group of clostridia that specifically occurred during the period of high fermentation efficiency. To isolate the effective cellulose digester, the sludge that exhibited high fermentation efficiency was inoculated into a synthetic medium that contained cellulose powder as the sole carbon source and was successively cultivated. A comprehensive 16S rRNA gene sequencing study revealed that the enriched culture contained various clostridia that had diverse phylogenetic positions. The microorganisms were further enriched by successive cultivation with filter paper as the substrate, as well as the bait carrier. A resultant isolate, strain EBR45 (= Clostridium sp. strain NBRC101661), was a new member of the order Clostridiales phylogenetically and physiologically related to Clostridium thermocellum and Clostridium straminisolvens. Specific PCR-based monitoring demonstrated that strain EBR45 specifically occurred during the high fermentation efficiency period in the original methanogenic sludge. Strain EBR45 effectively digested office paper in its pure cultivation system with a synthetic medium.  相似文献   

2.
Industrial and culture collection strains of solvent-producing clostridia, classified as Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharobutylicum, and Clostridium saccharoperbutylacetonicum were utilised in a comparative study of fermentation performance in a laboratory fermentation medium, a molasses fermentation medium, and a maize fermentation medium under standardised culture conditions. At least one representative strain was selected from each of the sub-groups within the four species. Preliminary evaluations were first undertaken for the three different fermentation media to determine the most appropriate media formulations, carbohydrate concentrations, and culture conditions for comparison of the solvent-producing ability of these strains. Standardised fermentation media and culture conditions were then selected for each of the comparative fermentation studies. These included TYA medium containing 4% glucose, a supplemented molasses medium containing 6% fermentable sugars, and a supplemented maize mash medium containing 8% maize. Additional comparative fermentation studies on industrial strains belonging to two species of solvent-producing clostridia were carried out in molasses containing higher concentrations of fermentable sugars, and the sugar concentrations supporting maximum levels of solvent production were determined. Although all the strains tested grew in the maize fermentation medium and degraded starch, only a few strains produced consistently high solvent levels. Optimum starch utilisation and solvent production was obtained at a maize concentration of 80 g/l. Pretreatment of the maize by milling or saccharification decreased the buffering capacity of the medium and resulted in decreased solvent production. Decreasing the time used to gelatinise the starch had little effect. Solvent yields and concentrations obtained in this study were compared with various published data in the scientific and patent literature and appeared to closely simulate the results obtained in the industrial fermentation process. The fermentation performances of individual strains could provide useful comparative data for the selection and development of strains for use on various commercial fermentation substrates.  相似文献   

3.
Cellulose fermentation studies were conducted with a thermotolerant strain of Aspergillus terreus. Batch cultivation of A. terreus using purified or complex cellulose showed that 80-88% of the available cellulose was utilized in 30-36 h with an average doubling time of 7.5-8.3 h. The protein content in the biomass ranged from 23 to 38%. Semicontinuous cultivation studies, in which 90% of the biomass was withdrawn at the end of growth cycle, indicated that 84% of added cellulose was utilized with the biomass containing 32% crude protein. No loss in cellulose consumption, growth rate, or protein production occurred through two growth cycles. Continuous cultivation of A. terreus showed that 78-84% cellulose consumption occurred over growth temperatures ranging from 35 to 45 degrees C. Maximum specific growth rates (0.14 h(-1)) occurred at 40 and 45 degrees C with a minimum doubling time of 4.9 h.  相似文献   

4.
One hundred and seventy-eight new butanol-acetone producing bacteria related to saccharolytic clostridia were isolated from agricultural sources in Colombia and their fermentation potential was evaluated. Thirteen isolates produced more total solvents from glucose than Clostridium acetobutylicum ATCC 824. The isolates with the highest single solvent production were IBUN 125C and IBUN 18A with 0.46 mol butanol and 0.96 mol ethanol formed from 1 mol glucose, yielding 25. 2 and 29.1 g l(-1) total solvents, respectively, which is close to the maximum values described to date. Most of the new isolates produced exoenzymes for the hydrolysis of starch, carboxymethyl cellulose, xylan, polygalacturonic acid, inulin and chitosan. Together with the high efficiency of solvent production, these hydrolytic isolates may be useful for the direct fermentation of biomass. According to their physiological profile, the most solvent-productive isolates could be classified as strains of C. acetobutylicum, Clostridium beijerinckii, and Clostridium NCP262.  相似文献   

5.
【目的】合成气发酵对大力开发可再生资源和促进国家可持续发展具有重要意义,研究旨在探究不同生境微生物转化H2/CO2产乙酸及其合成气发酵的潜力。【方法】采集剩余污泥、牛粪、产甲烷污泥和河道底物样品在中温(37 °C)条件下生物转化H2/CO2气体,将来源于牛粪样品的H2/CO2转化富集物用于合成气发酵,通过454高通量技术和定量PCR技术分析复杂微生物群落的组成,GC气相色谱法检测气体转化产生的挥发性脂肪酸(VFAs)浓度。【结果】牛粪和剩余污泥微生物利用H2/CO2气体生成乙酸、乙醇和丁酸等,最高乙酸浓度分别为63 mmol/L和40 mmol/L,明显高于河道底物和产甲烷污泥样品的最高乙酸浓度3 mmol/L和16 mmol/L。牛粪和剩余污泥微生物中含有种类多样化的同型产乙酸菌,剩余污泥中同型产乙酸菌主要为Clostridium spp.、Sporomusa malonica和Acetoanaerobium noterae,牛粪中则为Clostridium spp.、Treponema azotonutricium和Oxobacter pfennigii。【结论】同型产乙酸菌的丰富度和数量两个因素都对复杂微生物群落转化H2/CO2产乙酸效率至关重要;转化H2/CO2得到的富集物可用于合成气发酵产乙酸和乙醇,这为基于混合培养技术的合成气发酵提供了依据。  相似文献   

6.
Cellulolytic clostridia have evolved to catabolize lignocellulosic materials at a seasonal biorhythm, so their biotechnological exploitation requires genetic improvements. As high carbon flux leads to pyruvate accumulation, which is responsible for the cessation of growth of Clostridium cellulolyticum, this accumulation is decreased by heterologous expression of pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis. In comparison with that of the wild strain, growth of the recombinant strain at the same specific rate but for 145 h instead of 80 h led to a 150% increase in cellulose consumption and a 180% increase in cell dry weight. The fermentation pattern was shifted significantly: lactate production decreased by 48%, whereas the concentrations of acetate and ethanol increased by 93 and 53%, respectively. This study demonstrates that the fermentation of cellulose, the most abundant and renewable polymer on earth, can be greatly improved by using genetically engineered C. cellulolyticum.  相似文献   

7.
The methanogenic strain MM isolated from an anaerobic microbial community degrading p-toluene sulfonate showed optimal values of temperature and pH for growth equal to 37 degrees C and 6.3-6.9, respectively. The doubling times of the isolate grown on methanol, acetate, and methylamines under the optimal conditions were 8.8, 19.1, and 10.3-28.1 h, respectively. The growth of strain MM was observed only when the cultivation medium contained casamino acids or p-toluene sulfonate. The G + C content of the DNA of the isolate was 40.3 mol%. This, together with DNA-DNA hybridization data, allowed the new isolate to be identified as a strain of the species Methanosarcina mazei. The new isolate differed from the known representatives of this species in that it was resistant to alkylbenzene sulfonates and able to demethylate p-toluene sulfonate when grown on acetate.  相似文献   

8.
The thermophilic, anaerobic, propionate-oxidizing bacterial populations present in the methanogenic granular sludge in a thermophilic (55 degrees C) upflow anaerobic sludge blanket reactor were studied by cultivation and in situ hybridization analysis. For isolation of propionate-degrading microbes, primary enrichment was made with propionate as the sole energy source at 55 degrees C. After several attempts to purify the microbes, a thermophilic, syntrophic, propionate-oxidizing bacterium, designated strain SI, was isolated in both pure culture and coculture with Methanobacterium thermoautotrophicum. Under thermophilic (55 degrees C) conditions, strain SI oxidized propionate, ethanol, and lactate in coculture with M. thermoautotrophicum. In pure culture, the isolate was found to ferment pyruvate. 16S ribosomal DNA sequence analysis revealed that the strain was relatively close to members of the genus Desulfotomaculum, but it was only distantly related to any known species. To elucidate the abundance and spatial distribution of organisms of the strain SI type within the sludge granules, a 16S rRNA-targeted oligonucleotide probe specific for strain SI was developed and applied to thin sections of the granules. Fluorescence in situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells were present in the middle and inner layers of the thermophilic granule sections and that they formed close associations with hydrogenotrophic methanogens. They accounted for approximately 1.1% of the total cells in the sludge. These results demonstrated that strain SI was one of the significant populations in the granular sludge and that it was responsible for propionate oxidation in the methanogenic granular sludge in the reactor.  相似文献   

9.
A stable cellulose-degrading microflora enriched from composting materials has been analyzed in our laboratory. Cellulose-degrading efficiency of an anaerobic cellulolytic isolate, Clostridium straminisolvens CSK1, was remarkably lower than that of the original microflora. We successfully constructed bacterial communities with effective cellulose degradation by mixing C. straminisolvens CSK1 with aerobic non-cellulolytic bacteria isolated from the original microflora. Comparison of the cellulose degradation processes of the pure culture of C. straminisolvens CSK1 and the mixed-culture indicated that non-cellulolytic bacteria essentially contribute to cellulose degradation by supplying anaerobic environment, consuming metabolites, which otherwise deteriorate the cellulolytic activity, and by neutralizing pH.  相似文献   

10.
The cellulolytic complex was isolated from the culture supernatant of Ruminococcus albus strain F-40 grown on cellulose by a Sephacryl S-300HR column chromatography. The molecular mass of the cellulolytic complex was found to be larger than 1.5 x 10(6) Da. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the cellulolytic complex contained at least 15 proteins with molecular weights from 40kDa to 250 kDa. Among them, 11 proteins showed endoglucanase and/or xylanase activities on the zymograms. Immunological analysis using an antiserum raised against the dockerin domain of endoglucanase VII of R. albus (DocVII) suggested that at least 7 proteins in the cellulolytic complex contained a dockerin domain immunoreactive with the anti-Doc-VII antiserum. Furthermore, DocVII was shown to specifically interact with a 40-kDa protein of the cellulolytic complex by Far-Western blot analysis. These results strongly suggest that the cellulolytic complex produced by R. albus resembles the cellulosome specified for the cellulolytic complex of several clostridia such as Clostridium thermocellum and respective components are assembled into the cellulosome by the mechanism common in all of the cellulolytic clostridia, i.e., the cellulosome is formed by the interaction between a dockerin domain of catalytic components and a cohesin domain of a scaffolding protein.  相似文献   

11.
Genetic systems development in the clostridia   总被引:1,自引:0,他引:1  
Abstract: This review describes recent developments in the genetic manipulation of the solventogenic clostridia, Clostridium acetobutylicum and C. beijerinckii . It is to be noted that our laboratory stock of C. acetobutylicum ATCC 824, which was obtained from the American Type Culture Collection, has recently been re-identified as C. beijerinckii NCIMB 8052 based on DNA similarity studies using the S1 nuclease method (personal communication, Dr. Jiann-Shin Chen, Virginia Polytechnic Institute and State University). Reference to our laboratory 824 culture has been changed to C. beijerinckii NCIMB 8052 throughout this paper in order to be consistent with this finding. The focus of this review specifically involves the characterization of an M13-like genetic system for the clostridia based on the pCAK1 phagemid, as well as preliminary work on development of a plasmid-based vector based on the indigenous pDM11 plasmid recovered from C. acetobutylicum NCIB 6443. The construction of a C. beijerinckii strain with amplified endoglucanase activity was achieved by inserting the engB gene from C. cellulovorans into C. beijerinckii . The successful expression of a heterologous engB gene from C. cellulovorans in C. beijerinckii NCIMB 8052 has important industrial significance for the eventual utilization of cellulose by this acetone-butanol-ethanol fermentation microorganism.  相似文献   

12.
Hydrogen production by thermophilic anaerobic microflora enriched from sludge compost was studied by using an artificial medium containing cellulose powder. Hydrogen gas was evolved with the formation of acetate, ethanol, and butyrate by decomposition of the cellulose powder. The hydrogen production yield was 2.0 mol/mol-hexose by either batch or chemostat cultivation. A medium that did not contain peptone demonstrated a lower hydrogen production yield of 1.0 mol/mol-hexose with less formation of butyrate. The microbial community in the microflora was investigated through isolation of the microorganisms by both plating and denaturing gradient gel electrophoresis (DGGE) of the' PCR-amplified V3 region of 16S rDNA. Sixty-eight microorganisms were isolated from the microflora and classified into nine distinct groups by genetic fingerprinting of the PCR-DGGE or by a random amplified polymorphic DNA analysis and determination of the partial sequence of 16S rDNA. Most of the isolates belonged to the cluster of the thermophilic Clostridium/Bacillus subphylum of low G+C gram-positive bacteria. Product formation by most of the isolated strains corresponded to that produced by the microflora. Thermoanaerobacterium thermosaccharolyticium was isolated in the enrichment culture with or without added peptone. and was detected with strong intensity by PCR-DGGE. Two other thermophilic cellulolytic microorganisms, Clostridium thermocellum and Clostridium cellulosi, were also detected by PCR-DGGE, although they could not be isolated. These findings imply that hydrogen production from cellulose by microflora is performed by a consortium of several species of microorganisms.  相似文献   

13.
AIMS: To characterize cellulolytic, hydrogen-producing clostridia on a comparable basis. METHODS AND RESULTS: H(2) production from cellulose by six mesophilic clostridia was characterized in standardized batch experiments using MN301 cellulose, Avicel and cellobiose. Daily H(2) production, substrate degradation, biomass production and the end-point distribution of soluble fermentation products varied with species and substrates. All species produced a significant amount of H(2) from cellobiose, with Clostridium acetobutylicum achieving the highest H(2) yield of 2.3 mol H(2) mol(-1) hexose, but it did not degrade cellulose. Clostridium cellulolyticum and Clostridium populeti catalysed the highest H(2) production from cellulose, with yields of 1.7 and 1.6 mol H(2 )mol(-1) hexose from MN301 and 1.6 and 1.4 mol H(2) mol(-1) hexose from Avicel, respectively. These species also achieved 25-100% higher H(2) production rates from cellulose than the other species. CONCLUSIONS: These cellulolytic, hydrogen-producing clostridia varied in H(2) production, with Cl. cellulolyticum and Cl. populeti achieving the highest H(2) yields and cellulose degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: The fermentation of cellulosic materials presents a means of H(2) production from renewable resources. This standardized comparison provides a quantitative baseline for improving H(2) production from cellulose through medium and process optimization and metabolic engineering.  相似文献   

14.
庄桂 《工业微生物》1996,26(4):21-27
本试验以有一定纤维素酶活力的黑曲霉A.nigerHS-00为出发菌株,经紫外光、激光、亚硝基胍复合诱变,选育出糖化稻草纤维素性能优良的A.nigerHS-16菌株,其分解稻草纤维素产生还原糖的能力是出发菌株的5倍,还原糖生成率可达28%。利用其稻草纤维素糖化液进行酒精发酵,酒化率为84.8%。本试验还系统研究了影响稻草纤维素糖化的因素,确定了糖化用固体稻草培养基的最佳配方,分析了不同营养对酒精发酵  相似文献   

15.
Sixteen batch experiments were performed to evaluate the stability, kinetics, and metabolic paths of heat-shocked digester (HSD) sludge that transforms microcrystalline cellulose into hydrogen. Highly reproducible kinetic and metabolic data confirmed that HSD sludge could stably convert microcrystalline cellulose to hydrogen and volatile fatty acids (VFA) and induce metabolic shift to produce alcohols. We concluded that clostridia predominated the hydrogen-producing bacteria in the HSD sludge. Throughout this study the hydrogen percentage in the headspace of the digesters was greater than 50% and no methanogenesis was observed. The results emphasize that hydrogen significantly inhibited the hydrogen-producing activity of sludge when initial microcrystalline cellulose concentrations exceeded 25.0 g/L. A further 25 batch experiments performed with full factorial design incorporating multivariate analysis suggested that the ability of the sludge to convert cellulose into hydrogen was influenced mainly by the ratio of initial cellulose concentration (So) to initial sludge density (Xo), but not by interaction between the variables. The hydrogen-producing activity depended highly on interaction of So x (So/Xo). Through response surface analysis it was found that a maximum hydrogen yield of 3.2 mmol/g cellulose occurred at So = 40 g/L and So/Xo = 8 g cellulose/g VSS. A high specific rate of 18 mmol/(g VSS-d) occurred at So = 28 g/L and So/Xo = 9 g cellulose/g VSS. These experimental results suggest that high hydrogen generation from cellulose was accompanied by low So/Xo.  相似文献   

16.
AIMS: To profile the fractions of bacteria in heat-treated activated sludge capable of producing hydrogen and subsequently to isolate those organisms and confirm their ability to produce hydrogen. METHODS AND RESULTS: Profiling the community composition of the microflora in activated sludge using 16S rRNA gene-directed polymerase chain reaction-denaturing gradient gel electrophoresis suggested that a majority of bacteria were various Clostridium species. This was confirmed by clone library analysis, where 80% of the cloned inserts were Clostridium sp. A total of five isolates were established on solid media. Three of them, designated as W1, W4 and W5, harboured the hydrogenase gene as determined by PCR and DNA sequence analysis (99% similarity). These isolates were similar to Clostridium butyricum and Clostridium diolis as determined by 16S rRNA gene sequence. A maximum hydrogen production yield of 220 ml H(2) g(-1) glucose was achieved by W5, which was grown on improved mineral medium by batch fermentation without pH adjustment and nitrogen sparging during fermentation. Accumulation of malic acid and fumaric acid during hydrogen fermentation might lead to higher hydrogen yields for W4 and W5. W1 is the first reported Clostridium species that can tolerate microaerobic conditions for producing hydrogen. CONCLUSION: Clostridium species in heat-treated activated sludge were the most commonly identified bacteria responsible for hydrogen production. Specific genetic markers for strains W1, W4 and W5 would be of great utility in investigating hydrogen production at the molecular level. Two previously described primer sets targeting hydrogenase genes were shown not to be specific, amplifying other genes from nonhydrogen producers. SIGNIFICANCE AND IMPACT OF THE STUDY: Clostridium species isolated from heat-treated activated sludge were confirmed as hydrogen producers during dark hydrogen fermentation. The isolates will be useful for studying hydrogen production from wastewater, including the process of gene regulation and hydrogenase activity.  相似文献   

17.
The thermophilic, anaerobic, propionate-oxidizing bacterial populations present in the methanogenic granular sludge in a thermophilic (55°C) upflow anaerobic sludge blanket reactor were studied by cultivation and in situ hybridization analysis. For isolation of propionate-degrading microbes, primary enrichment was made with propionate as the sole energy source at 55°C. After several attempts to purify the microbes, a thermophilic, syntrophic, propionate-oxidizing bacterium, designated strain SI, was isolated in both pure culture and coculture with Methanobacterium thermoautotrophicum. Under thermophilic (55°C) conditions, strain SI oxidized propionate, ethanol, and lactate in coculture with M. thermoautotrophicum. In pure culture, the isolate was found to ferment pyruvate. 16S ribosomal DNA sequence analysis revealed that the strain was relatively close to members of the genus Desulfotomaculum, but it was only distantly related to any known species. To elucidate the abundance and spatial distribution of organisms of the strain SI type within the sludge granules, a 16S rRNA-targeted oligonucleotide probe specific for strain SI was developed and applied to thin sections of the granules. Fluorescence in situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells were present in the middle and inner layers of the thermophilic granule sections and that they formed close associations with hydrogenotrophic methanogens. They accounted for approximately 1.1% of the total cells in the sludge. These results demonstrated that strain SI was one of the significant populations in the granular sludge and that it was responsible for propionate oxidation in the methanogenic granular sludge in the reactor.  相似文献   

18.
Cellulolytic clostridia have evolved to catabolize lignocellulosic materials at a seasonal biorhythm, so their biotechnological exploitation requires genetic improvements. As high carbon flux leads to pyruvate accumulation, which is responsible for the cessation of growth of Clostridium cellulolyticum, this accumulation is decreased by heterologous expression of pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis. In comparison with that of the wild strain, growth of the recombinant strain at the same specific rate but for 145 h instead of 80 h led to a 150% increase in cellulose consumption and a 180% increase in cell dry weight. The fermentation pattern was shifted significantly: lactate production decreased by 48%, whereas the concentrations of acetate and ethanol increased by 93 and 53%, respectively. This study demonstrates that the fermentation of cellulose, the most abundant and renewable polymer on earth, can be greatly improved by using genetically engineered C. cellulolyticum.  相似文献   

19.
A two-stage continuous cultivation experiment with Clostridium beijerinckii NRRL B592 is described. This strain maintained its ability to produce neutral solvents (acetone, n-butanol, and ethanol) at an overall dilution rate of 0.13 h(sup-1) and achieved an average overall solvent concentration of 9.27 g/liter and an overall solvent productivity of 1.24 g/liter/h for more than 100 overall retention times. The experiment was performed without pH control on a semisynthetic medium containing yeast extract, and product inhibition was the limiting factor. Solid carrier material was present in both stages, and the solvent productivity in both stages was similar. A membrane evaporation module integrated into the recirculation loop of a second-stage bioreactor after 2,166 h increased solvent productivity and improved the yield of solvents by about 40%. The membrane reduced the concentration of solvents, which would otherwise inhibit the fermentation. Additionally, the integrated membrane evaporation dampened metabolic oscillations, which are characteristic of continuous cultivation of clostridia. It was also demonstrated that a moderate concentration buildup (approximately 30% of bioreactor inflow) caused by water flux through the membrane caused no detrimental effects to the bacterial cells. However, much higher water fluxes through the membrane, associated with a much more dramatic increase in the concentration of salts in the medium, did appear to favor cell degeneration.  相似文献   

20.
Two species of obligately anaerobic mycoplasmas were the major components of a methanogenic glucose-limited enrichment culture. In pure culture, one of these organisms, tentatively named Anaeroplasma sp. strain London, was shown to be responsible for the fermentation of glucose to fatty acids, hydrogen, and carbon dioxide; the other mycoplasma was shown to produce methane from hydrogen and carbon dioxide and was named Methanoplasma elizabethii. This same methanogenic mycoplasma contained a low-molecular-weight fluorescent cofactor which had a maximum light absorbance at 430 nm. When both species of mycoplasmas were grown together on glucose, fermentation products included fatty acids and methane. For the first time, mycoplasmas are implicated as agents of anaerobic degradation and methanogenesis in a sewage sludge digester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号